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Abstract

We provide an intuitive new algorithm for black-
box stochastic optimization of unimodal func-
tions, a function class that we observe empirically
can capture hyperparameter-tuning loss surfaces.
Our method’s convergence guarantee automatically
adapts to Lipschitz constants and other problem dif-
ficulty parameters, recovering and extending prior
results. We complement our theoretical develop-
ment with experimental validation on hyperparam-
eter tuning tasks.

1 BLACK-BOX OPTIMIZATION
This paper considers the problem of black-box stochastic
optimization. Specifically, we are interested in solving a
maximization problem of the form:

max
x

F (x) = Ez[f(x, z)]

Here, F is the objective function that takes the form F (x) =
Ez[f(x, z)], for some function f and some random variable
z. We have access to a black-box evaluation oracle (some-
times called a stochastic zeroth-order oracle), which returns
a random sample f(x, z) given any x. This is the only in-
formation we have about f ; we do not know the function
definition or its gradients.

The ability to solve this problem forms a fundamental prim-
itive in more complex systems. For example, it can be used
to optimize design of new materials [Terayama et al., 2021],
to improve user interfaces, or search for hyperparameters
in machine learning [Golovin et al., 2017, Feurer and Hut-
ter, 2019, Hazan et al., 2018]. Although the techniques we
present in this work are very general, we focus on the task
of optimizing hyperparameters as an important motivating
application.

Black-box optimization has been studied from a variety of
perspectives, which is reflected in the variety of names that

refer to essentially similar concepts. Depending on the au-
thor, it may be referred to as “zero-order” or “derivative-free”
optimization [Rios and Sahinidis, 2013, Duchi et al., 2015,
Jamieson et al., 2012], “bandit” optimization [Agarwal et al.,
2011, Agrawal, 1995, Kleinberg et al., 2008, Auer et al.,
2007, Shamir, 2013, Jun et al., 2017], sequential experi-
mental design [Chernoff, 1959], or Bayesian optimization
[Shahriari et al., 2015, Srinivas et al., 2009, Snoek et al.,
2012]. While the details of the methods used to solve the
problem are diverse, the overall idea behind all methods is
necessarily similar: first, assume some sort of “structure”
on either the distribution of z or the shape of f (or both)
that constrains the number of possibilities for F - popular
examples include convexity, smoothness, a Bayesian prior.
Then, use new evaluations f(x, z) to further constrain the
possibilities until one can reliable identify a maximizing
point.

An algorithm’s usefulness can thus be measured on two axes:
the degree that whatever structural assumptions it makes
are in fact reflected in practice, and the number of sam-
ples required by the algorithm to optimize F subject to the
assumptions. The goal is to find assumptions expressive
enough to capture real problems while still admitting effi-
cient optimization. In this paper, we focus on the assumption
of unimodality. That is (in the 1D case), the function F has
only one local maximum. This assumption is motivated via
empirical observation of hyperparameter-tuning problems.
For example, in Figure 1 we plot the influence of the learn-
ing rate hyperparameter on the accuracy of an AlexNet type
architecture trained on the CIFAR100 image classification
task [Krizhevsky, 2009]. It is evident that this relationship
is at least approximately unimodal, and we describe fur-
ther evidence for unimodality in Appendix E. While our
algorithms simply assume unimodality and so may behave
poorly when this condition does not hold, we observe em-
pirically in Section 5 that in practice our approach works
well.

Although unimodality is much less well-studied in the litera-
ture than its popular and more stringent cousin convexity, we
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Figure 1: Accuracy of CNN on the CIFAR100 validation set
as we vary the learning rate from 1e-6 to 1e-1 on a uniform
grid in the log scale. We repeat the experiment 6 times for
each of the 1000 learning rate values and show the mean
accuracy here, with confidence intervals.

are not the first to consider unimodality. For example, Yu and
Mannor [2011], Combes and Proutiere [2014], Combes et al.
[2020] all provide algorithms for F that satisfy particular
further assumptions in addition to unimodality. We develop
a new algorithm that provides theoretical improvements
over these works in terms of robustness to these further
assumptions: our method simultaneously enjoys provably
good performance for these prior function classes as well as
other natural classes.

We then conduct an empirical evaluation of our method
on a benchmark hyperparameter tuning task involving tun-
ing hyperparameters across a number of different sub-tasks
[Arango et al., 2021]. We compare our algorithm to the
simple random search baseline as well as the more ad-
vanced Gaussian process upper-confidence bound algorithm,
which is a standard approach to hyperparameter tuning. Our
method not only obtains slightly improved average perfor-
mance across the different sub-tasks, it also obtains signifi-
cantly better performance on tasks with less than 6 hyperpa-
rameters to tune, forming a very promising initial study of
our approach.

In summary, we make the following contributions:

• In Section 3, we propose a novel algorithm for black-
box optimization of 1D unimodal functions, with the-
oretical analysis on a variety of function classes. We
simultaneously match the convergence rate of Klein-
berg et al. [2008] for Lipschitz (Theorem 1) and smooth
functions (Theorem 2), and that of Combes et al. [2020]
for functions that meet certain growth conditions (The-
orem 3). Our proposed algorithm does not need prior
knowledge of problem parameters such as Lipschitz or
smoothness constants to achieve these results.

• In Section 4, we extend our 1D algorithm to higher
dimensions. This extension provably converges to a
local maximum.

• In Section 5, we empirically show that our multi-
dimensional algorithm is generally competitive with
the state-of-the-art Bayesian optimization methods on
hyperparameter tuning tasks. For modest dimension
counts (i.e. d ≈ 5), our method significantly outper-
forms Bayesian optimization methods.

2 DEFINITIONS AND SETTING
In this paper we consider exclusively loss functions of
the form f : [0, 1]d × Z → [0, 1], where Z is some ar-
bitrary set. Given a Z-valued random variable Z, we let
F (x) : [0, 1]d → [0, 1] be given by F (x) = E[f(x, Z)].
Our algorithms have access to a stochastic value oracle:
given a point x, we may generate a new i.i.d. sample z and
compute f(x, z). We call such a process a “query” or a
“sample” interchangably. Our goal is to find a point x̂ such
that F (x̂) is as large as possible using at most B samples
for some given budget B.

A 1-D function is unimodal if it has a single local maximum.
We extend this notion to arbitrary dimensions by imposing
the definition on each coordinate axis.

Definition 1 (Unimodality). A function F : [0, 1]d → [0, 1]
is unimodal if for all (x1, . . . , xd) ∈ [0, 1]d, and all i ∈
{1, . . . , d}, there exists an x?i ∈ [0, 1] such that for all
a, b ∈ [0, 1] with either x?i ≥ a ≥ b or x?i ≤ a ≤ b, we
have

F (x1, . . . , xi−1, a, . . . , xd) ≥ F (x1, . . . , xi−1, b, . . . , xd)

We also define a notion of local optimality to non-
differentiable functions.

Definition 2. A point x = (x1, . . . , xd) ∈ [0, 1]d is an τ -
approximate local optimum point of F : [0, 1]d → [0, 1] if
for all i ∈ {1, . . . , d}, for all x?i ∈ [0, 1],

F (x1, . . . , xi−1, x
?
i , . . . , xd) ≤ F (x) + τ

In other words, an approximate local optimum point is a
point at which only minimal progress can be made by chang-
ing only one coordinate.

3 ALGORITHM AND ANALYSIS FOR 1-D
FUNCTIONS

We first build an algorithm for the special-case of 1-D uni-
modal functions. We extend it in Section 4 to the high dimen-
sional case by employing coordinate descent. For this sec-
tion, let F : [0, 1]→ [0, 1] and x? = argmaxx∈[0,1] F (x).



3.1 PREVIOUS WORK

Golden section search method [Kiefer, 1953] is a minimax
optimal algorithm for deterministic 1-D unimodal functions.
The key observation is the following:

If F (a) ≥ F (b) for some a, b ∈ [0, 1], then a ≥ b implies
x? ≥ b, and a ≤ b implies x? ≤ b.

This suggests a natural strategy: maintain a candidate inter-
val [l, r] such that x? ∈ [l, r] and iteratively narrow it down.
Combes et al. [2020], Yu and Mannor [2011] generalized
the golden section search stochastic settings. They first com-
mit to a small number of possible values y1, . . . , yK ∈ [l, r],
such that each yi is far from the boundary of the current can-
didate interval [l, r]. Then, they repeatedly sample f(yi, zt)
until they can estimate F (y1), . . . , F (yK) with high accu-
racy and identify yi and yj where F (yi) ≥ F (yj).

However, this approach is intuitively wasteful because it
puts too many eggs in few baskets. For example, it fails to
make progress when F (yi) is equal for all i, and all the
repeat samples of f(yi, zt) are wasted. To address this issue,
Combes et al. [2020] imposes additional structural condi-
tions on F that prevent the derivative from being too close to
zero. Our approach does not require such conditions, but
it automatically enjoys a faster convergence rate when
the conditions are satisfied.

Algorithm 1: One Elimination Round of Unimodal Op-
timization
Require: Confidence parameter δ, interval ∆ = [l, r],

threshold τ ≥ 0, spacing GAP such that u−l
GAP

is an
integer, confidence scaling constant h > 0 to be set by
Lemma 2.

1: Define the points l = x(1) < x(2) < . . . < x(N) = r
for N = 1 + l−r

GAP
equally spaced in the interval ∆.

2: Compute f(x(k), z(k)) for i.i.d. z(1), . . . , z(N).
3: Given any i, j ∈ {1, . . . , N}, define
mij =

∑j
k=i f(x(k), z(k))/(j − i+ 1),

sij = h
√

log(2N/δ)/
√
j − i+ 1.

4: Define upper confidence bound U(i, j) = mij + sij
for each i, j ∈ {1, . . . , N}

5: Define lower confidence bound L(i, j) = mij − sij
for each i, j ∈ {1, . . . , N}

6: Let Sl = max{x(i) |∃i ≤ j ≤ k ≤ l s.t. U(i, j) <
L(k, l)− τ} ∪ {x(1)}.

7: Let Sr = min{x(l) |∃i ≤ j ≤ k ≤ l s.t. U(k, l) <
L(i, j)− τ} ∪ {x(N)}.

8: Let Ibest = argmax[x(i),x(j)] L(i, j)
9: Return new interval [Sl, Sr] ⊂ ∆ and the best interval
Ibest.

Our approach is inspired by prior work on continuum armed-
bandits [Auer et al., 2007] that tries to identify an interval
containing x?. We extend their technique to unimodality so
that the intervals can be used for elimination.

3.2 ALGORITHM

Our algorithm samples a large number of points only once
(Line 2 of Algorithm 1). As a result, our algorithm cannot
build good enough estimates of F at a single point to identify
a pair of points (a, b) with F (a) ≥ F (b). Instead, our
algorithm identifies a pair of intervals Ia = [a1, a2] and
Ib = [b1, b2] for which there is some (unknown) a ∈ Ia, b ∈
Ib satisfying F (a) ≥ F (b). Thus, we can either eliminate
all points less than b1 if b2 < a1, or all points greater than
b2 if a2 < b1. (Line 6-7).

Note that since b ∈ [b1, b2], we do not eliminate as much as
we would be able to if we had found the exact point b. That
is, our algorithm operates with a potentially larger candidate
interval than the existing algorithms at first, but casts a wider
net for finding sub-intervals to eliminate. Intuitively speak-
ing, our algorithm explores the geometry of the function F
more broadly.

In order to find these intervals, we start by generating a
grid of uniformly spaced points x(1), x(2), . . . , x(N) with
|x(i) − x(i+1)| = ∆ for some grid-spacing parameter ∆.
Then, we evaluate f(x(i), z(i)) for each i ∈ {1, . . . , N}
for independent samples z1, . . . , zN . Now, for each in-
terval I = [xi, xj ], we can form the intersection SI =
I ∩ {x(1), . . . , x(N)} and estimate the average FI =

1
|SI |

∑
x(i)∈S F (x(i)) by 1

|SI |
∑
x(i)∈SI

f(x(i), z(i)). More-
over, for each I we can also form confidence intervals
of width O(

√
log(N2/δ)/

√
|SI |) valid with probability

1− δ/N2. Since there are O(N2) possible sets SI , the con-
fidence intervals are simultaneously valid with probability
1−δ. Finally, if any two intervals Ia and Ib are such that the
confidence interval for Ia is larger and disjoint from that for
Ib, then there must be a ∈ Ia and b ∈ Ib with F (a) ≥ F (b).

We formally specify this algorithm in Algorithm 1 and pro-
vide analysis in Lemma 1. The algorithm includes a "thresh-
old" parameter τ , which is used for extensions to multiple
dimensions in Section 4. For the remainder of this section,
we will assume τ = 0.

Lemma 1. There is a universal constant h that can be pro-
vided to Algorithm 1 such that with probability at least
1 − δ, if x? ∈ ∆ and [Sl, Sr] is the output of Algo-
rithm 1 with any GAP and τ , then x? ∈ [Sl, Sr], and

1
j−i+1

∑j
k=i F (x(k)) ∈ [L(i, j), U(i, j)] for all i, j.

Now, our full 1-D algorithm combines this interval shrink-
ing routine with a doubling argument: we repeatedly call
Algorithm 1 with ∆ set to the previously returned [Sl, Sr]
and GAP set to the previous GAP divided by two. Intuitively,
if Algorithm 1 does not significantly shrink the interval ∆,
then this approach re-runs the algorithm with double the
number of samples. Otherwise, if ∆ shrinks by a constant
factor, we are making sure to still take a reasonable number
of samples in this new smaller interval.

The final ingredient in our algorithm is how to select the



final output x̂. One plausible approach would be to pick
a random element of the interval ∆. However, we opt for
a more refined method: we pick a random element of the
interval that has the largest lower confidence bound. This
enables us to make claims about the quality of our final
output even in the case that the algorithm never eliminates
any intervals at all (i.e. ∆ = [0, 1] always). The formal
description is provided in Algorithm 2.

Algorithm 2: 1D Unimodal Optimization
Require: Confidence parameter δ, threshold τ ≥ 0,

budget B.
1: Initialize t = 1, ∆1 = [0, 1], GAP1 = 0.5,
N = N1 = 3.

2: while N ≤ B do
3: Call Algorithm 1 with input 6δ/π2t2,∆t, τ, GAPt to

obtain outputs [Sl, Sr], Ibest.
4: Let ∆t+1 = [Sl, Sr].
5: Set GAPt+1 = GAPt/2.
6: Set Nt+1 = 1 + Sr−Sl

GAP
//Budget to be consumed by

next iteration.
7: Set N = N +Nt. //Total budget consumed at end of

next iteration.
8: Set t = t+ 1.
9: end while

10: Return a random element of Ibest.

3.3 CONVERGENCE ANALYSIS

In order to prove convergence rates, we will need to make
some additional assumptions about the shape of F be-
yond just unimodality. To see this, consider the function
F (0.7) = 1 and F (x) = 0 for x 6= 0.7. Such an F is cer-
tainly unimodal, and yet clearly no algorithm can obtain any
non-trivial bound on F (x?)−F (x̂). As our first assumption,
we consider lipschitz functions.

Definition 3 (Lipschitz). F (x) is L-lipschitz (i.e. |F (x)−
F (y)| ≤ L|x− y| for all x, y ∈ [0, 1]).

Theorem 1. Suppose F is L-lipschitz. Let x̂ be the output
of Algorithm 2 with total sample budget B and input failure
probability δ. Then, for any δ < 1/2, there is a constant C
and an event E that occurs with probability at least 1− δ
such that:

E[F (x̂)|E] ≥ F (x?)− 3(LC2GAPT log(B/δ))1/3

≥ F (x?)−
3(12LC2 log(B/δ))1/3

B1/3

where C is an absolute constant.

This result shows that the Algorithm 2 converges at a
O(1/B1/3) rate, or equivalently that O(1/ε3) samples suf-
fice to find an ε-suboptimal point for a Lipschitz objective
F , matching classical rates for this setting [Kleinberg et al.,

2008]. The proof proceeds by observing that since Algo-
rithm 2 never discards x?, eventually it will explore a fine
enough grid of points that there will be an interval whose
lower-confidence-bound is within O(1/B1/3) of F (x?), so
that picking a random x̂ from the interval with largest lower-
confidence-bound is guaranteed to be O(1/B1/3) subopti-
mal.

Next, we consider the case of smoooth rather than Lipschitz
F . For smooth F , we can improve upon the Lipschitz anal-
ysis. The key idea is that the average value of F over an
interval of width W is within O(W 2) of the value of F at
the midpoint of the interval. In contrast, if we assume only
Lipschitz F , the average value may be O(W ) away from
any given point in the interval. This improvement translates
into a suboptimality of O(1/B2/5) rather than O(1/B1/3),
as described formally in Theorem 2.

Definition 4. A function F is β-smooth if F (x) is differen-
tiable and F ′(x) is β-Lipschitz.

Theorem 2. Suppose F is β-smooth and that F ′(x?) = 0
(i.e. x? is not on the boundary). Let x̂ be the output of
Algorithm 2 with total sample budget B and input failure
probability δ. Then, there is a constant C such that for any
δ < 1/2 there is an event E that occurs with probability at
least 1− δ such that:

E[F (x̂)|E] ≥ F (x?)−
5(βC4 log(B/δ)2)1/5

B2/5

Theorem 1 and 2 establish baseline convergence rates for
Lipschitz or smooth F . They have the desirable property that
the algorithm need not use any knowledge of the Lipschitz
or smoothness parameters L and β, so that the bounds hold
with the tightest possible (unknown) values. On the other
hand, the result is somewhat naive: we did not use any of the
“elimination” power of the algorithm, and in fact the same
result would hold if we simply applied one single round of
Algorithm 2 and did not even require unimodality.

The power of our algorithm is that it automatically enjoys a
better convergence rate if the function meets certain condi-
tions, without any changes to the input or prior knowledge.
The first such condition we explore is the following:

Assumption 1 ((γ,M)-Lipschitz lower bound). There is
some γ and M such that for all x, y with |x− x?| ≥ γ and
|y − x?| ≥ γ, and sign(x− x?) = sign(y − x?), we have
|F (x)− F (y)| ≥M |x− y| (i.e. if F is differentiable, then
|F ′(x)| ≥M whenever |x− x?| ≥ γ).

Intuitively, these functions have a “difficult” interval of size
2γ around the optimum x?. The lower bound on the slope of
F outside this region allows our algorithm to rapidly elimi-
nate subintervals and converge to a small interval near the
optimum. We can improve upon Theorem 1, and establish
that the asymptotic error is Õ((γ/B)1/3 + 1/

√
B). Notice



that the algorithm at no point requires knowledge of the
parameter γ.

Theorem 3. Suppose F is L-Lipschitz and satisfies Assump-
tion 1. Let x̂ be the output of Algorithm 2 with total sample
budget B > 78 and input failure probability δ. Then, there
is a constant C such that for any δ < 1/2, there is an event
E that occurs with probability at least 1− δ such that:

E[F (x̂)|E] ≥ F (x?)− 3(LGAPTC
2 log(B/δ))1/3

≥ F (x?)− Õ
(
Lγ1/3

B1/3
+

1√
BM1/3

)
where C is an absolute constant.

Finally, we consider the class of functions satisfying As-
sumption 2, which is a strict superset of function class stud-
ied by Combes et al. [2020] (denoted U[0,1] in their paper).
We show that our Algorithm 2 recovers the same Õ(1/

√
B)

convergence rate in this setting, again without requiring any
knowledge of problem parameters.

Assumption 2. There exists A1, A2 and z such that for all
x, A2|x − x?|z ≥ F (x?) − F (x) ≥ A1|x − x?|z . Such
functions need be neither Lipschitz nor smooth.

Theorem 4. Suppose F satisfies Assumption 2. Then, there
is a constant C such that for all δ < 1/2, for any B satis-

fying B ≥ 24A
1/z
2

C1/z log(B/δ)1/2z
, with probability at least 1− δ

Algorithm 2 with τ = 0 guarantees:

F (x̂) ≥ F (x?)− F (x?)

−max

12z
C

2z
2z+1A

2z+2
2z+1

2 log(B/δ)
z

2z+1

A12
zB

24z+12

,

12z2
z

2z+1

√
72√

2
2z

2z+1 − 1

CA
1+ 1

2z
2

√
log(B/δ)

A
1+ 1

2z
1

√
B

)
≥ F (x?)− Õ(1/

√
B)

It should be noted that the dependencies of Theorem 4 on the
parameter z are slightly worse than in Combes et al. [2020].
However, this is mitigated by the fact that our function
class is actually somewhat larger (Combes et al. [2020]
consider a stronger version of Assumption 2 that controls
local behavior of F even far from x?). Further, due to the
greater range of exploration of our algorithm, we are able to
handle more general Lipschitz or smooth losses as described
previously.

We would also like to note that our algorithm would be better
than an algorithm which provides a third of the budget to
CAB1 [Kleinberg, 2004], a third to [Combes et al., 2020]
and picks the best between the two returned answers by
testing on the remaining trials. In order to see this, let us
look at the following informal function class.

Assumption 3 (Informal). Let F be the class of unimodal
functions that satisfy Assumption 2 only on a sub-interval
R ∈ [0, 1] containing the optimum, and outside of this
sub-interval we make no further assumptions other than
unimodality.

Under Assumption 3, our algorithm will eliminate every-
thing outside of R in poly(1/|R|) time, using essentially a
discretization style analysis. However, once this elimination
occurs, the algorithm will automatically switch to the faster
O(1/

√
B) rate. Note that for any |R| > 0, CAB1 will not

achieve a O(1/
√
B) asymptotic rate (due to its discretiza-

tion it cannot hope for better than O(1/B1/3)), while for
|R| < 1/4, the algorithm in [Combes et al., 2020] may not
converge. Thus, this is a class of functions for which we out-
perform the minimum of the two baselines. Moreover, this
class of functions that are “well-behaved near the optimum”
is reasonably natural: indeed our Figure 1 seems to exhibit
such behavior.

4 MULTIDIMENSIONAL PROBLEMS VIA
COORDINATE ASCENT

In this section, we describe a simple approach to generalize
our unimodal optimization algorithm to higher dimensions.
While in the previous section the threshold parameter τ was
essentially a nuisance factor and could be safely set to zero,
here we will need the threshold to overcome a technical
difficulty: we would like to ensure that any time a point
x is eliminated by Algorithm 2, it is possible to identify a
x+ for which F (x?)− F (x+) is significantly smaller than
F (x?)−F (x). We conjecture that τ is not actually required
for this task, but this is left as an open question.

We consider functions F : [0, 1]d → [0, 1] such that for ev-
ery point x ∈ [0, 1], the d 1-D functions given by restricting
F to each coordinate axis through x are all unimodal. This
assumption suggests a natural iterative strategy: we will
initialize our algorithm at some x1 ∈ [0, 1]d. Then, we run a
copy of our 1-D algorithm on each coordinate independently,
choosing samples along each coordinate in a round-robin
fashion. If one of the copies is able to successfully eliminate
the original point w1, then we let the output of this copy be
a next iterate w2 and repeat the process.

The analysis of this method proceeds by showing that (1)
F (xt+1) ≥ F (xt) + τ for all t, and that (2) the number of
samples required to identify xt+1 is not too large, so long as
an appropriate xt+1 exists. Combined, this means that after
at most roughly 1/τ iterations of this procedure, we will
converge to a τ -approximate local optimum (Definition 2)

We provide an analysis of this algorithm for the case of
Lipschitz F in Theorem 5. It follows from an alternative
analysis of Algorithm 2, which tells us that Algorithm 2
will quickly eliminate any non-local minimum point. For
details, please see Lemma 5 in the appendix. Informally,
this result tells us that with a budget of B samples, we will



Algorithm 3: Unimodal Coordinate Ascent
1: t = 1
2: Choose an arbitrary wt = (wt1, . . . , w

t
d) ∈ [0, 1]d

3: while N ≤ B − d do
4: Given a starting point wt ∈ [0, 1]d, initialize d

copies of Algorithm 2 with δ = 6/dt2π2, budget set
to∞ and threshold τ where the ith copy considers
the function Fi : [0, 1]→ [0, 1]
Fi(x) = F (wt1, . . . , w

t
i−1, x, w

t
i+1, . . . , w

t
d).

Let ∆t
ti be the active interval associated with the ith

copy.
Let Itbest,i be the current value of Ibest maintained by
the ith copy.

5: while wti ∈ ∆t
i for all i do

6: if N ≤ B − d then
7: Returns wt.
8: end if
9: Let each copy sample one additional point.

10: N = N + d.
11: end while
12: Suppose the jth copy eliminated wtj (wtj /∈ ∆t

j).
13: Let wt+1

j be a randomly selected point in Itbest,j .
14: Set wt+1 = (wt1, . . . , w

t
j−1, w

t+1
j , wtj+1, . . . ).

15: t← t+ 1.
16: end while
17: Return wt.

find an Õ(d1/4/B1/4)-approximate local minimum for a
d-dimensional Lipschitz unimodal function.

Theorem 5. There is a constant C such that, given a
budget of B and failure probability δ < 1/2, if we set

τ = max
(

2d log(B/δ)
B , 37·(dC2L log(B/δ)2)1/4

B1/4

)
, Then with

probability at least 1− 2δ, Algorithm 3, returns a point ŵ
that is a 3τ -approximate local minimum. That is, for each
coordinate i, for any w?i that differs from ŵ only in the ith
coordinate, we have F (w?i ) ≤ F (ŵ) + 3τ

5 EXPERIMENTS
We tested our algorithm on machine learning hyperparam-
eter optimization (HPO) problems. We used the continu-
ous variant of HPO-B benchmark by [Arango et al., 2021,
Sec 5.4]. The blackbox functions being optimized are the
(approximated) validation accuracy of models for different
hyper-parameter settings. The models vary across several
tasks like training SVMs, GLMNets etc on various datasets.
The approximation is done through XGBoost surrogate func-
tions. We used the "HPO-B-v3 Meta-test split" as detailed
in Arango et al. [2021]. It consists of 86 tasks in 16 dis-
tinct search spaces. We followed the exact test protocols as
defined in their open source package.

Benchmark algorithms. The state of the art for HPO often
involves using Gaussian Process (GP) regressors to derive

surrogate functions and optimize them. We used the GP-
UCB implementation included in the HPO-B open source
package. It uses the GP implementation in BoTorch [Ba-
landat et al., 2019] with UCB coefficient of 0.1 (this
method was shown to have strong performance on the bench-
marks [Arango et al., 2021]). We also use random search
over the domain as another baseline. In order to be fair to
all the algorithms, we initialize each of them at a random
point for any of the benchmark tasks. All algorithms are run
five times for every task.

Algorithm 4: Modified Unimodal Coordinate Ascent

1: Set N, t = 10. Choose 10 random points [0, 1]d and set
arbitrary wt as the one with the best observed value.

2: while N ≤ B − d do
3: Given a starting point wt ∈ [0, 1]d, initialize d

copies of Algorithm 6 with δ = 6/dt2π2, budget set
to∞ where the ith copy considers the function
Fi : [0, 1]→ [0, 1]
Fi(x) = F (wt1, . . . , w

t
i−1, x, w

t
i+1, . . . , w

t
d).

Let ∆t
ti be the active interval associated with the ith

copy.
Let Itbest,i be the current value of Ibest maintained by
the ith copy.

4: while wti ∈ ∆t
i for all i do

5: if N ≤ B − d then
6: Return wt.
7: end if
8: Let i be the dimension sampled from distribution

proportional to {exp(s1), · · · , exp(sd)}. Here si
is the observed standard deviation of the values
for dimension i so far.

9: Run one more epoch of Algorithm 6 for
dimension i.

10: N = N +<#new points sampled>.
11: end while
12: Suppose the j-th copy is one such copy that

eliminated wtj (wtj /∈ ∆t
j) and ∆t,j is smallest

among all eliminating dimensions.
13: Let wt+1

j be the best point selected in Itbest,j , in
terms of observed value.

14: Set wt+1 = (wt1, . . . , w
t
j−1, w

t+1
j , wtj+1, . . . ) and

begin a new round (reuse points if available).
15: end while
16: Return wt.

Our implementation. We make some practical modifica-
tions to Algorithm 3 for the real world benchmarks, both
to improve runtime and also to acknowledge that the true
black-box functions might not exactly adhere to our as-
sumptions. First, instead of comparing every possible pair
of disjoint intervals (I1, I2), we compare only pairs where
|I1| = |I2| and both are powers of 2. This significantly re-
duces the number of pairs to compare, and an inspection of
our proof techniques shows that it will only harm constants



(a) Regret across all tasks (b) Cumulative runtime

(c) Regret vs Dimension (d) Regret on lower dimensional tasks

Figure 2: In (a), we plot the normalized regret as a function of number of trials (observations) averaged over 86 benchmark
tasks. Each task is repeated 5 times and we plot the corresponding standard errors. It can be seen that our algorithm
(Unimodal Ascent) outperforms the baselines over the majority of the x-axis. In (b), we compare the run-times of our
algorithm and BoTorch GP-UCB as a function of number of trials. In (c), we plot the average regret of our algorithm and
BoTorch-GP as a function of problem dimension. It can be seen that we outperform the GP on all dimensions except 8 and
18. In (d), we plot the normalized regret as a function of number of trials for problems with dimensions ≤ 6.



in the bounds. Further, we never sample the same point
twice, but instead re-use the previous sample every time it is
requested in Algorithm 1. This again only harms constants
in the bounds. Next, in all tasks, we start our algorithm with
10 random points in the domain, and then choose the point
with the best observed value as the starting point for the
unimodal coordinate ascent. In practice this leads to a good
initialization of our algorithm. Note that we count those ten
points as trials expended by our algorithm so that it is a
fair comparison with the benchmarks. In Algorithm 3, if at
any point there are multiple coordinates that can eliminate
the current point (line 12), we choose the coordinate along
which the maximum area has been eliminated. Finally, in-
stead of letting each coordinate sample a point in line 9,
we choose the coordinate that can sample the next point
from a distribution that up-weights coordinates that have
shown more variation in past trials. We also set the thresh-
old parameter τ to zero. In the interest of space, we provide
the pseudo-code of this modified algorithm as Algorithm 4
(more details in Appendix D).

Regret on the full benchmark. In Figure 2a, we plot
the normalized regret as a function of number of tri-
als/ observations. We adopt the definition of normalized
regret from [Arango et al., 2021] i.e given the points
{x1, x2, · · · , xt} chosen by the algorithm till time t, the
normalized regret is

r(t) =
F (x∗)−maxs∈[t] F (xs)

F (x∗)− F (xmin)

where xmin is the point with the lowest objective value. It
can be observed that our simple unimodal ascent algorithm
outperforms a state of the art GP averaged over all the 86
real world benchmark HPO tasks. This is quite remarkable
since the benchmark tasks might not strictly adhere to our
assumptions and the GP has been carefully tuned by Arango
et al. [2021] for good performance on the HPO-B tasks. We
also provide a comparison w.r.t a version of the Zooming
Algorithm [Kleinberg et al., 2008] in Appendix D.1.

Runtime. Figure 2b shows the cumulative runtime of our
algorithm against the BoTorch GP as a function of number
of observations. The logarithmic scale in the y-axis shows
that our algorithm is orders of magnitude faster than the GP,
owing to its simplicity. All our experiments were performed
on Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz machines
with NVIDIA Tesla P100 GPU.

Indeed, it is well-known that generating the N -th sugges-
tion from the GP takes O(A(DN2 +N3) +B(DN +N2))
time, where D is search space dimension, A is the num-
ber of kernel hyper-parameter optimization (also known as
ARD) iterations, andB is the number of acquisition function
optimization iterations [Garnett, 2022].

In comparison, generating the N -th suggestion from Algo-
rithm 4 takes O(N2) time, up to logarithmic factors. This

can be a significant advantage when tuning a lightweight
model or optimizing with a large budget on the number of
evaluations.

Dimension of search-space. Now we dive deeper into the
behavior of the algorithms in search-spaces of varying di-
mensions. The HPO-B benchmarks contain search spaces of
dimensions ranging from 2 to 18. We expect our algorithm
to work significantly better than the GP for lower dimen-
sional problems in the presence of approximately unimodal
structure. This phenomenon can be observed in Figure 2c
where we plot the average normalized regret achieved at the
end of 100 trials, broken down by search-space dimension.
Our gains are much more significant for lower dimensions.
The BoTorch GP is only better than us for problems with
dimension 18 and comparable to us on problems with di-
mension 8.

In Figure 2d, we plot regret as a function of number of
trials, for tasks with dimension less than or equal to 6 (more
than 38% of the search-spaces). This shows that we are
significantly better than the GP for these tasks. In conclusion
our algorithm is simpler and faster than the state of the art
BoTorch GP, while being more performant on average on
the HPO-B benchmark.

6 CONCLUSION
We describe a new algorithm for black-box optimization
of unimodal functions. Our algorithm is based upon the
intuitive idea that one can estimate the objective value at
any given point by sampling several nearby points, rather
than sampling the same point many times. This allows us to
uniformly cover the input space and gain more information
about the shape of the function while still employing a
simple elimination test to remove suboptimal regions of
the input quickly. We demonstrate theoretically that this
method matches prior work, and empirically we are able to
outperform more advanced methods based upon Gaussian
processes. We conjecture that this capability arises from
the unimodality assumption providing an informative prior
about the overall shape of the objective (even if it is not
strictly true in all practical settings).

Our work suggests at least three natural avenues for future
investigation. Perhaps the most pressing is improving the
method of extension to high dimensional problems. We
adopt a relatively simple coordinate ascent strategy, while
one might hope for a more refined algorithm that views all
dimensions at once. Nevertheless, even this naive approach
performs surprisingly well in our experimental study. Next,
although our theoretical development matches prior work in
the 1D setting, there are classes of functions missing from
our analysis, notably the convex F , which are of course also
unimodal. Thus, it would be valuable to improve the analysis
or algorithm to achieve the optimal O(1/

√
T ) convergence

rates for convex functions.
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A PROOFS FOR SECTION 3

A.1 PROOF OF THEOREM 1

In this section we provide the missing proofs for the analysis of the 1-D unimodal optimization algorithm. Results that
appear in the main text are restated in this section for reference.

We begin with a technical observation that allows us to show Theorem 1:

Lemma 2. Using the notation of Algorithm 1, there exists a universal constant h such that with probability at least 1− δ,
for all i, j ∈ {1, . . . , N},

1

j − i+ 1

j∑
k=i

F (x(k)) ≤ 1

j − i+ 1

j∑
k=i

F (x(k)) + h
√

log(N/δ)/
√
j − i+ 1

1

j − i+ 1

j∑
k=i

F (x(k)) ≥ 1

j − i+ 1

j∑
k=i

F (x(k)) + h
√

log(N/δ)/
√
j − i+ 1

Proof. Notice that the sequence f(x(k), z(k))− F (x(k)) forms a bounded martingale difference. The Lemma then follows
directly from Azuma-Hoeffding inequality followed by union bound over the N(N−1)

2 possible choices for i, j.

With this, we can prove:

Lemma 1. There is a universal constant h that can be provided to Algorithm 1 such that with probability at least 1− δ,
if x? ∈ ∆ and [Sl, Sr] is the output of Algorithm 1 with any GAP and τ , then x? ∈ [Sl, Sr], and 1

j−i+1

∑j
k=i F (x(k)) ∈

[L(i, j), U(i, j)] for all i, j.

Proof. By Lemma 2, we have that 1
j−i+1

∑j
k=i F (x(k)) ∈ [L(i, j), U(i, j)] for all i, j with probability 1− δ. The rest of

the proof conditions on this this high probability even.

Now, we will show that x? ≥ Sl. The argument that x? ≤ Sr is completely symmetric. Thus, this will establish x? ∈ [Sl, Sr].

First, if Sl = x(1) = u, then x? ≥ Sl by assumption since x? ∈ ∆. Otherwise, there must exist i ≤ j ≤ k ≤ l such that
Sl = x(i) and U(i, j) < L(k, l)− τ . Now, since

1

j − i+ 1

j∑
k=i

F (x(k)) ≤ U(i, j) ≤ L(k.l)

1

l − k + 1

j∑
v=i

F (x(v)) ≤ L(k, l)

we have that there must exist some b ∈ {x(i), . . . , x(j)} and a ∈ {x(k), . . . , x(l)} such that a ≥ b and F (a) ≥ F (b). Thus,
since F is unimodal we must have x? ≥ b ≥ x(i) = Sl as desired.

Next, we prove Lemma 3:

Lemma 3. For all t, Algorithm 2 guarantees:

1. Let x(1,t), . . . , x(Nt,t) be the input points sampled by the tth call to Algorithm 1 and let Lt(i, j) and U t(i, j) be the
L(i, j) and U(i, j) values computed using the samples. Then with probability at least at least 1− δ we have x? ∈ ∆t

and for all t and 1
j−i+1

∑j
k=i F (x(k,t)) ∈ [Lt(i, j), U t(i, j)] for all i, j, t.

2. There is a constant h such that the confidence widths sij computed in each round of Algorithm 2 satisfy sij ≤
C
√

log(B/δ)/
√
j − i+ 1 for all ij for all rounds for some constant C for any δ < 1/2.

3. |∆t|/εt ∈ N for all t (with probability 1).

4. At least B/3 budget is consumed (with probability 1).

5. The value of GAPt after consuming N samples is at most 4/N (with probability 1). In particular, the final value of
GAPt is at most 12/B.



Proof. 1. The first statement follows from Theorem 1 combined with union bound and the fact that
∑∞
i=1 1/i2 = π2/6.

2. For the second statement, in the tth round, the confidence width is

sij =
h
√

log(Ntπ2/3δ)√
j − i+ 1

≤
h
√

log(Bπ2/3δ)√
j − i+ 1

≤
h
√

log(π2/3) + log(B/δ)√
j − i+ 1

≤
h
√

log(2π2/6)/ log(2)
√

log(2) + log(B/δ)√
j − i+ 1

≤
h
√

2 log(2π2/6)/ log(2)
√

log(B/δ)√
j − i+ 1

which shows the claim.

3. Observe that since ∆t+1 = [x(i), x(j)] for some x(i) and x(j) produced by the tth call to Algorithm 1, we have that
|∆t+1| = kεt for some integer k. Now, since εt = 2−t for all t, we clearly have |∆t+1|/εt+1 = 2k ∈ N.

4. Now, to show that Algorithm 2 consumes at least B/3 budget, we claim that the tth call to Algorithm 2 uses at most
twice as many samples as the t− 1st call: Nt+1 ≤ 2Nt. This claim suffices to show the desired result: the algorithm
runs until N =

∑t+1
i=1 Ni ≥ B and consumes

∑t
i=1Nt budget. If

∑t
i=1Nt < B/3, then Nt < B/3. However, since

Nt+1 ≤ 2Nt, this implies Nt+1 < 2B/3 so that
∑t+1
i=1 Nt < B, which is a contradiction.

So, it remains to establish the claim. Notice that Nt = 1 + |∆t|
GAPt

= 1 + |∆t|2t for all t. Further, |∆t+1| ≤ |∆t| for all t.
Therefore:

Nt+1 = 1 + |∆t+1|2t+1

≤ 1 + |∆t|2t+1

= 2(1 + |∆t|2t)− 1

≤ 2Nt

as desired.

5. Finally, we show that when N samples are consumed, the smallest GAPt value is at most 4/N . Since GAPt = 2−t,
this means that we need to show 2t ≥ B/4. To see this, observe that Nt ≤ 1 + |∆t|2t ≤ 1 + 2t for all t. Therefore
N ≤

∑t
i=1Ni ≤ t+ 2t+1 ≤ 2t+2 so that indeed B/4 ≤ 2t.

A.2 PROOF OF THEOREM 1

Theorem 1. Suppose F is L-lipschitz. Let x̂ be the output of Algorithm 2 with total sample budget B and input failure
probability δ. Then, for any δ < 1/2, there is a constant C and an event E that occurs with probability at least 1− δ such
that:

E[F (x̂)|E] ≥ F (x?)− 3(LC2GAPT log(B/δ))1/3

≥ F (x?)−
3(12LC2 log(B/δ))1/3

B1/3

where C is an absolute constant.

Proof. By Lemma 3, we have that x? ∈ ∆t for all t with probability at least 1− δ. Then, let E be the event that x? ∈ ∆t

for all t so that P (E) ≥ 1− δ as required. Let C be the same absolute constant as in Lemma 3.

Let T be the number of calls to Algorithm 1 made in Algorithm 2. Then, Lemma 3 also implies that GAPT ≤ 12/B. Let
x(1), . . . , x(NT ) be the points sampled by Algorithm 1 in the T th and final round of Algorithm 2. Suppose i ≤ j are such



that x(i) ≤ x? ≤ x(j). Define l = j − i+ 1. Note that such an interval exists for all l ≤ NT . Then we have the following
identity:

L(i, j) ≥ 1

j − i+ 1

j∑
k=i

f(x(k), z(j))−
C
√

log(B/δ)√
l

≥ 1

j − i+ 1

j∑
k=i

F (x(k))−
2C
√

log(B/δ)√
l

≥ F (x?)− L|x(i) − x(j)| −
2C
√

log(B/δ)√
l

≥ F (x?)− LGAPT (l − 1)−
2C
√

log(B/δ)√
l

Now, suppose that there is no such i, j satisfying l = dC2/3 log(B/δ)1/3/(LGAPt)
2/3e. Then we must have NT <

dC2/3 log(B/δ)1/3/(LGAPt)
2/3e, which implies NT − 1 < C2/3 log(B/δ)1/3/(LGAPt)

2/3. Therefore, every point x̂ in
the interval ∆ satisfies:

F (x̂) ≥ F (x?)− LGAPT (NT − 1)

≥ F (x?)− (LGAPTC
2 log(B/δ))1/3

Then, since Lemma 3 tells us GAPT ≤ 12
B , this yields F (x̂) ≤ F (x?) − (12LC2 log(B/δ))1/3

B1/3 which would establish the
desired result.

On the other hand, suppose that such an i, j exists. Then for such an i, j we have:

L(i, j) ≥ F (x?)− LGAPT (l − 1)−
2C
√

log(B/δ)√
l

≥ F (x?)− 3(LGAPTC
2 log(B/δ))1/3

Finally, since we return a random selection from the interval [x(a), x(b)] with largest value of L(a, b), we have:

E[F (x̂)] =
1

b− a+ 1

b∑
k=a

F (x(k))

≥ L(a, b)

≥ L(i, j)

≥ F (x?)− 3(LGAPTC
2 log(B/δ))1/3

Now, apply Lemma 3 to see GAPT ≥ 12/B to establish the final result.

A.3 PROOF OF THEOREM 2

Theorem 2. Suppose F is β-smooth and that F ′(x?) = 0 (i.e. x? is not on the boundary). Let x̂ be the output of Algorithm 2
with total sample budget B and input failure probability δ. Then, there is a constant C such that for any δ < 1/2 there is an
event E that occurs with probability at least 1− δ such that:

E[F (x̂)|E] ≥ F (x?)−
5(βC4 log(B/δ)2)1/5

B2/5

Proof. This proof follows nearly identical reasoning to that of Theorem 1. The only significant change is that instead of
bounding the average value of F over an interval containing x? by the length of the interval, we leverage smoothness to
bound it by the length of the interval squared, which will allow for a tighter tradeoff at the end of the proof.



Following the proof of Theorem 1, by Lemma 3, we have that x? ∈ ∆t for all t with probability at least 1− δ. Then, we
again let E be the event that x? ∈ ∆t for all t so that P (E) ≥ 1− δ as required.

Let T be the number of calls to Algorithm 1 made in Algorithm 2. Then, Lemma 3 also implies that GAPT ≤ 12/B. Let
x(1), . . . , x(NT ) be the points sampled by Algorithm 1 in the T th and final round of Algorithm 2. Suppose i ≤ j are such
that x(i) ≤ x? ≤ x(j). Define l = j − i+ 1. Note that such an interval exists for all l ∈ [2, NT ].

Next, we make use of a standard identity for smooth losses (e.g. see Bubeck et al. [2015]). For all x ∈ [0, 1], since
F ′(x?) = 0, we have:

F (x) ≥ F (x?)−
β

2
|x− x?|2

From this, we see that:

L(i, j) ≥ 1

j − i+ 1

j∑
k=i

f(x(k), z(j))−
C
√

log(B/δ)√
l

≥ 1

j − i+ 1

j∑
k=i

F (x(k))−
2C
√

log(B/δ)√
l

≥ F (x?)−
β

2
|x(i) − x(j)|2 −

2C
√

log(B/δ)√
l

≥ F (x?)−
βGAP2

T (l − 1)2

2
−

2C
√

log(B/δ)√
l

Now, suppose that there is no such i, j satisfying l = dC2/5 log(B/δ)1/5/(βGAP2
t )

2/5e. Then we must have NT <
dC2/5 log(B/δ)1/5/(βGAP2

t )
2/5e so that NT − 1 < C2/5 log(B/δ)1/5/(βGAP2

t )
2/5. Therefore, every point x̂ in the

interval ∆ satisfies:

F (x̂) ≥ F (x?)−
βGAP2

T (NT − 1)2

2

≥ F (x?)−
(βC4 log(B/δ)2GAP2

T )1/5

2

Next, since Lemma 3 tells us GAPT ≤ 12
B , this yields F (x̂) ≤ F (x?)− (144βC4 log(B/δ)2)1/5

2B2/5 ≥ F (x?)− 2(βC4 log(B/δ)2)1/5

B2/5

which would establish the desired result.

On the other hand, suppose that such an i, j exists. Then for such an i, j we have:

L(i, j) ≥ F (x?)−
βGAP2

T (l − 1)2

2
−

2C
√

log(B/δ)√
l

≥ F (x?)−
3(144βC4 log(B/δ)2)1/5

2B2/5

F (x?)−
5(βC4 log(B/δ)2)1/5

B2/5

Finally, since we return a random selection from the interval [x(a), x(b)] with largest value of L(a, b), we have:

E[F (x̂)] =
1

b− a+ 1

b∑
k=a

F (x(k))

≥ L(a, b)

≥ L(i, j)

≥ F (x?)−
5(βC4 log(B/δ)2)1/5

B2/5



which again establishes the desired final result.

A.4 PROOF OF LEMMA 3

Lemma 4 shows that indeed Algorithm 2 quickly eliminates the easy region.

Lemma 4. Suppose F satisfies Assumption 1. Let ∆t = [lt, rt] be the tth interval produced by Algorithm 2. Then with
probability at least 1− δ, for all t > 1 we have:

lt ≥ x? − 6 · 2−t − 3

[
max

(
γ,

25/3C2/3 log(B/δ)1/32−t/3

M2/3

)
+

τ

M

]
rt ≤ x? + 6 · 2−t + 3

[
max

(
γ,

25/3C2/3 log(B/δ)1/32−t/3

M2/3

)
+

τ

M

]
Proof. As before, we consider the eventE that x? ∈ ∆t for all t, and in each call to Algorithm 1, for all i, j,

∑j
k=i F (x(k)) ∈

[L(i, j), U(i, j)] for all i j. By Lemma 3, P (E) ≥ 1− δ. The entire argument is conditioned on this event E. We will prove
the statement for rt. The argument for lt is completely symmetric. For t = 1 the statement is trivially true since 6 · 2−1 ≥ 1.

Fix some value of t. Suppose for purposes of induction that rk ≤ x?+6·2−k+3
[
max

(
γ, 25/3C2/3 log(B/δ)1/32−k/3

M2/3

)
+ τ

M

]
for all k ≤ t. We will show rt+1 ≤ x? + 6 · 2−(t+1)3

[
max

(
γ, 25/3C2/3 log(B/δ)1/32−(t+1)/3

M2/3

)
+ τ

M

]
. First, suppose that

already we have rt ≤ x? + 6 · 2−(t+1) + 3
[
max

(
γ, 25/3C2/3 log(B/δ)1/32−(t+1)/3

M2/3

)
+ τ

M

]
. Then there is nothing left to

prove since rt+1 ≤ rt. Thus, we may suppose rt > x? + 6 · 2−(t+1) + 3
[
max

(
γ, 25/3C2/3 log(B/δ)1/32−(t+1)/3

M2/3

)
+ τ

M

]
=

x? + 3 · 2−t + 3
[
max

(
γ, 24/3C2/3 log(B/δ)1/32−t/3

M2/3

)
+ τ

M

]
.

Next, define k =

⌈
max

(
γ

GAPt
, 24/3C2/3 log(B/δ)1/3

M2/3GAP
2/3
t

)
+ τ

MGAPt

⌉
. Notice that

kGAPt ≥ max

(
γ,

24/3C2/3 log(B/δ)1/3GAP
1/3
t

M2/3

)
+

τ

M

3kGAPt ≤ 3 max

(
γ,

24/3C2/3 log(B/δ)1/3GAP
1/3
t

M2/3

)
+

3τ

M
+ 3GAPt

Therefore, since GAPt = 2−t and rt > x? + 3 · 2−t + 3
[
max

(
γ, 24/3C2/3 log(B/δ)1/32−t/3

M2/3

)
+ τ

M

]
, we have rt ≥

x? + 3kGAPt.

Let x(1), . . . , x(Nt) be the points queried during the tth call to Algorithm 1. Then, since rt > x? + 3kGAPt, there exists i
such that i+ 3k ≤ Nt and x(i) ≤ x? ≤ x(i+1) and x(i+k) ≤ x? + kGAPt.

Then, letting U(i, j) and L(i, j) be the bounds defined in the tth call to Algorithm 1, we have:

L(i+ 1, i+ k) ≥ F (x? + kGAPt)− 2
C
√

log(B/δ)√
k

≥ F (x? + kGAPt)− 21/3C2/3M1/3 log(B/δ)1/3GAP
1/3
t

Next, observe that x? + kGAPt ≥ x? + γ + τ
M . Therefore, by Assumption 1, we have:

F (x? + 2kGAPt) ≤ F (x? + kGAPt)− kGAPtM

≤ F (x? + kGAPt)−M max

(
γ,

24/3C2/3 log(B/δ)1/3GAP
1/3
t

M2/3

)
− τ

≤ F (x? + kGAPt)− 24/3C2/3M1/3 log(B/δ)1/3GAP
1/3
t − τ



Finally, we have:

U(i+ 1 + 2k, i+ 3k) ≤ F (x? + 2kGAPt) + 2
C
√

log(B/δ)√
k

≤ F (x? + kGAPt)− 24/3C2/3M1/3 log(B/δ)1/3GAP
1/3
t − τ + 2

C
√

log(B/δ)√
k

≤ F (x? + kGAPt)− 24/3C2/3M1/3 log(B/δ)1/3GAP
1/3
t + 21/3C2/3M1/3 log(B/δ)1/3GAP

1/3
t − τ

≤ F (x? + kGAPt)− 21/3C2/3M1/3 log(B/δ)1/3GAP
1/3
t − τ

Thus, we have U(i+ 1 + 2k, i+ 3k) < L(i+ 1, i+ k)− τ so that

rt+1 ≤ x? + 3kGAPt

≤ x? + 3GAPt + 3

[
max

(
γ,

24/3C2/3 log(B/δ)1/3GAP
1/3
t

M2/3

)
+

τ

M

]

≤ x? + 6GAPt+1 + 3

[
max

(
γ,

25/3C2/3 log(B/δ)1/3GAP
1/3
t+1

M2/3

)
+

τ

M

]

A.5 PROOF OF THEOREM 3

Here we prove Theorem 3. The full version of this result is stated with all constants included below.

Theorem 6. Suppose F is L-Lipschitz and satisfies Assumption 1. Let x̂ be the output of Algorithm 2 with total sample
budget B > 78 and input failure probability δ. Then, for any δ < 1/2, there is an event E that occurs with probability at
least 1− δ such that:

E[F (x̂)|E] ≥ F (x?)− 3(LGAPTC
2 log(B/δ))1/3

≥ F (x?)− 3 max

(
(LC2 log(B/δ))1/3

2B/351
,

(54LC2 log(B/δ)
(
γ + τ

M

)
)1/3

B1/3
,
C1/3

√
log(B/δ)271/325/3

√
BM1/3

√
22/3 − 1

)

where C is an absolute constant.

Proof. As previously, we define E to be the event that the statements in Lemma 3 hold and let C be the absolute constant
implied by the same Lemma.

Now, we improve upon Theorem 1 by using Lemma 4 to show that GAPT can become smaller than O(1/B), decreasing to
roughly O(γ/B).

To see this, notice that at each round we have Nt = 1 + |∆t|2t and by Lemma 4, we have:

|∆t| ≤ 12 · 2−t + 6

[
max

(
γ,

25/3C2/3 log(B/δ)1/32−t/3

M2/3

)
+

τ

M

]
≤ 12 · 2−t + 6γ + 6

τ

M
+ 6

25/3C2/3 log(B/δ)1/32−t/3

M2/3

Further, by Lemma 3,
∑t
i=1Nt ≥ B/3. Therefore if Algorithm 2 runs for T rounds,

B/3 ≤ 13T + 6
(
γ +

τ

M

)
2T+1 +

T∑
t=1

6
25/3C2/3 log(B/δ)1/322t/3

M2/3

≤ 13T + 6
(
γ +

τ

M

)
2T+1 + 6

27/3C2/3 log(B/δ)1/322T/3

M2/3(22/3 − 1)



Now, from this we see that any value of T that satisfies B/9 ≥ 13T , B/9 ≥ 6
(
γ + τ

M

)
2T+1 and B/9 ≥

6 27/3C2/3 log(B/δ)1/322T/3

M2/3(22/3−1)
must be a lower-bound for the true value. Therefore,

1

GAPT
= 2T ≥ min

(
2B/117,

B

54
(
γ + τ

M

) , B3/2M(22/3 − 1)3/2

273/2 · 25C
√

log(B/δ)

)

The result now follows from Theorem 1.

B PROOF OF THEOREM 4
Theorem 4. Suppose F satisfies Assumption 2. Then, there is a constant C such that for all δ < 1/2, for any B satisfying

B ≥ 24A
1/z
2

C1/z log(B/δ)1/2z
, with probability at least 1− δ Algorithm 2 with τ = 0 guarantees:

F (x̂) ≥ F (x?)− F (x?)

−max

12z
C

2z
2z+1A

2z+2
2z+1

2 log(B/δ)
z

2z+1

A12
zB

24z+12

,

12z2
z

2z+1

√
72√

2
2z

2z+1 − 1

CA
1+ 1

2z
2

√
log(B/δ)

A
1+ 1

2z
1

√
B

)
≥ F (x?)− Õ(1/

√
B)

Proof. As before, we consider the eventE that x? ∈ ∆t for all t, and in each call to Algorithm 1, for all i, j,
∑j
k=i F (x(k)) ∈

[L(i, j), U(i, j)] for all i j. By Lemma 3, P (E) ≥ 1− δ. The entire argument is again conditioned on this event E.

In the ith round, we make at most 1 + 2i queries. Therefore, since we we must consume at least B/3 budget (by Lemma 6),

the total number of rounds t must satisfy t+ 2t+1 ≥ B/3 so that 2t+2 ≥ B/3. In particular, since B ≥ 24A
1/z
2

C1/z log(B/δ)1/2z
,

we have

t ≥ log2

(
2A

1/z
2

C1/z log(B/δ)1/2z

)

Now, let Let ∆t = [lt, rt]. Our bound on t implies:

C
z

2z+1 log(B/δ)
1

2z+1

A
2

2z+1

2 GAP
2z
2+1

t

≥ 2

For all such t, we will show:

rt ≤ x? + 6
C

2
2z+1A

1
2z2+z

2 log(B/δ)
1

2z+1 GAP
1

2z+1

t

A
1
z
1

lt ≥ x? − 6
C

2
2z+1A

1
2z2+z

2 log(B/δ)
1

2z+1 GAP
1

2z+1

t

A
1
z
1

We will write the proof for rt, and for notational convenience we will establish the bound for rt+1 rather than rt. The
argument for lt is symmetric.

Suppose rt ≤ x?+6
C

2
2z+1A

1
2z2+z
2 log(B/δ)

1
2z+1 GAP

1
2z+1
t+1

A
1
z
1

. Then clearly rt+1 ≤ rt ≤ x?+6
C

2
2z+1A

1
2z2+z
2 log(B/δ)

1
2z+1 GAP

1
2z+1
t+1

A
1
z
1

and so we are done. So, let us suppose rt > x? + 6
C

2
2z+1A

1
2z2+z
2 log(B/δ)

1
2z+1 GAP

1
2z+1
t+1

A
1
z
1

≥ x? +



3
C

2
2z+1A

1
2z2+z
2 log(B/δ)

1
2z+1 GAP

1
2z+1
t

A
1
z
1

. Now, define the constants:

y =
C

2
2z+1 log(B/δ)

1
2z+1

A
2

2z+1

2 GAP
2z

2z+1

t

k = dy − 1e

d =

⌈(
A2

A1

)1/z

y + 1

⌉
=

A
1

2z2+z

2 C
2

2z+1 log(B/δ)
1

2z+1

A
1
z
1 GAP

2z
2z+1

t

+ 1


Notice that k ≥ 1 by our assumption on t and that k ≤ d ≤ 2

(
A2

A1

)1/z

y.

Let x(1), . . . , x(Nt) be the points queried in round t. Then, since rt > x? + 3
C

2
2z+1A

1
2z2+z
2 log(B/δ)

1
2z+1 GAP

1
2z+1
t

A
1
z
1

= x? +

3GAPt

(
A2

A1

)1/z

y, there exists i such that i+ k + d ≤ Nt and x(i) ≤ x? ≤ x(i+1) ≤ · · · ≤ x(i+k). Therefore, we have:

L(i, j) ≥ F (x?)−A2(kGAPt)
z − 2

C
√

log(B/δ)√
k + 1

≥ F (x?)−A2(yGAPt)
z − 2

C
√

log(B/δ)
√
y

= F (x?)− 3A
1

2z+1

2 C
2z

2z+1 log(B/δ)
z

2z+1 GAP
z

2z+1

T

Similarly, we have

U(i+ d, i+ k + d) ≤ F (x?)−A1(dGAPt)
z + 2

C
√

log(B/δ)√
k + 1

≥ F (x?)−A1((A2/A1)1/zyGAPt)
z − 2

C
√

log(B/δ)
√
y

= F (x?)− 3A
1

2z+1

2 C
2z

2z+1 log(B/δ)
z

2z+1 GAP
z

2z+1

T

Thus, we have that U(i+ d, i+ k + d) ≤ L(i, i+ k) so that in the next round we have

rt+1 ≤ x(i+k+d)

≤ x? + GAPt(k + d)

≤ x? + 3GAPt

(
A2

A1

)1/z

y

≤ x? + 3
C

2
2z+1A

1
2z2+z

2 log(B/δ)
1

2z+1 GAP
1
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t
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1
z
1

≤ x? + 6
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2
2z+1A

1
2z2+z

2 log(B/δ)
1
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1
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t+1

A
1
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Thus, so long as t ≥ log2

(
2A

1/z
2

C1/z log(B/δ)1/2z

)
, we have that

|∆t| ≤ 12
C

2
2z+1A

1
2z2+z

2 log(B/δ)
1

2z+1 GAP
1

2z+1

t
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1
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Further, since GAPt = 2−t, we have t ≥ log2(B/12) so that the condition on T is implied by B ≥ 24A
1/z
2

C1/z log(B/δ)1/2z
.

Now, for any x̂ ∈ ∆T , we have:

F (x̂) ≥ F (x?)−A2|∆T |z

≥ F (x?)− 12z
C

2z
2z+1A

2z+2
2z+1

2 log(B/δ)
z

2z+1 GAP
z

2z+1

T
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So, it remains to compute GAPT for the final round T . To this end, notice that in the rounds with t < log2

(
2A

1/z
2

C1/z log(B/δ)1/2z

)
,

we consume N1 + · · ·+Nt ≤ 4A
1/z
2

C1/z log(B/δ)1/2z
samples. In subsequent rounds, we have

Nt = 1 + |∆t|2t

≤ 1 + 12
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2
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Now, we have
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2
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2z+1 ≤ 2
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2
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2z+1 − 1
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2zT
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so that in T rounds our total number of samples can be bounded:

T∑
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2
2z

2z+1

2
2z

2z+1 − 1

C
2

2z+1A
1

2z2+z

2 log(B/δ)
1

2z+1 2
2zT
2z+1

A
1
z
1

Now, since we have
∑T
t=1Nt ≥ B/3 by Lemma 3, this means that any T such that

4A
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2

C1/z log(B/δ)1/2z
+ T ≤ B/6
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≤ B/6

is a lower bound for the true number of rounds. From this, we obtain that for all B ≥ 48A
1/z
2

C1/z log(B/δ)1/2z
,

2
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Thus, putting all together we have:

F (x̂) ≥ F (x?)− 12z
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C PROOFS FOR SECTION 4
The first step is to show that the a 1-D algorithm will be able to eliminate the point wt (i.e. have wtj /∈ ∆t

j for some j) in a
reasonable number of samples, provided that F (wt) is not a 3τ -approximate local minimum point (see Definition 2).

To this end, we provide the following additional result for the 1-D Algorithm 2:

Lemma 5. Suppose F : [0, 1]→ [0, 1] is L-Lipschitz. Let x be a point such that F (x) < F (x?)− 3τ . Then there is an even

E that occurs with probability at least 1 − δ such that conditioned on E, after at most O
(

Lh2 log(N/δ)
(F (x?)−F (x))3

)
, Algorithm 2

eliminates x. Moreover, regardless of when x is eliminated, if x̂ is a randomly selected point in Ibest,

E[F (x̂)|E] ≥ F (x) + τ

Proof. As usual, we condition on the probability 1 − δ event E that all confidence intervals created by Algorithm 2 are
valid, as described by Lemma 3.

Without loss of generality, suppose x ≤ x? (the proof is completely symmetric if x ≥ x?). Let w = x? − F (x?)−F (x)
4L and

y = x+ F (x?)−F (x)
4L . Observe that by L-lipschitzness and unimodality, F (x?) ≥ F (w) ≥ F (x?)− 1

4 (F (x?)− F (x)) and
F (x) ≤ F (y) ≤ F (x) + 1

4 (F (x?)− F (x)) so that F (w) ≥ F (y) + 1
2 (F (x?)− F (x)).

Now, by Lemma 3, after taking N = d 20Lk
F (x?)−F (x)e samples for any k ∈ N, we must have ε < F (x?)−F (x)

5Lk . Thus, there is

an interval [x(a), x(b)] with b− a+ 1 = k contained in (x, y) and an [x(c), x(d)] with d− c+ 1 = k contained in (w, x?).

Now, the upper bound U(a, b) for the interval [a, b] satisfies (where C is the universal constant from Lemma 3):

U(a, b) ≤ 1

k

b∑
i=a

f(x(i), z(i)) + C

√
log(N/δ)√

k

≤ 1

k

b∑
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F (x(i)) + 2C

√
log(N/δ)√

k

≤ F (x(b)) + C

√
log(N/δ)√

k

≤ F (y) + 2C

√
log(N/δ)√

k

< F (x) +
1

4
(F (x?)− F (x)) + 2C

√
log(N/δ)√

k

Similarly, the lower bound L(c, d) for the interval [c, d] satisfies:

L(c, d) =
1

k

d∑
i=c

f(x(i), z(i))− C
√

log(N/δ)√
k

≥ 1

k

d∑
i=c

F (x(i))− 2C

√
log(N/δ)√

k

≥ F (x(c))− 2C

√
log(N/δ)√

k

≥ F (w)− 2C

√
log(N/δ)√

k

> F (x?)− 1

4
(F (x?)− F (x))− 2C

√
log(N/δ)√

k

Now, set

k ≥ 576C2 log(N/δ)

(F (x?)− F (x))2



to obtain

L(c, d) > F (x?)− 1

3
(F (x?)− F (x))

U(a, b) < F (x) +
1

3
(F (x?)− F (x))

Now, since τ ≤ F (x?)−F (x)
3 , we will eliminate the region to the left of a, which includes x. Putting all together, we have

used N ≤ d 20Lk
F (x?)−F (x)e = d 11520·C2L log(N/δ)

(F (x?)−F (x))3 e samples.

Now, we prove the second part of the claim. On the round that x is eliminated, there must exist a ≤ b ≤ c ≤ d with x < x(a)

and U(a, b) < L(c, d)− τ .

Also, we must have that F (x(b)) ≥ F (x), for otherwise this implies x? ≤ x(b) by unimodality so that F (x) ≥
F (x(c)) ≥ F (x(d)) again by unimodality and so it cannot hold that F (x(c)) = maxi∈{c,d} F (x(i)) ≥ L(c, d) ≥ U(a, b) ≥
mini∈{a,b} F (x(i)) = F (x(b)). Therefore, we have:

F (x) ≤ 1

b− a+ 1

b∑
i=a

F (x(i)) ≤ U(a, b) ≤ L(c, d)− τ

Now, let Ibest = [e, f ]. We have L(e, f) ≥ L(c, d) by definition. Therefore:

1

f − e+ 1

f∑
i=e

F (x(i)) ≥ L(e, f)

≥ L(c, d)

≥ U(a, b) + τ

≥ F (x) + τ

Theorem 5. There is a constant C such that, given a budget of B and failure probability δ < 1/2, if we set τ =

max
(

2d log(B/δ)
B , 37·(dC2L log(B/δ)2)1/4

B1/4

)
, Then with probability at least 1− 2δ, Algorithm 3, returns a point ŵ that is a

3τ -approximate local minimum. That is, for each coordinate i, for any w?i that differs from ŵ only in the ith coordinate, we
have F (w?i ) ≤ F (ŵ) + 3τ

Proof. For each of the d copies of Algorithm 2 instantiated in the tth iteration of Algorithm 3, by Lemma 3, with probability
at least 1− 6/t2dπ, all confidence bounds created internal by Algorithm 2 and the calls it makes to Algorithm 1 are valid.
Thus, by union bound all such bounds are valid for all copies of Algorithm 2 with probability at least 1− δ. Let E be this
event, so that P (E) ≥ 1− δ.

Now, suppose that in some iteration t, wt is not a 3τ -stationary point. For each i ∈ {1, . . . , d}, let wt?,i be the point that
maximizes F while differing from wt only in the ith coordinate. Then, since wt is not a 3τ stationary point, there is some i
such that F (wt?,i)− 3τ ≥ F (wt).

Thus, by Lemma 5, after at most d 11520·C2L log(B/δ)
(F (wt

?,i)−F (wt))3
e ≤ d 311040·C2L log(N/δ)

τ3 e samples, the ith copy of Algorithm 2 will

eliminate wt, and select a point wt+1 such that E[F (wt+1)] ≥ F (wt) + τ . Since there are d total copies, this consumes
O
(
d log(B/δ)

τ3

)
total samples.

Now, at an intuitive level, since E[F (wt)] can increase by τ at most 1/τ times, this process repeats at most 1/τ times, after
which we must have found a 3τ -critical point.

To make this formal, let T be the index (if it exists) at which F (wt) is a 3τ stationary point. Define define Xt = F (wt)

for t ≤ T and Xt = F (wT ) for t > T . Then, we can apply Lemma 6 to see that P
[
T ≥ 3 log(δ)

τ

]
< δ. Therefore, with



probability at least 1− 2δ, after

3d log(1/δ)

τ
d311040 · C2L log(N/δ)

τ3
e ≤ 3d log(1/δ)

τ
+

933120 · dC2L log(N/δ)2

τ4

≤ B

2
+
B

2
= B

samples, we find a 3τ stationary point, as desired.

C.1 A TECHNICAL STOPPING TIME LEMMA

Lemma 6. Let 0 = X0, X1, X2, . . . be a sub-martingale in [0, 1]. Let T be the stopping time T = {min t|Xt ≥ 1− 3τ}.
Suppose that for t ≥ T , Xt+1 = Xt and for t < T , E[Xt+1] ≥ Xt + τ . Then for any δ > 0, with probability at least 1− δ,
T ≤ 3 log(1/δ)

τ .

Proof. We consider an alternative non-negative sub-martingale Y1, Y2, . . . defined by Yt = Xt for t ≤ T and Yt+1 = Yt+τ
for t ≥ T . Let dt = Yt − Yt−1 be the associated martingale difference sequence. Clearly we have E[dt] ≥ τ for all t. Then,
we have:

1 ≥ YT ≥
∞∑
t=1

dt1[t ≤ T ]

=

∞∑
t=1

dt(1− 1[t > T ])

=

∞∑
t=1

dt −
t−1∑
i=1

dt1[i = T ]

=

∞∑
t=1

dt − τ
t−1∑
i=1

1[i = T ]

= E

[ ∞∑
t=1

dt − τ
t−1∑
i=1

1[i = T ]

]

=

∞∑
t=1

E[dt]− τP [T < t]

≥
∞∑
t=1

τP [T ≥ t]

= τE[T ]

Therefore, we have E[T ] ≤ 1
τ . Thus, by Markov inequality, P [T > 3/τ ] ≤ 1/3 ≤ 1/e.

Now, let Li be the event that T > 3i
τ . Let Ti = T − 3(i−1)

τ for i ≥ 1. Observe that the above argument also shows that
E[Ti|Li−1] ≤ 1

τ , so that P [Ti > 3/τ |Li] ≤ 1
e . Further, notice that

P [Li] = P [Ti > 3/τ |Li−1]P [Li−1]

≤ 1

ei

The result now follows by seeing that P
[
T > 3 log(1/δ)

τ

]
= Llog(1/δ)



D MORE EXPERIMENTAL DETAILS
Algorithm 4 contains some small but useful modifications of Algorithm 3. We need to first introduce a modified version of
Algorithm 1 in Algorithm 5 that has τ set to zero and only compares intervals of size in a power of 2 among each other. This
reduces the running time of each round to O(N), where N is the number of points sampled. It can also be shown that this
would only affect lower order terms in our final bounds. Algorithm 6 is a version of Algorithm 2 that uses Algorithm 5 as
the sub-routine.

Apart from using the modified Algorithm 6 in the inner loop per dimension, we make some other practical changes. For the
first ten slots we sample a random point. The the best out of these 10 points (in terms of observed value) is set as the starting
point wt. Next, out of many possible dimensions that can eliminate the current point in line 12, we select the one that has the
smallest surviving interval. Lastly, in the loop at line 4 (when none of the dimensions have managed to eliminate the current
point), we choose a dimension from a distribution that gives higher weights to dimensions with more standard deviation of
observed values so far. The sampled dimension is the one that gets to sample the next epoch of points for Algorithm 6.

D.1 COMPARISON WITH ZOOMING ALGORITHM

In order to show the advantage of using unimodal structure in real hyper-parameter tuning tasks we implement a version of
zooming algorithm [Kleinberg et al., 2008] under our framework and run it on the HPO-B benchmark. In particular, in our
algorithm we do not eliminate regions from the left and right (as we would like to not use unimodal structure in the zooming
baseline). Instead we eliminate the current best point along a dimension if any interval containing the current best point
has an UCB less than highest LCB of any interval. The rest of the algorithm is identical to ours with all the improvements
mentioned in Section 5. Note that this algorithm can adapt to unknown Lipschitz constant unlike the original algorithm
in [Kleinberg et al., 2008] and therefore is arguably a stronger baseline. The results are shown in Fig. 4. It can be seen that
Zooming Ascent is worse than GP-UCB while our algorithm that uses unimodal structure is better.

E EMPIRICAL EVIDENCE FOR UNIMODALITY
In order to find evidence for approximate unimodality across coordinate dimensions we run a grid search of five hyper-
parameters on the Cifar 10 dataset. The hyper-parameters are tuned for AlexNet architecture [Krizhevsky, 2009] where the
number of convolutional filters can be changed for the first two layers. The other three hyper-parameters we were allowed to
vary were batch size, learning rate and drouput level of the last linear layer. We had a grid of 5 points per dimension and
each point was sampled 3 times to estimate the noise in experiments with the same hyper-parameter. Thus the experiment
involved training 55 × 3 models and getting the test accuracy for them.

Figure 3 shows the resulting plots. Each row corresponds to varying one parameter (coordinate) while all other points are
held fixed. each column corresponds to a randomly chosen point in the search-space from which one dimension is varied
at a time, while keeping all other fixed. The x-axis denotes the hyperparam that is varied. We can see that the black-box
function is approximately unimodal per coordinate dimension. We believe that our algorithm works well on benchmarks
because such approximate unimodal structure might be present in many real world hyper-parameter tuning tasks.

Algorithm 5: One Elimination Round of Unimodal Optimization - Power of 2 Intervals
Require: Confidence parameter δ, interval ∆ = [l, r], confidence scaling constant h > 0 to be set by Lemma 2.

1: Define the points l = x(1) < x(2) < . . . < x(N) = r for N = 1 + l−r
GAP

equally spaced in the interval ∆.
2: Compute f(x(k), z(k)) for i.i.d. z(1), . . . , z(N).
3: Given any i, j ∈ {1, . . . , N}, define mij =

∑j
k=i f(x(k), z(k))/(j − i+ 1), sij = h

√
log(2N/δ)/

√
j − i+ 1.

4: Define upper confidence bound U(i, j) = mij + sij for each i, j ∈ {1, . . . , N}
5: Define lower confidence bound L(i, j) = mij − sij for each i, j ∈ {1, . . . , N}
6: for s in {22, 23, · · · , 2logN} do
7: Let S(s)

l = max{x(i) |∃i ≤ j ≤ k ≤ l s.t. U(i, j) < L(k, l) and j − i+ 1 = 2s, l − k + 1 = 2s} ∪ {x(1)}.
8: Let S(s)

r = min{x(l) |∃i ≤ j ≤ k ≤ l s.t. U(k, l) < L(i, j) and j − i+ 1 = 2s, l − k + 1 = 2s} ∪ {x(N)}.
9: end for

10: Let Ibest be the best LCB for intervals considered in the above for loop.
11: Return New interval [maxs S

(s)
l ,mins S

(s)
r ] ⊂ ∆ and the best interval Ibest.



Algorithm 6: Modified 1D Unimodal Optimization
Require: Confidence parameter δ, budget B.

1: Initialize t = 1, ∆1 = [0, 1], GAP1 = 0.5, N = N1 = 3.
2: while N ≤ B do
3: Call Algorithm 5 with input 6δ/π2t2,∆t, GAPt to obtain outputs [Sl, Sr], Ibest.
4: Let ∆t+1 = [Sl, Sr].
5: Set GAPt+1 = GAPt/2.
6: Set Nt+1 = 1 + Sr−Sl

GAP
//Budget to be consumed by next iteration.

7: Set N = N +Nt. //Total budget consumed at end of next iteration.
8: Set t = t+ 1.
9: end while

10: Return a random element of Ibest.

Figure 3: We illustrate approximate unimodality per coordinate dimensions for the task of tuning a CNN on Cifar 10. Each
row corresponds to varying one parameter (coordinate) while all other points are held fixed. each column corresponds to a
randomly chosen point in the search-space from which one dimension is varied at a time, while keeping all other fixed. The
x-axis denotes the hyper-param that is varied. We plot the standard error over three runs per point, as demonstrated by the
shaded area.



Figure 4: Comparison with respect to a version of the zooming algorithm [Kleinberg et al., 2008]
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