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Abstract

Machine Learning models have emerged as a
powerful tool for fast and accurate prediction
of different crystalline properties. Exiting state-
of-the-art models rely on a single modality of
crystal data i.e crystal graph structure, where
they construct multi-graph by establishing edges
between nearby atoms in 3D space and apply
GNN to learn materials representation. Thereby,
they encode local chemical semantics around the
atoms successfully but fail to capture important
global periodic structural information like space
group number, crystal symmetry, rotational
information etc, which influence different crystal
properties. In this work, we leverage textual
descriptions of materials to model global structural
information into graph structure and learn a
more robust and enriched representation of
crystalline materials. To this effect, we first curate
a textual dataset for crystalline material databases
containing descriptions of each material. Further,
we propose CrysMMNet, a simple multi-modal
framework, which fuses both structural and
textual representation together to generate a
joint multimodal representation of crystalline
materials. We conduct extensive experiments
on two benchmark datasets across ten different
properties to show that CrysMMNet outperforms
existing state-of-the-art baseline methods with
a good margin. We also observe that fusing the
textual representation with crystal graph structure
provides consistent improvement for all the SOTA
GNN models compared to their own vanilla
versions. We have shared the textual dataset, that
we have curated for both the benchmark ma-
terial databases, with the community for future use.

1 INTRODUCTION

In the recent past, we have witnessed a surge of interest in
developing machine learning models Seko et al. [2015],
Pilania et al. [2015], Lee et al. [2016], De Jong et al. [2016],
Seko et al. [2017], Isayev et al. [2017], Ward et al. [2017],
Lu et al. [2018], Im et al. [2019] for fast and accurate prop-
erty prediction of crystalline materials. Crystalline materials
are typically modeled by a minimal unit cell containing all
the constituent atoms in different coordinates, repeated infi-
nite times in 3D space on a regular lattice, which makes ma-
terial structures periodic in nature. A key challenge in learn-
ing crystal representation is how to capture accurately global
periodic structural information along with local chemical
semantics. Recent state-of-the-art models Xie and Gross-
man [2018], Chen et al. [2019], Louis et al. [2020], Park
and Wolverton [2020], Schmidt et al. [2021], Choudhary
and DeCost [2021], Hsu et al. [2021], Das et al. [2022], Yan
et al. [2022] construct multi-edge graphs for a 3D material
structure where they create edges between nearby atoms
within a pre-specified distance threshold in 3D space and
apply GNN model to learn representations of crystal struc-
tures that are optimized for downstream property prediction
tasks. Although existing variants of GNN models predict
different crystal properties with high precision, they rely
on a single modality of crystal data i.e crystal graph struc-
ture which limits the expressive power of these models. The
architectural innovations of these approaches are primar-
ily based on incorporating specific domain knowledge of
the local bonding environment, such as explicitly encoding
bond angle Choudhary and DeCost [2021], dihedral angle
Hsu et al. [2021], etc. but they fail to incorporate crucial
global periodic structural information like lattice constraint,
space group number, crystal symmetry, rotational informa-
tion, component 3D orientation, heterostructure information,
etc, which will enrich its representation and subsequently
aid the property prediction accuracy.
In this work, we propose to learn a more robust and enriched
representation by using multi-modal data i.e graph structure
and textual description of materials. One of the major advan-
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tages of using the textual description of materials is it pro-
vides a diverse set of periodic structural information which is
useful to estimate different crystal properties but difficult to
incorporate explicitly into a graph structure. Leveraging tex-
tual modalities beyond graph structures of materials remains
unexplored by the research community and to the best of our
knowledge, there is no existing dataset containing textual de-
scriptions of the materials. Hence, we first curate the textual
dataset of two popular materials databases (Graph-based),
Material Project (MP) and JARVIS, containing textual de-
scriptions of each material of those databases. We used a
popular tool robocrystallographer Ganose and Jain [2019]
to generate descriptions for global crystal structures, which
looks at the structural symmetry, local environment, and ex-
tended connectivity to generate a description that includes
space group number, crystal symmetry, rotational informa-
tion, component orientations, heterostructure information,
etc.
Further, we propose, CrysMMNet (Crystal Multi-Modal
Network), a simple multi-modal framework for crystalline
materials, which has two components: Graph Encoder and
Text Encoder. Given a material, Graph Encoder uses its
graph structure and applies GNN based approach to encode
the local neighborhood structural information around a node
(atom), and subsequently learn graph (crystal) representa-
tion. On the contrary, Text Encoder is a transformer-based
model, which encodes the global structural knowledge from
the textual description of the material and generates a textual
representation. Finally, both graph structural and textual rep-
resentation are fused together to generate a more enriched
multimodal representation of materials, which captures both
global and local structural knowledge and subsequently im-
proves property prediction accuracy.
To show the merit of our proposed algorithm, we performed
comprehensive experiments on two popular benchmark
datasets, Materials Project and JARVIS-DFT, across ten
diverse sets of properties and compare the results with pop-
ular state-of-the-art models. We observe that for all the
properties CrysMMNet can achieve the lowest error in com-
parison with other baseline models. In addition, our results
demonstrate that multi-modal representation learning helps
to achieve even better improvements when the dataset is
sparse. We also perform some ablation studies to investigate
the expressiveness of textual representation and robustness
of multimodal representation on different GNN architec-
tural choices. Result shows, textual representations alone
are not expressive enough to learn the structure-property
relationship of the materials. Moreover, fusing both graph
structural and textual representation together leads to sub-
stantial performance improvements for all the state-of-the-
art GNN models compared to their vanilla versions. We also
investigate the influence of local compositional information
and global material structural knowledge encoded through
textual representation and found for all crystal properties
both local and global knowledge improves the downstream

property prediction accuracy. We have shared the textual
dataset, that we have curated for both the benchmark mate-
rial databases with the community for future use.1

2 BACKGROUND AND RELATED WORK

2.1 CRYSTAL REPRESENTATION

The structure of a crystalline material can be modeled
by a minimum unit cell, repeated infinite times in three-
dimensional (3D) euclidean space on a regular lattice, which
makes the crystalline structure periodic in nature. As men-
tioned in Xie et al. [2021], Yan et al. [2022], for a given
crystal we can describe its unit cell by two matrices: Feature
Matrix (X) and Coordinate Matrix (C). Feature Matrix X =
[x1,x2, ...,xn]

T ∈ Rn×d denotes atomic feature set of the
material, where xi ∈ Rd corresponds to the d-dimensional
feature vector of i-th atom. On the other hand, Coordinate
Matrix C = [c1, c2, ..., cn]

T ∈ Rn×3 denotes atomic coor-
dinate positions, where ci ∈ R3 corresponds to cartesian
coordinates of i-th atom in the unit cell. Further, there is an
additional lattice matrix L = [l1, l2, l3]

T ∈ R3×3, which de-
scribes how a unit cell repeats itself in the 3D space towards
l1, l2 and l3 direction to form the periodic 3D structure of
the material. Formally, a given crystal can be defined as
M = (X,C,L) and we can represent its infinite periodic
structure as

Ĉ = {ĉi|ĉi = ci +

3∑
j=1

kjlj}; X̂ = {x̂i|x̂i = xi} (1)

where k1, k2, k3, i ∈ Z, 1 ≤ i ≤ n.

2.2 CRYSTAL PROPERTY PREDICTION USING
GNNS

Graph neural networks have emerged as highly promising
models in various domains of computer science, showcas-
ing significant potential in many real-world applications
including social networks Hamilton et al. [2017], Chen
et al. [2018], Dai et al. [2018], recommender systems Berg
et al. [2017], Ying et al. [2018], hyper-networks Yadati
et al. [2019], Bandyopadhyay et al. [2020], chemical and
biological networks Duvenaud et al. [2015], Gilmer et al.
[2017] etc. Recently, graph neural network (GNN) based
approaches have been very effective to encode structural in-
formation of the crystal materials into enriched embedding
space so that it can predict different crystal properties with
high accuracy. CGCNN Xie and Grossman [2018] is the first
proposed model, which represents 3D crystal structure as
an undirected weighted multi-edge graph G = (V, E ,X ,F)
where V denotes the set of nodes (atoms) in the unit cell

1Source code and dataset of CrysMMNet is made available at
https://github.com/kdmsit/crysmmnet
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FeCl2(H2O)4 is Indium-like structured and crystallizes in the monoclinic P2_1/c space group. 
The structure is zero-dimensional and consists of two iron dichloride tetrahydrate molecules. 

FeH8(ClO2)2

Formula Mineral Crystal System Space Group

Dimensionality

Global Structural Information

Fe(1) is bonded in an octahedral geometry to two equivalent O(1), two equivalent O(2), and 
two equivalent Cl(1) atoms. Both Fe(1)–O(1) bond lengths are 2.08 Å. Both Fe(1)–O(2) bond 
lengths are 2.10 Å. Both Fe(1)–Cl(1) bond lengths are 2.53 Å. 

There are four inequivalent H sites. In the first H site, H(1) is bonded in a single-bond 
geometry to one O(2) atom. The H(1)–O(2) bond length is 0.99 Å. In the second H site, H(2) 
is bonded in a single-bond geometry to one O(2) atom. The H(2)–O(2) bond length is 0.99 Å. 
In the third H site, H(3) is bonded in a single-bond geometry to one O(1) atom. The 
H(3)–O(1) bond length is 0.99 Å. In the fourth H site, H(4) is bonded in a single-bond 
geometry to one O(1) atom. The H(4)–O(1) bond length is 0.99 Å. 

There are two inequivalent O sites. In the first O site, O(1) is bonded in a distorted water-like 
geometry to one Fe(1), one H(3), and one H(4) atom. In the second O site, O(2) is bonded in 
a distorted water-like geometry to one Fe(1), one H(1), and one H(2) atom. Cl(1) is bonded in 
a distorted single-bond geometry to one Fe(1) atom.

Local Compositional (atom/bond) Information

Bond Length

Atom

Bond type

Figure 1: Textual description of FeH8(ClO2)2 material from JARVIS dataset generated by Robocrystallographer. The
generated text contains both local chemical compositional information related to atom/bonds (like site coordination, geometry,
polyhedral connectivity, and tilt angles) and global structural knowledge (like mineral type, space group information,
symmetry, and dimensionality).

of material and E = {(u, v, kuv)} denotes a multi-set of
node pairs and kuv denotes number of edges between a
node pair (u, v). X = {(xu|u ∈ V)} denotes the node fea-
ture set, which includes different chemical properties like
electronegativity, valance electron, covalent radius, etc. Fi-
nally, Fi = {{sk}(u,v)|(u, v) ∈ E , k ∈ {1..kuv}} denotes
the multi-set of edge weights where sk corresponds to the
kth bond length between a node pair (u, v), which signifies
the inter-atomic bond distance between two atoms. Further,
CGCNN develops a graph convolution neural network to
update node features based on their local chemical and struc-
tural environment.
Following CGCNN, there are a lot of subsequent studies
Chen et al. [2019], Louis et al. [2020], Park and Wolverton
[2020], Schmidt et al. [2021], where authors proposed differ-
ent variants of GNN architectures for effective crystal repre-
sentation learning. Through multiple layers of graph convo-
lutions, these models can implicitly encode many-body inter-
actions. Further, ALIGNN Choudhary and DeCost [2021]
explicitly captures many-body interactions by incorporating
bond angles and local geometric distortions into the GNN
encoding module to enhance property prediction accuracy
and became SOTA for a large range of properties. Recently,
transformer-based architecture Matformer Yan et al. [2022]
is proposed to learn the periodic graph representation of the
material, which is invariant to periodicity and can capture re-
peating patterns explicitly. Matformer marginally improves
the performance compared to ALIGNN, however, is much

faster than it. Moreover, scarcity of labeled data makes these
models difficult to train for all the properties, and recently,
some key studies Jha et al. [2019], Das et al. [2022, 2023]
have shown promising results to mitigate this issue using
transfer learning, pre-training, and knowledge distillation
respectively.

3 METHODOLOGY

In this section, we first discuss the insights on the textual
dataset that we have curated for two popular crystalline
databases and explain the local compositional and global
periodic information we are able to encode using textual
representation, which is difficult to incorporate explicitly
into a graph structure. Then we give a detailed overview
of our proposed muti-modal framework CrysMMNet that
generates joint embedding for materials, which facilitates
accurate property prediction.

3.1 TEXTUAL DATASET

Leveraging textual modalities beyond the conventional
graph structure of the materials to capture both local atomic
and global periodic knowledge remains largely unexplored
by the research community. To the best of our knowledge,
there is no existing dataset containing textual descriptions
of the materials. Hence, we first curate the textual dataset
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Figure 2: Overview of our adopted methodology CrysMMNet. Given Crystal Material (M), we use two modalities - Graph
Structure (G) and Textual Description (T ). Graph structure (G) is passed through a graph encoder to generate graph
embedding (ZG). Textual Description (T ) is fed through a text encoder followed by a projection layer to generate text
embedding (ZT ). Finally, both the representations are fused together and predict the crystal properties based on joint
modeling of the input modalities.

for two popular material databases JARVIS and Material
Project(MP), containing textual descriptions for each mate-
rial of those databases. Conventionally, in these databases,
the periodic structure of the materials is represented in Crys-
tallographic Information File (CIF File). We use Robocrys-
tallographer Ganose and Jain [2019], which is a free utility,
to generate a textual description of the material from the
CIF file. Robocrystallographer decomposes crystal struc-
tures into local compositional (site coordination, geometry,
polyhedral connectivity, and tilt angles) and global structural
(mineral type, space group information, symmetry, dimen-
sionality) components (Figure 1) and output this information
in three formats: JSON for machine use, human-readable
text, and machine learning format. In this work, we use
human-readable text for collecting textual datasets, which
are easily interpretable and resembles a human description
of the crystal structure.
Local compositional information describes local chemi-
cal environments around different atoms and inter-atomic
bonds in a unit cell. It provides a detailed description of
different sites of the materials, like atomic compositions of
different sites, site coordination, inter-atomic connectivity
through chemical bonds, bond type, and length. Further,
the geometry of each site is mentioned and the presence
of corner-sharing tetrahedra connectivity is specified. On
the contrary, global structural information illustrates the
global environment i.e. periodic structure and orientation
of the material in 3D space. The most useful information it
provides is regarding crystal symmetry, which includes the
specific space group and crystal system the material belongs
to. Space group is used to describe the symmetry of a unit

cell of the crystal material in 3D space. In materials science
literature there are 230 unique space groups and each crystal
(graph) has a unique space group number. Further based
on the space group level information can classify a crystal
graph into 7 broad groups of crystal systems like Triclinic,
Monoclinic, Orthorhombic, Tetragonal, Trigonal, Hexago-
nal, and Cubic. Moreover, it contains the mineral type of
the material and the dimensionality of the crystal structure.
Minerals are naturally occurring, inorganic substances with
a specific chemical composition and a crystalline structure.
The most common types include silicates (which contain
silicon and oxygen), carbonates (which contain carbon and
oxygen), sulfates (which contain sulfur and oxygen), halides
(which contain a halogen element), oxides (which contain
oxygen and one or more other elements), and sulfides (which
contain sulfur and one or more other elements). Examples
of minerals in each category include quartz, calcite, gypsum,
halite, hematite, and pyrite. The chemical composition and
crystal structure of a mineral determine its properties, such
as its hardness, color, and cleavage. Further, dimensionality
of a material is a significant global feature that refers to
the number of dimensions that a particular component of
the material spans. The dimensionality of a bonded cluster
of atoms can be determined by calculating the rank of the
subspace spanned by the central atom and its periodically
connected neighbors.
A comprehensive understanding of both local and global
environments is necessary for robust prediction of material
properties. For example, in the case of formation energy,
the local chemical environment, such as atom composition,
bond length, and bond angles, plays a crucial role in deter-
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mining the electronic and geometric structure of the material,
which directly affects its formation energy. A slight variation
in the local environment can result in significant changes in
the electron density and, subsequently, the energy required
to form the materials. Similarly, the global chemical envi-
ronment, like the space group, has a profound impact on the
formation energy by controlling the arrangement of atoms
within the material. Different space groups are associated
with different crystal structures and packing arrangements,
which can lead to different formation energies. Moreover,
the study by Larsen et. al Larsen et al. [2019] showed that
the formation energies of layered materials can be related to
their dimensionality, highlighting the importance of consid-
ering this feature in the investigation of materials.

3.2 MULTI-MODAL FRAMEWORK

Next, we propose a simple, yet effective multi-modal frame-
work, CrysMMNet, for graph and textual embedding of ma-
terials, which realizes material dataset as D = {(G, T ),Y},
where G,T and Y denote multi-graph structure, textual de-
scription and property value the material respectively. In
our multi-modal architecture, the goal is to learn a function
fθ(G, T )

fθ : (G, T )→ Y (2)

By design, CrysMMNet (as shown in Figure 2) is com-
posed of three modules: graph encoder MV (G) → ZG ,
text encoder ML(T ) → ZT , and joint embedding model
E(ZG ,ZT ) → Z , where ZG ,ZG and Z are graph-level,
textual and multimodal embedding respectively. Next, we
explain each part of the CrysMMNet framework in detail.

3.2.1 Graph Encoder:

CrysMMNet adopts a GNN architecture inspired by
ALIGNN Choudhary and DeCost [2021] as Graph Encoder,
to encode the chemical, structural, and bond angular in-
formation of a crystal graph G. We derive additional line
graph L(G) from the crystal graph G to describe the an-
gles between the edges in G, where nodes and edges in
line graph L(G) correspond to inter-atomic bonds and bond
angles. We denote hli, e

l
i,j and tli,j,k as l-th layer represen-

tation for i-th atom, {i, j}-th bond, and {i, j, k}-th angle
(triplet) respectively. Graph encoder alternates edge-gated
graph convolution layers between L(G) and G to propagate
bond angular information through inter-atomic bond repre-
sentation to atom embedding and vice versa. Specifically, at
the (l)-th layer, given the line graph L(G), we apply Gated
Graph ConvNet (GatedGCN) Dwivedi et al. [2020] to up-
date triplet representation and generate bond messages m as

follows :

tl+1
i,j,k = tli,j,k + γ

(
BN

(
Allge

l
i,j +Bllge

l
j,k + Cllgt

l
i,j,k

))
t̂l+1
i,j,k =

σ(tl+1
i,j,k)∑

(j,m)∈Ni,j
σ(tl+1

i,j,m) + ε

ml
i,j = eli,j + γ

(
BN

(
(W l

lge
l
i,j +

∑
(j,k)
∈Ni,j

t̂l+1
i,j,k � V

l
lge

l
j,k

))
(3)

Further, we apply another GatedGCN on the crystal graph
G and update bond and atom features as follows :

el+1
i,j = eli,j + γ

(
BN

(
Algh

l
i +Blgh

l
j + Clgm

l
i,j

))
êl+1
i,j =

σ(el+1
i,j )∑

k∈Ni
σ(el+1

i,k ) + ε

hl+1
i = hli + γ

(
BN

(
(W l

gh
l
i +

∑
j∈Ni

êl+1
i,j � V

l
gh

l
j

))
(4)

where σ is the sigmoid function, ε is a small fixed constant
for numerical stability, � is the Hadamard product, BN is
batch normalization and γ is the activation function where
we use Sigmoid Linear Unit (SiLU).Allg, B

l
lg, C

l
lg, V

l
lg,W

l
lg

are learnable parameters of GatedGCN applied on L(G) and
Alg, B

l
g, C

l
g, V

l
g ,W

l
g are learnable parameters of GatedGCN

applied on G. We apply L such layers of aggregation and
update in Graph Encoder and return the final set of node
embeddings H = {h1, ..., h|V|}, where hi := hLi ∈ Rd

represents the final embedding of node i. We subsequently
use a symmetric aggregation function (AvgPool) to generate
graph-level representation ZG ∈ Rd

′
(we set d′ as 256) of

the crystal material M.

ZG =

|V|∑
i=1

hLi (5)

3.2.2 Text Encoder:

As a text encoder, we adopt a pre-trained MatSciBERT
model, which is a domain-specific language model for ma-
terials science, followed by a projection layer. MatSciBERT
is effectively a pre-trained SciBERT model on a scientific
text corpus of 3.17B words, which is further trained on a
huge text corpus of materials science containing around
285 M words, using domain adaptive pretraining objective
proposed by Gururangan et al. [2020]. We feed textual de-
scription of material T and extract embedding of [CLS]
token ZCLS ∈ R768 as a representation of the whole text.
Further. we passZCLS through a projection layer (two-layer
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Property Unit CIFID CGCNN SchNet MEGNET GATGNN ALIGNN Matformer CrysMMNet

Formation Energy eV/atom 0.140 0.063 0.045 0.047 0.047 0.033 0.033* 0.028
Bandgap(OPT) eV 0.301 0.200 0.192 0.145 0.170 0.142 0.137* 0.128
Bandgap(MBJ) eV 0.532 0.413 0.433 0.344 0.513 0.310 0.302* 0.278

Total Energy eV/atom 0.244 0.078 0.047 0.058 0.056 0.037 0.035* 0.034
Bulk Moduli(Kv) GPa 14.12 14.47 14.33 15.11 14.32 10.40* 11.21 9.625
Shear Moduli(Gv) GPa 11.98 11.75 10.67 13.09 12.48 9.481* 10.76 8.471

Table 1: Summary of the prediction performance (MAE) of CrysMMNet and different state-of-the-art models for different
properties in JARVIS-DFT Dataset. The best performance is highlighted in bold and the second-best results are highlighted
with *.

neural network) to generate the textual embedding for the
material ZT ∈ Rd

ZT =W2(g(W1ZCLS)) (6)

We use standard non-linear function ReLU(·) as g(·), W1 ∈
R768×128 and W2 ∈ R128×d are parameter matrix that
project ZCLS to embedding space Rd. In our experiment,
we set d as 64.

3.2.3 Joint Embedding Model:

The graph encoder encodes local structural and chemi-
cal semantics around atoms in a unit cell of the mate-
rial, whereas the text encoder captures global periodic
knowledge from the textual description. Further, in the
joint embedding model, we fuse both the representations
(ZG ,ZT ) together into a single multi-modal representation
Z := (ZG ⊕ZT ) ∈ R(d′+d), which can now capture both
local and global structural semantics of the material. We
tried different ways to fuse both the embeddings like sum,
average, concatenation (⊕) and found concatenation per-
forms best.
Further, we pass this multi-modal representation Z through
a multi-layer perceptron which predicts the value of the
properties. We train CrysMMNet end to end to optimize the
following mean square error(MSE) loss :

LMSE = ‖Ŷ − Y‖2 (7)

where Ŷ and Y are predicted and true property values re-
spectively. Note, while training CrysMMNet we freeze the
weights of MatSciBERT and don’t tune it further. Fine-
tuning MatSciBERT with CrysMMNet training for a spe-
cific property will add more computational overhead as it
will increase the number of parameters significantly. This
provides scope for further investigation and we keep it as
future work.

4 EXPERIMENTAL RESULTS

In this section, we begin by describing the experimental
setup which includes the benchmark datasets used for eval-

uation, alternate baseline approaches, and implementation
details. Then we evaluate the performance of CrysMMNet
in comparison with different SOTA property predictors on
the downstream property prediction tasks using two popular
material benchmark datasets. Next, we present the empiri-
cal evaluation results of our proposed framework in limited
training data settings. Further, we conduct some ablation
studies to demonstrate the expressiveness and robustness
of textual representation and the importance of global and
local knowledge encoded in textual embedding. Finally,
we perform a qualitative analysis of the attention layer of
MatSciBert to visualize attention in different tokens in the
material description.

4.1 EXPERIMENTAL SETUP

To evaluate the effectiveness of CrysMMNet, we conduct
experiments on two benchmark material datasets, Materials
Project Jain et al. [2013] (MP 2018.6.1) and JARVIS-DFT
Choudhary et al. [2020] (2021.8.1), which comprises some
important physical properties obtained with high-throughput
DFT calculations. MP 2018.6.1 consists of 69,239 materi-
als whereas JARVIS-DFT consists of 55,722 materials. We
curated textual datasets for both datasets using robocrys-
tallographer with a textual description of each material as
described in subsection 3.1. We choose seven state of the
art algorithms for crystal property prediction CIFID Choud-
hary et al. [2018], CGCNN Xie and Grossman [2018],
SchNet Schütt et al. [2017], MEGNET Chen et al. [2019],
GATGNN Louis et al. [2020], ALIGNN Choudhary and
DeCost [2021] and Matformer Yan et al. [2022]. To avoid
any deterioration of the performance of the baseline algo-
rithms due to insufficient hyperparameter tuning, we report
the property prediction results from the respective papers of
the baseline models.
We use four convolution layers of the graph encoder module
and pre-trained MatSciBERT followed by a two-layer neu-
ral network (projection layer) as the text encoder module
in CrysMMNet. We train it for 1000 epochs using AdamW
Loshchilov and Hutter [2017] optimizer with normalized
weight decay of 10−5 and keep the batch size as 64. We
schedule the learning rate according to the one-cycle policy
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Property Unit CGCNN SchNet MEGNET GATGNN ALIGNN Matformer CrysMMNet

Formation Energy eV/atom 0.031 0.033 0.030 0.033 0.022 0.021* 0.020
Bandgap eV 0.292 0.345 0.307 0.280 0.218 0.211* 0.197

Bulk Moduli(Kv) log(GPa) 0.047 0.066 0.060 0.045 0.051 0.043* 0.038
Shear Moduli(Gv) log(GPa) 0.077 0.099 0.099 0.075 0.078 0.073* 0.062

Table 2: Summary of the prediction performance (MAE) of CrysMMNet and different state-of-the-art models for different
properties in The Materials Project dataset. The best performance is highlighted in bold and the second-best results are
highlighted with *.

Property Train-set CGCNN ALIGNN CrysMMNet
Size

Bandgap(MBJ) 3634 0.522 0.483 0.456
Bulk Moduli 3936 14.98 14.13 13.04
Shear Moduli 3936 13.07 12.61 11.57

Table 3: : MAE values of CGCNN, ALIGNN and Crys-
MMNet for three different properties in the JARVIS-DFT
dataset with 20% training instances. The best performance
is highlighted in bold.

Smith [2018] with a maximum learning rate of 0.001. We
keep embedding dimensions of the graph and text encoder
as 64 and 256 respectively. We perform the experiments in
shared servers having Intel E5-2620v4 processors which
contain 16 cores/thread and four GTX 1080Ti 11GB GPUs
each.

4.2 DOWNSTREAM TASK EVALUATION

4.2.1 JARVIS-DFT Dataset

To evaluate CrysMMNet, we first conduct experiments on
the JARVIS-DFT dataset, which is a widely used large-scale
material benchmark containing 55,722 crystals. Following
previous state-of-the-art works, we choose six crystal prop-
erties including formation energy, bandgap (OPT), bandgap
(MBJ), total energy, bulk moduli, and shear moduli for the
downstream property prediction task. We use 80%,10%, and
10% train, validation, and test split for all the properties as
used by ALIGNN. We report mean absolute error (MAE) of
the predicted and actual value of a particular property for test
data in table 1 to compare the performance of CrysMMNet
and different participating methods. We observe that Crys-
MMNet outperforms every baseline model across all the
properties with a significant margin. In specific, we observe
13.84%, 2.85%, 6.56%, 7.33%, 7.40%, and 10.65% im-
provements compared to the competing second-best baseline
model for formation energy, total energy, bandgap (OPT),
bandgap (MBJ), bulk moduli, and shear moduli respectively,
which shows the effectiveness of multimodal representation
capturing both local chemical semantics and global periodic
structural knowledge towards crystal property prediction.

4.2.2 Materials Project (MP) Dataset

We further use another benchmark material dataset, Materi-
als Project-2018.6.1, comprises 69,239 materials. Here we
evaluate CrysMMNet with all state-of-the-art models using
four crystal properties namely formation energy, bandgap,
bulk moduli, and shear moduli. For formation energy and
bandgap, we use 60000, 5000, and 4239 crystals as train,
validation, and test split as used by ALIGNN, whereas use
4664, 393, and 393 crystals as train, validation, and test split
for bulk and shear moduli as used by GATGNN. We report
the mean absolute error (MAE) of the predicted and actual
property value for test data in table 2 to compare the perfor-
mance of CrysMMNet with different participating methods.
Note, to maintain consistency with the results reported by
baseline works, we report (GPa) values of bulk and shear
moduli in table 1, whereas log(GPa) values in table 2. We
observe that CrysMMNet outperforms every baseline model
across all the properties with a significant margin. In specific,
we observe 4.76%, 6.63%, 6.9%, and 15.06% improvements
compared to the competing second-best baseline model for
formation energy, bandgap, bulk moduli, and shear moduli
respectively. Overall, the superior performances show the
effectiveness of multi-modal representation in CrysMMNet.

4.2.3 Resuts on Limited Training Data

CrysMMNet performs well in limited data settings as well.
With 4664 training samples only CrysMMNet achieves 6.9%
and 15.06% improvements for bulk moduli and shear mod-
uli respectively in the Materials Project dataset. Further, in
JARVIS-DFT Dataset, we conduct an additional set of ex-
periments for three different properties including bandgap
(MBJ), bulk moduli, and shear moduli, where we have lim-
ited labeled data. More specifically, we take 20-10-10%
training-validation-test data split and evaluate the perfor-
mance of CGCNN, ALIGNN, and CrysMMNet in the table
3. We observe, CrysMMNet achieves improvement for all
three properties compared to CGCNN and ALIGNN. Over-
all, these superior performances indicate the robustness of
our model and its adaptive ability to tasks of various data
scales.
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Property CrysTextNet CGCNN ALIGNN

Formation Energy 0.447 0.063 0.033
Total Energy 0.352 0.078 0.037

Bandgap(OPT) 0.595 0.201 0.142
Bandgap(MBJ) 0.849 0.411 0.311

Bulk Moduli(Kv) 21.98 14.47 10.42
Shear Moduli(Gv) 14.76 11.75 9.483

Table 4: Summary of experiments for the ablation study on
the effectiveness of Textual Representation.

4.3 ABLATION STUDY

In this subsection, We demonstrate the robustness of multi-
modal representation on different GNN architecture choices
and the influence of textual modality on CrysMMNet perfor-
mance, by designing the following set of ablation studies:

1. Is only textual information sufficient to infer better
property prediction accuracy?

2. How robust is the multimodal representation on differ-
ent GNN architecture choices for graph encoder?

3. What are the influences of global structural and local
compositional knowledge from the textual datasets on
property prediction performance?

In the following subsections, we will thoroughly discuss
these.

4.3.1 Expressiveness of Textual Representation

First, we are interested to understand whether textual rep-
resentations are alone expressive enough, to encode atomic
chemical and periodic structural semantics from the curated
textual data and predict different properties precisely. We
conduct an ablation experiment, where we consider only the
text embeddings ZT of CrysMMNet (output of projection
layer) and pass it alone through a multi-layer perceptron to
predict the property value. We denote this model as Crys-
TextNet and compare it with state-of-the-art graph-based
models on different properties of the JARVIS-DFT dataset.
We report the MAE for test data in table 4. We observe, for
all the properties, test MAE is higher for the CrysTextNet
model compared to state-of-the-art graph-based models like
CGCNN and ALIGNN. In specific, for mechanical prop-
erties like bulk modulus and shear modulus, CrysTextNet
works better (closer test MAE with competing GNN base-
lines) than properties like formation energy, band-gap, and
total energy. This is because properties, such as formation
energy, band gap, and total energy rely on microscopic chem-
ical information which textual representation fails to encode.
Instead, graph encodings include node features xu (u ∈ V)
that are high-dimensional vectors with meaningful chemi-

cal quantities like electronegativity, group number, covalent
radius, number of valence electrons, first ionization energy,
etc. Furthermore, through message passing and aggregation
in the graph convolution layer, GNN models capture many-
body interactions among atoms in the material. On the other
side, mechanical properties like bulk modulus and shear
modulus are more dependent on structural information like
lattice structure and symmetry of the material, which textual
representations are able to capture.
Overall, though textual representations can capture many
useful local and global information about the materials, un-
like graph structural models, they are not alone expressive
enough to capture atomic chemical features and the struc-
tural connectivity between different atoms in the materials.
Message passing and neighborhood aggregation between
atoms through the GNN model are still very fundamental in
learning the structure-property relationship of the materials.

4.3.2 Robustness of Textual Representation

Further, we investigate the robustness of textual represen-
tations on different crystal GNN encoders. We conduct an
ablation study where we replace graph encode of CrysMM-
Net with popular crystal GNN variants, e.g, CGCNN, MEG-
NET, GATGNN and evaluate the performance. We set up
the experiments with six properties of the JARVIS dataset
and report the MAE values in table 5 for the baseline GNN
models and different variants of CrysMMNet with different
GNN architectural choices as graph encoder. We observe all
these variants outperform corresponding vanilla GNN mod-
els with a good margin for all the properties, which shows
textual representations are rich enough to encode global
structural knowledge which aids the property prediction
accuracy of any state-of-the-art GNN models.

4.3.3 Importance of Local and Global Knowledge

Finally, we are curious to understand the importance of local
(atom/bond) compositional information and global material
structural knowledge encoded through textual representa-
tion in CrysMMNet. Specifically, we conduct an ablation
study, where we train CrysMMNet in two additional setups
along with the conventional (Global+Local) setup for Crys-
MMNet. (a) Only Global: In this scenario, we take only
global knowledge about the periodic structure of the materi-
als as textual data to train CrysMMNet. (b) Only Local: In
this scenario, we take only local compositional information
about atoms and inter-atomic bonds as textual data to train
CrysMMNet. We use six properties of JARVIS-DFT dataset
for the experiment and report MAE in Table 6. We observe
performance gain across all the properties using both global
and local information combined as textual knowledge, com-
pared to only global or local knowledge separately.
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Property CGCNN CrysMMNet MEGNET CrysMMNet GATGNN CrysMMNet
(CGCNN) (MEGNET) (GATGNN)

Formation Energy 0.063 0.046 0.076 0.060 0.077 0.064
Bandgap(OPT) 0.200 0.163 0.184 0.165 0.169 0.157
Bandgap(MBJ) 0.413 0.339 0.369 0.339 0.343 0.331

Total Energy 0.078 0.059 0.058 0.057 0.056 0.053
Bulk Moduli(Kv) 14.47 12.98 15.11 13.29 14.32 13.73
Shear Moduli(Gv) 11.75 10.71 13.09 11.86 12.48 12.04

Table 5: Summary of the prediction performance (MAE) of different state-of-the-art GNN models with textual representation
for six different properties in The JARVIS-DFT Dataset. Model M is the SOTA baseline model and CrysMMNet(M) is a
variant where we replace graph encoder with M.

Property Global+Local Only Global Only Local

Formation Energy 0.028 0.039 0.039
Total Energy 0.034 0.042 0.046

Bandgap(OPT) 0.114 0.191 0.147
Bandgap(MBJ) 0.209 0.216 0.218

Bulk Moduli(Kv) 6.860 6.910 6.870
Shear Moduli(Gv) 6.440 6.730 6.880

Table 6: Summary of experiments for the ablation study on
the importance of Local and Global Material Knowledge.

4.4 QUALITATIVE ANALYSIS OF ATTENTION
LAYERS

Finally, to visualize and understand attentions in different
tokens in the material description, we perform a qualitative
analysis of the attention layer in MatSciBert. We utilized the
standard BertViz tool Vig [2019] 2 to analyze and visualize
the attention scores in the MatSciBert Model. We present a
case study of the textual data of FeH8(ClO2)2 in Figure
3 & 4 in Section A of Appendix, where we have examined
the attention score of the [CLS] token at the 5th layer of
MatSciBert.
We observe MatSciBert allocates higher attention scores to
tokens that defines global features of the crystal, such as

‘Formula’, ‘Mineral’, ‘Crystal System’, ‘Space Group Num-
ber’, and ‘Dimensionality’. Further, we investigate attention
weights for local information corresponding to Fe, H, and O
atoms. MatScibert provides more attention score to tokens
related to bond types (octahedral geometry, equivalent bond,
distorted water-like geometry, etc) and bond lengths (2.08 Å,
2.10 Å, and 2.53 Å bond length). It is evident from these ob-
servations that MatSciBert is attending the important tokens
related to global and local material information, to generate
more expressive multimodal representation.

2https://github.com/jessevig/bertviz

5 CONCLUSIONS

In this work, we address the limitation of state-of-the-art
GNN models for crystal property prediction to capture
global periodic structural information and leverage textual
modalities beside graph structures to resolve the issue. To
this end, we curate textual datasets of two popular bench-
mark databases containing textual descriptions of each ma-
terial containing both local compositional and global struc-
tural information of a material. Further, we propose a simple
yet effective multi-modal framework, CrysMMNet, for crys-
talline materials, which fuse both graph structural and tex-
tual representation together to generate a more enriched and
robust multimodal representation for materials, which sub-
sequently improves property prediction accuracy. Extensive
experiments show CrysMMNet outperforms all the popular
state-of-the-art baselines across ten diverse sets of proper-
ties on two popular datasets. Further, we conduct ablation
studies to demonstrate the expressiveness and robustness
of textual representation on different crystal GNN encoders
and show performance gain across all the properties us-
ing both global and local information combined as textual
knowledge, compared to only global or local knowledge
separately. Finally, we visualize attention weights between
[CLS] token and other tokens in the material’s description
to understand the important tokens. that the text encoder is
attending to generate more expressive multimodal represen-
tation
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