Conditional Abstraction Trees for Sample-Efficient Reinforcement Learning
(Supplementary Material)

Mehdi Dadvar' Rashmeet Kaur Nayyar' Siddharth Srivastava'

! Arizona State University, Tempe, Arizona, USA

A SCALABILITY STUDY

We conducted experiments (see Fig.[1]) to test the scalability of CAT+RL, Q-learning, and PPO on Office World problems
with increasing complexity. It shows that CAT+RL has greater scalability than the baselines. The results also indicate that (a)
DRL methods do better on smaller problem instances that are less “complex” and are unable to handle increasing complexity
and (b) methods designed for image-based RL do not directly scale in RL problems such as those used in this work. Thus,
CAT+RL addresses the challenges with the scalability of RL to tasks whose states cannot be easily expressed as images or
robot configuration states.

—— CAT+RL (ours) —— Q-learning — PPO
Office World 18x18 Office World 27x27 Office World 36x36 Office World 45x45 Office World 54x54

1.0 4 B B B B
o 0.8 B B B B
o
©
“
@ 0.6 -
0]
v}
S 0.4
2]

0.2 A B B B B

DPE
0 0 T T T T T T T T T T T T T T T T T T T
0 1K 2K 3K 0 1K 2K 3K 0 1K 2K 3K 0 1K 2K 3K 0 1K 2K 3K
Episodes

Figure 1: Scalability of CAT+RL (our method), Q-learning, and PPO on Office World problems with increasing complexity i.e. increasing
ranges of state variables. The title refers to the problem size, y-axis shows average success rates and standard deviations for 10 independent
runs averaged over last 100 training episodes, and x-axis shows episodes. The maximum episode lengths used for Office World problems
with dimensions 18x18, 27x27, 36x36, 45x45, and 54x54 are 250, 500, 700, 1000, and 1500 respectively.

We replicated the scalability study with an exact condition compared to Fig. [I] except we altered the neural network
architecture of PPO to study the effect of the neural network architecture of deep RL algorithms on their scalability, as
shown in Fig. [2| To this end, we reduced the size of PPO’s network architecture from 64 to 16 neurons per hidden layer,
where two hidden layers were utilized in both cases. The results indicate that reducing the network size does not improve the
performance of PPO and rejects the hypothesis that the original architecture used in the paper for deep RL baselines might
be over parameterized or excessively large for the given test problems.

Accepted for the 39" Conference on Uncertainty in Artificial Intelligence (UAI 2023).

—— CAT+RL (ours) —— Q-learning —— PPO

Office World 18x18 Office World 27x27 Office World 36x36 Office World 45x45 Office World 54x54

Success rate
© o o =
N (o)) [o2] o
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

o
N
1
1
1
1
1

°
o

1K 2K 3K 0 1K 2K 3K 0 1K 2K 3K 0 1K 2K 3K 0 1K 2K 3K
Episodes

o

Figure 2: Scalability of CAT+RL (our method), Q-learning, and PPO with a small neural network. This is a replication of the scalability
study reported in Fig. [T|except we ran PPO with a smaller neural network architecture (two hidden layers with 16 neurons per hidden
layer).

B TIME COMPLEXITY ANALYSIS

The worst case of the computational complexity of the learning and evaluation phases of CAT+RL is similar to that of the
underlying RL algorithm that it is used (Q-learning). The refinement phase consists of a CAT search for an unstable state
with a time complexity of O(nlogn) and a split operation which is linear in the number of state variables.

Tab. |I| shows the time (mean and standard deviation computed for 10 runs) taken for CAT+RL, Q-learning, and PPO
for solving Office World problems with increasing problem complexity. We also compared the runtimes for CAT+RL,
Q-learning, PPO, and DQN for all domains as shown in Tab. [T} CAT+RL takes significantly less times, especially compared
to DRL baselines (atleast 10 times and atmost 50 times less than baselines) on three out of five domains. In the Office
World domain, CAT+RL takes about 1.6 times less time than DQN. In the Water World domain, DRL baselines are faster
with much lower runtimes for all the algorithms compared to other domains, and the reasons can be attributed to the low
horizon used and high stochasticity in the problems due to random initialization of the agent and ball locations. All deep
learning experiments were executed on two GeForce RTX 3070 GPUs with 8 GB memory running Ubuntu 18.04. All other
experiments were executed on 5.0 GHz Intel 19 CPUs with 64 GB RAM running Ubuntu 18.04.

Office World Time (s) =+ std dev Time (s) =+ std dev Time (s) =+ std dev
problem size by CAT+RL by Q-learning by PPO

18x18 302.75 £ 29.0 97.69 +4.7 2843.42 £ 959.17
27x27 391.36 £ 28.5 441.8 +£13.85 4956.8 £ 2458.74
36x36 535.71 £ 54.6 1174.84 £ 46.23 8428.24 4+ 2867.52
45x45 416.41 £ 58.94 1322.26 + 45.87 11463.28 4+ 3309.09
54x54 1010.52 + 219.98 7750.53 £+ 308.79 15293.57 4+ 5815.63

Table 1: Total time taken (mean and standard deviation) by CAT+RL, Q-learning, and PPO to solve Office World problems
with increasing complexity.

We found CAT+RL to be surprisingly efficient in terms of runtime. Although Q-learning was completed before our approach
for small problems, CAT+RL is significantly faster than Q-learning when the problem size increases even when the time for
abstraction refinement is taken into account. The reason for this performance boost is that, in practice, CAT+RL performs
significantly fewer computations than it would require to solve the underlying MDP due to the abstraction that it builds on
the fly. Although the abstract MDP becomes finer after each refinement phase, the state space size of this abstract MDP is
still significantly smaller than the concrete MDP.

Office World 27x27

1.0 1
0.8
]
& 0.6 1
%]
4]
o]
a
0.4
0.2 —— CAT+RL Aggressive
—— CAT+RL Deliberative
0.0
500 1000 1500 2000 2500 3000 3500 4000
episodes

Figure 3: Comparing aggressive and deliberative variants of CAT+RL. We ran both variants 10 times and the shadows show the standard
deviation of the measurements.

Problem Time (s) + std dev Time (s) =+ std dev Time (s) =+ std dev Time (s) =+ std dev
(size) by CAT+RL by Q-learning by PPO by DQN

Wumpus (64x64) | 137.86 + 11.41 2184.56 +11.90 9956.56 + 5123.24 6487.406 £ 134.55
Taxi (30x30) 744.18 £ 51.78 16835.07 £ 243.5 34642.69+2720.662 | 8921.77 £ 1179.88
Office (36x36) 535.71 + 54.6 1174.84 + 46.23 8428.24 4+ 2867.52 877.474 4+ 291.595
Water World 804.86 + 13.63 — 418.358 + 30.02 271.75 + 8.58
Mountain Car 36.84 +1.88 — 3851.592 + 1560.44 | 2196.104 4+ 347.024

Table 2: Total time taken (mean and standard deviation for 5 runs) by CAT+RL, Q-learning, PPO, and DQN to solve
Wumpus World, Taxi World, Office World, Water World, and Mountain Car problems.

C HYPERPARAMETERS

We used standard architectures for A2C, PPO, DQN from StableBaselines3 [1_-] and Option-Critic El We use the open-source
code available for the state-of-the-art baseline JIRPFl

CAT+RL’s parameters are n.pecr and the threshold value ¢, for the refinement condition, the cap k for the maximum
number of unstable states that can be refined in each refinement phase, and n.,,; for the duration of the evaluation phase.
The same parameter values were used across all our experiments except for cap k which was set proportionally to the size of
the problem. In contrast, we had to conduct significant hyperparameter exploration for the baselines because the default
settings led to insignificant learning.

For all of the domains, we use two layers each consisting of 64 neurons in all DRL architectures except for the Mountain
Car domain where we found two layers with 128 neurons each as the best-performing architecture. Tab. 3| @] 5] [7] show the
important hyperparameters used for all the domains and methods.

Thttps://github.com/DLR-RM/stable-baselines3
*https://github.com/lweitkamp/option-critic-pytorch
3https://github.com/logic-and-learning/AdvisoRL

Hyperparameters CAT+RL | Q- Option-| JIRP A2C DQN | PPO
learning | critic
Threshold (¢tsycc) 0.8 — — — — — —
Necheck 100 - - - - - -
Neval 100 - - - - - -
Cap (k) 20 — - — — — —
Exploration rate (¢) 1.0 1.0 1.0 0.4 - 1.0 -
Minimum exploration rate | 0.05 0.05 0.05 0.05 — 0.05 —
Exploration decay 0.991 0.991 0.9991 | 0.9991 | — — —
Exploration fraction — - - — - 1.0 —
Learning rate («) 0.05 0.05 0.05 le-4 Te-4 2e-4 2e-4
Discount factor (7) 0.95 0.95 0.95 0.95 0.95 0.95 0.95
Number of episodes 10000 10000 | 10000 | 10000 | 10000 | 10000 | 10000
Maximum episode length | 1200 1200 1200 1200 1200 1200 1200
Options - - 8 - - - -
Table 3: Parameters used in Wumpus World.
Hyperparameters CAT+RL | Q- Option-| JIRP A2C DQN | PPO
learning | critic
Threshold (¢tsycc) 0.8 — — — — — —
Ncheck 100 - - - - - -
Neval 100 - - - - - -
Cap (k) 20 — — — — — —
Exploration rate (¢) 1.0 1.0 1.0 0.4 - 1.0 -
Minimum exploration rate | 0.05 0.05 0.05 0.05 — 0.05 —
Exploration decay 0.9992 0.9992 | 0.9992 | 0.9992 | — — -
Exploration fraction — — — — — 1.0 —
Learning rate («) 0.05 0.05 0.05 le-4 8e-4 le-4 3e-4
Discount factor (7) 0.99 0.99 0.99 0.99 0.99 0.99 0.99
Number of episodes 3000 3000 3000 | 3000 | 3000 | 3000 | 3000
Maximum episode length | 1000 1000 1000 1000 1000 1000 1000
Options - - 8 - - - -
Table 4: Parameters used in Office World.
Hyperparameters CAT+RL | Q- Option-| JIRP A2C DQN | PPO
learning | critic
Threshold (¢s4cc) 0.8 — — — — — —
Ncheck 100 - - - - - -
Neval 100 - - - - - -
Cap (k) 10 — — - - - -
Exploration rate (¢) 1.0 1.0 1.0 0.4 - 1.0 -
Minimum exploration rate | 0.05 0.05 0.05 0.05 — 0.05 —
Exploration decay 0.9992 0.9992 | 0.9992 | 0.9992 | — - —
Exploration fraction — — — — — 1.0 —
Learning rate («) 0.05 0.05 0.05 Se-5 Te-4 le-4 2e-4
Discount factor (v) 0.999 0.999 | 0999 | 0.999 | 0.999 | 0.999 | 0.999
Number of episodes 20000 20000 | 20000 | 20000 | 20000 | 20000 | 20000
Maximum episode length | 1500 1500 1500 1500 1500 1500 1500
Options - - 8 - - - -

Table 5: Parameters used in Taxi World.

Hyperparameters CAT+RL | A2C DQN | PPO
Threshold (¢4ycc) 0.7 — — —
Ncheck 150 - - -
Neval 150 - - -
Cap (k) 1 — — —
Exploration rate (¢) 1.0 - 1.0 -
Minimum exploration rate | 0.05 — 0.05 —
Exploration decay 0.999 — — -
Exploration fraction — — 1.0 —
Learning rate () 0.05 Te-4 le-4 3e-4
Discount factor (vy) 0.95 0.95 0.95 0.95
Number of episodes 5000 5000 5000 | 5000
Maximum episode length | 100 100 100 100

Table 6: Parameters used in Water World.

Hyperparameters CAT+RL | A2C DQN | PPO
Threshold (¢4ycc) 0.8 — — —
Ncheck 400 - - -
Neval 400 - - -
Cap (k) 1 — — —
Exploration rate (¢) 1.0 - 1.0 -
Minimum exploration rate | 0.01 — 0.01 —
Exploration decay 0.99 — — -
Exploration fraction — — 0.1 —
Learning rate () 0.05 le-4 le-4 le-4
Discount factor (vy) 0.99 0.99 0.99 0.99
Number of episodes 2000 2000 2000 | 2000
Maximum episode length | 200 200 200 200

Table 7: Parameters used in Mountain Car World.

D ALGORITHMIC DETAILS

In the paper, we explained how CAT+RL finds a state variable for each found unstable state. Here, we propose another
approach for finding the state variable for the situations where the concrete Q-table is not available to CAT+RL. This
approach aggressively blames all of the state variables for each unstable state and refines each unstable state w.r.t. all state
variables. This method can be employed to avoid keeping the track of the concrete Q-table. The aggressive CAT+RL is
essentially effective where the reward is frequent with high variation in an environment. We implemented the aggressive and
the deliberative (the one discussed in the paper) variants of CAT+RL for blaming a state variable to do the refinement of
an unstable state. We analyzed the performance of both variants of CAT+RL in Office World and demonstrated that the
CAT+RL performs robustly regardless of the choice of this component, as shown in[3]

E DOMAIN DESCRIPTIONS

Office World We consider an office world scenario with dimensions 36 x36 containing walls and four rooms A, B, C, and D.
The task for the agent is to collect coffee and mail and deliver them to the office. The agent can execute any action from East,
West, North, and South. On applying any action, the agent executes the action successfully with a probability of 0.8 and may
slip to one of the two adjacent cells with a probability of 0.1 each. The agent receives a reward of 1000 on completing the
task successfully and O otherwise.

Wumpus World We consider a Wumpus world with dimensions 64 x 64 containing obstacles and pits. The task for the agent
is to reach the southeast corner location from the northwest corner location in the grid while avoiding pits. The four actions
and the stochastic probabilities are the same as in the office world. If the agent’s movement is obstructed due to an obstacle,
it falls back to its location and receives a reward of -2. The agent receives -1 reward on every step and the episode ends

as soon as it enters a pit, receiving a negative reward of -1000. On reaching the correct destination location, it receives a
positive reward of 500.

Taxi World We consider a taxi world scenario with dimensions 30 x 30 in which there are four pick-up and drop-off locations,
one in each corner of the grid. The taxi agent starts at a random cell in the grid. The task of the taxi is to pick up a passenger
from its pick-up location and deliver at its destination drop-off location, both selected randomly. It can execute actions: East,
West, North, South, Pick-up, and Drop-off. Each move action has stochastic probabilities similar to Office world. It obtains
a reward of -1 on applying a move action and -100 on illegal pick-up and drop-off actions. Upon dropping the passenger at
the correct destination, it receives a positive reward of 500.

Water World We consider a continuous state space environment with dimensions 200x200 containing one green ball, one
red ball, and one agent represented by a black ball. Each ball moves in one direction with constant speed and bounces back
upon hitting the edges. The agent has control over its velocity via taking a move action in one of the east, west, north, and
south directions. The task for the agent is to collide with the moving green ball while avoiding the red ball. The episode
terminates when the agent collides with a ball. The agent receives a reward of 1000 and -1000 on colliding with the green
ball and the red ball respectively.

Mountain Car Mountain Car is a continuous state discrete action environment from Open Al Gymﬂ The agent receives -1
reward on each step and 1000 reward on reaching the goal position. The maximum number of steps allowed in an episode is
200.

*“https://www.gymlibrary.dev/environments/classic_control/mountain_car/

	Scalability Study
	Time Complexity Analysis
	Hyperparameters
	Algorithmic Details
	Domain Descriptions

