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Abstract

Probabilistic, hierarchically coherent forecasting is
a key problem in many practical forecasting appli-
cations – the goal is to obtain coherent probabilis-
tic predictions for a large number of time series
arranged in a pre-specified tree hierarchy. In this
paper, we present an end-to-end deep probabilis-
tic model for hierarchical forecasting that is mo-
tivated by a classical top-down strategy. It jointly
learns the distribution of the root time series, and
the (dirichlet) proportions according to which each
parent time-series is split among its children at
any point in time. The resulting forecasts are nat-
urally coherent, and provide probabilistic predic-
tions over all time series in the hierarchy. We exper-
iment on several public datasets and demonstrate
significant improvements of up to 26% on most
datasets compared to state-of-the-art baselines. Fi-
nally, we also provide theoretical justification for
the superiority of our top-down approach com-
pared to the more traditional bottom-up modeling.

1 INTRODUCTION

A central problem in multivariate forecasting is the need to
forecast a large group of time series arranged in a natural
hierarchical structure, such that time series at higher lev-
els of the hierarchy are aggregates of time series at lower
levels. For example, hierarchical time series are common
in retail forecasting applications [FMK19], where the time
series may capture retail sales of a company at different
granularities such as item-level sales, category-level sales,
and department-level sales. In electricity demand forecast-
ing [VEC15], the time series may correspond to electricity
consumption at different granularities, starting with indi-
vidual households, which could be progressively grouped
into city-level, and then state-level consumption time-series.

The hierarchical structure among the time series is usually
represented as a tree, with leaf-level nodes corresponding
to time series at the finest granularity, while higher-level
nodes represent coarser-granularities and are obtained by
aggregating the values from its children nodes.

Since businesses usually require forecasts at various dif-
ferent granularities, the goal is to obtain accurate forecasts
for time series at every level of the hierarchy. Furthermore,
to ensure decision-making at different hierarchical levels
are aligned, it is essential to generate predictions that are
coherent [HAAS11] with respect to the hierarchy, that is,
the forecasts of a parent time-series should be equal to the
sum of forecasts of its children time-series. For example,
the sum of the sales predictions for each shoe style should
equal the sales prediction for the shoe category 1. Finally, to
facilitate better decision making, there is an increasing shift
towards probabilistic forecasting [BRGS10, GK14]; that is,
the forecasting model should quantify the uncertainty in the
output and produce a probability distribution, instead of a
single point estimate, for predictions.

In this paper, we address the problem of obtaining coher-
ent probabilistic forecasts for large-scale hierarchical time
series. While there has been a plethora of work on multi-
variate forecasting, there is significantly limited research
on multivariate forecasting for hierarchical time series that
satisfy the requirements of both hierarchical coherence and
probabilistic predictions.

There are numerous recent works on deep neural
network-based multivariate forecasting [SFGJ20, OCCB19,
RSG+18, BRF+20, SYD19, OCM+22], including prob-
abilistic multivariate forecasting [SBSC+19, RSS+21]
and even graph neural network(GNN)-based models for
forecasting on time series with graph-structure correla-
tions [BYL+20, CWD+20, YYZ17, LYSL17]. However,

1Note that this is a non-trivial constraint. For example, gener-
ating independent predictions for each time series in the hierarchy
using a standard multivariate forecasting model does not guarantee
coherent predictions.
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none of these works ensure coherent predictions for hierar-
chical time series.

On the other hand, several papers specifically address
hierarchically-coherent forecasting [HLW16, TTH17,
VEC15, HLW16, BTK19, WAH+15, WTH20, MPS21,
AHTB19], based on the idea of reconciliation. This involves
a two-stage process where the first stage generates indepen-
dent (possibly incoherent) univariate base forecasts, and
is followed by a second reconciliation stage that adjusts
these forecasts using the hierarchy structure, to finally ob-
tain coherent predictions. These approaches are usually dis-
advantaged in terms of using the hierarchical constraints
only as a post-processing step, and not during generation
of the base forecasts. Furthermore, with the exception of
[TTH17], which is a two-stage reconciliation-based model
for coherent probabilistic hierarchical forecasting, most of
these approaches cannot directly handle probabilistic fore-
casts.

More recently, there has been some work( [RWB+21,
HDG21]) that propose single-stage, end-to-end deep neural
architectures that directly produce hierarchically-coherent
(or approximately coherent) probabilistic forecasts without
a need for a post-processing step.

In this paper, we present an alternate approach to end-to-end
deep probabilistic forecasting for hierarchical time series,
motivated by a classical method that has not received much
recent attention: top-down forecasting. The basic idea is
to first model the top-level forecast in the hierarchy tree,
along with the ratios or proportions according to how the
top level forecasts should be distributed among the children
time-series in the hierarchy. The resulting predictions are
naturally coherent. Early top-down approaches were non-
probabilistic, and were rather simplistic in terms of model-
ing the proportions; for example, by separately modeling the
top-level forecast, and then deriving the proportions from
historical averages [GS90], or from independently gener-
ated (incoherent) forecasts of each time-series from another
model [AAH09]. In this paper, we showcase how model-
ing both the top-level forecast and the proportions jointly
through a single-stage deep probabilistic model can ob-
tain state-of-the-art results for probabilistic, hierarchically-
coherent forecasts.

Crucially, our proposed model (and indeed all top-down
approaches for forecasting) relies on the intuition that the
top level time series in a hierarchy is usually much less
noisy and less sparse, and hence much easier to predict.
Furthermore, it might be easier to predict proportions (that
are akin to scale-free normalized time-series) at the lower
level nodes than the actual time series themselves.

Our approach involves learning a single end-to-end deep
model to jointly model “families“, consisting of a parent and
its children timeseries, and predict both the parent timeseries
and the proportions along which it is disaggregated among

its children. We use a Dirichlet distribution [OR64] to model
the distribution of proportions for each parent-children fam-
ily in the hierarchy. The parameters of the Dirichlet dis-
tribution for each family is obtained from an MLP (Multi
Layer Perceptron) based encoder-decoder model with multi-
headed self-attention [VSP+17], that is jointly learnt from
the whole dataset.

We validate our model against state-of-the art probabilistic
hierarchical forecasting baselines on six public datasets, and
demonstrate significant gains using our approach, outper-
forming the baselines on most datasets with improvements
of up to 26% in terms of CRPS scores.

Additionally, we theoretically analyze the advantage of the
top-down approach (over a bottom-up approach) in a sim-
plified regression setting for hierarchical prediction, and
thereby provide theoretical justification for our top-down
model. Specifically, we prove that for a 2-level hierarchy of
d-dimensional linear regression with a single root node and
K children nodes, the excess risk of the bottom-up approach
is min(K, d) time bigger than the one of the top-down ap-
proach in the worst case. This validates our intuition that it
is easier to predict proportions than the actual values.

2 BACKGROUND

Hierarchical forecasting is a multivariate forecasting prob-
lem, where we are given a set of N univariate time-series
(each having T time points) that satisfy linear aggregation
constraints specified by a predefined hierarchy. More specif-
ically, the data can be represented by a matrix Y ∈ RT×N ,
where y(i) denotes the T values of the i-th time series,
yt denotes the values of all N time series at time t, and
yt,i the value of the i-th time series at time t. We will
assume that yi,t ≥ 0, which is usually the case in all re-
tail demand forecasting datasets (and is indeed the case in
all public hierarchical forecasting benchmarks [WAH+15]).
We compactly denote the H-step history of Y by Y H =
[yt−H , · · · ,yt−1]> ∈ RH×N and the H-step history of
y(i) by y

(i)
H = [y

(i)
t−H , · · · ,y

(i)
t−1] ∈ RH . Similarly we can

define the F -step future as Y F = [yt, · · · ,yt+F−1]> ∈
RF×N . We use the ·̂ notation to denote predicted values, and
the ·> notation to denote the transpose. We denote the ma-
trix of external covariates like holidays etc by X ∈ RT×D,
where the t-th row denotes the D-dimensional feature vec-
tor at the t-th time step. For simplicity, we assume that the
features are shared across all time series2. We define XH
and XF similarly. We will also use numpy tensor notation
i.e X[i : j, r : c] would denote the sub-matrix in rows
{i, i+ 1, · · · , j− 1} and columns {r, r+ 1, · · · c− 1}. Fur-
ther, using : would denote selecting all rows or columns
depending on the axis.

2Note that our modeling can handle both shared and time-series
specific covariates in practice.



Hierarchy. The N time series are arranged in a tree hier-
archy, with m leaf time-series, and k = N −m non-leaf
(or aggregated) time-series that can be expressed as the sum
of its children time-series, or alternatively, the sum of the
leaf time series in its sub-tree. Let bt ∈ Rm be the values of
the m leaf time series at time t, and rt ∈ Rk be the values
of the k aggregated time series at time t. The hierarchy is
encoded as an aggregation matrix R ∈ {0, 1}k×m , where
an entry Rij is equal to 1 if the i-th aggregated time series
is an ancestor of the j-th leaf time series in the hierarchy
tree, and 0 otherwise. We therefore have the aggregation
constraints rt = Rbt or yt = [r>t b>t ]> = Sbt where
ST = [R>|Im]. Here, Im is the m × m identity matrix.
Such a hierarchical structure is ubiquitous in multivariate
time series from many domains such as retail, traffic, etc,
as discussed earlier. We provide an example tree with its S
matrix in Figure 1. We can extend this equation to the matrix
Y ∈ RT×N . Let B := [b1; · · · ; bm]> be the correspond-
ing leaf time-series values arranged in a T ×mmatrix. Then
coherence property of Y implies that Y > = SB>. Note
that we will use BF to denote the leaf-time series matrix
corresponding to the future time-series in Y F .

Figure 1: An example of a hierarchy and its corresponding
S matrix. The rows and columns of the matrix are indexed
by the corresponding nodes for easier interpretation. The
empty cells of the matrix are zeros, and hence omitted from
the figure.

Coherency. Clearly, an important property of hierarchical
forecasting is that the forecasts also satisfy the determin-
istic hierarchical constraints Ŷ

>
F = SB̂

>
F . This is known

as the coherence property which has been used in several
prior works [HA18, TTH17]. Imposing the coherence prop-
erty makes sense since the ground truth data Y is coherent
by construction. Coherence is also critical for consistent
decision making at different granularities of the hierarchy.

Our objective is to accurately predict the distribution of the
future values Ŷ F ∼ f̂(Y F ) conditioned on the history
such that any relaization Ŷ ∈ RF×N from the predicted
distribution f̂(Y F ) satisfies the deterministic coherence
property above. In particular, f̂ denotes the density function
(multi-variate) of the future values Y F conditioned on the
historical data XH,Y H and the future features XF . We
omit the conditioning from the expression for readability.

The related work can be broadly classified into (i) Co-
herent point forecasting that includes but is not limited

to approaches like [HAAS11, VEC15, WAH19]; (ii) Co-
herent probabilistic forecasting that includes among oth-
ers [TTH17, RWB+21, OMM+21, PGAH23, ZAC22] and
(iii) Approximately coherent methods like [MMV19, Gle20,
HDG21, HHG21, PSAD21]. We include a detailed discus-
sion of related literature in Appendix A.

3 THE MODEL

The basic input data-structure to our model is a family
(p,L(p)), where p is a parent node in the hierarchical tree
(any non-leaf node) and L(p) are its children nodes. In Fig-
ure 1, the set of nodes (2, [7, 8, 9, 10]) denotes a family.

Our main contribution is a shared proportions model that
takes in the past data points of a family and predicts (i)
the future proportions of the children i.e the fractions by
which the parent time-series diaggregates into the children
time-series in the future (ii) the future values of the parent.
The model is designed to capture dependencies among the
children through appropriate applications of attention layers
and also propagate information between the parent and the
children. We train a single shared global proportions model
for all the families in the tree.

Modeling Proportions. Before we describe the model for
forecasting the proportions, we need to formally define the
children proportions. For a family (p,L(p)) let us define the
proportions,

as,c =
ys,c∑

j∈L(p) ys,j
, for all s ∈ [T ], c ∈ L(p). (1)

The matrix A(p) ∈ RT×C denotes the proportions of the
children over time, where C := |L(p)|. We will drop the p
in braces when it is clear from context that we are dealing
with a particular family (p,L(p)). As in Section 2, we use
AH and AF to denote the historical and future proportions.
Also, a(i)

H will denote the historical proportions for child
i ∈ L(p) and a similar definition holds for a(i)

F .

We are interested in predicting the distribution of AF given
historical proportions AH, the parent’s history y

(p)
H and co-

variates X . Note that for any s ∈ [T ], the sth row of A(p),
as ∈ ∆C−1 (denotes the (C − 1)-dimensional simplex).
Therefore, our predicted distribution should also be a dis-
tribution over the simplex for each row. Hence, we use the
Dirichlet [OR64] family to model the output distribution for
each row of the predicted proportions, as detailed later.

We choose the simplest possible architectural building
blocks for the task at hand: (i) we use a simple MLP (Multi-
Layer Perceptron) encoder-decoder model for capturing the
temporal dependencies in the proportions of a child (inde-
pendently of other children) (ii) we use multi-headed atten-
tion [VSP+17] to capture dependencies among the children
of the family.



Encoder: We first form an encoding depending on the past
for each child,

ei ← enc
(
a
(i)
H ,y

(p)
H ,X

)
where ei ∈ RdE and dE is the encoding dimension. We
represent all the children embeddings in the matrix E ∈
RdE×C such that the i-th column of E is the encoding
ei of the i-th child. The MLP encoder, enc(·) is applied
independently for each child. Each child’s embedding can
also depend on the past of the parent y(p)

H and the covariates
X; thereby drawing information from higher level time-
series.

Attention: Then we apply multi-headed attention to mix
the encoded information across the children. The input to
the attention is E′ = [E;1] ∈ RdE×(C+1) i.e a dummy
column added to the children embeddings (the value of that
column will become clear later when we dicuss the parent
prediction module). The attention layer is denoted by,

M ′ ← MultiHeadAttg,l
(
E′
)
, (2)

where g denotes the number of attention heads and l de-
notes the number of attention layers. Each attention layer is
followed by a fully connected layer with ReLU activation
and also equipped with a residual connection (similar to the
original model in [VSP+17]). Note that the attention is only
applied across the second dimension i.e across the children.
The resulting M ′ is in RdA×(C+1) where dA is the value
dimension in the attention layers. Let M = M ′[:, 1 : C].

Decoder: Now that we have mixed the encoded information
among the children, we are ready to decode to obtain the
predicted distribution of future proportions of the children.
The decoding follows the equations:

D = dec(M), (Output shape: dD ∗ F × C),
DF = (Reshape of D into dD × F × C),
âs,c = decF (DF [:, s, c],XF [s, :]), (Output shape: 1)

ÂF is a matrix s.t ÂF [s, c] = exp(as,c).

In the first equation dec(·) is a MLP decoder with output
dimensions dD ∗ F that is applied on the first axis of M .
Then the output is reshaped into DF such that we have a
decoded feature of length dD for all F future time-points
and all C children in the family. Then we apply another
MLP layer with decF (·) with output dimension 1. For each
future time-point s ∈ [F ] and children c ∈ C, decF is ap-
plied independently on the concatenation of DF [:, s, c] and
XF [s, :] to produce the output parameter âs,c. Intuitively,
this final MLP combines the information in the dD dimen-
sional decoded feature for the children c at future time s
along with the future covariates at that time-point to produce
the final output. The output for all future time-points and all
children are then collected in the matrix ÂF ∈ RF×C after
passing through the exp. function to ensure positivity.

Loss Function: We would like to output the predicted distri-
bution of the proportions of the children in the family for all
future time-steps. Our loss function is designed such that the
output from the preceding decoder step ÂF can represent
such a distribution. Recall that the predicted proportions
distributions f̂(AF ) have to be over the simplex ∆C−1 for
each time-point. Therefore we model it by the Dirichlet dis-
tribution. In fact our final model output ÂF represents the
parameters of predictive Dirichlet distributions. Specifically,
we minimize the loss

`c(AF , ÂF ) = − 1

F

F∑
s=1

DirLL (as + ε; âs) , (3)

where as is the proportion of the children nodes in the
family at time s as defined in Equation (1). DirLL(a; ~β)
denotes the log-likelihood of Dirichlet distribution for target
a and parameters ~β.

DirLL(a; ~β) :=
∑
i

(βi − 1) log(ai)− logB(~β), (4)

where B(~β) is the normalization constant. In Eq. (3),
we add a small ε to avoid undefined values when
the target proportion for some children are zero. Here,
B(~β) =

∏C
i=1 Γ(βi)/Γ(

∑
i βi) where Γ(.) is the well-

known Gamma function that is differentiable. In practice,
we use Tensorflow Probability [DLT+17] to optimize the
above loss function.

Modeling the Parent. The remaining task is to predict the
future values of the parent node in a family. Recall that the
output of the attention layer M ′ in Eq. (2) has an extra
dimension in the second axis. We will use the output in that
dimension as an input to the decoder that predicts the future
of the parent. This allows us to distill historical information
from the children that might also be useful for predicting
the future values of the parent. The decoding for the parent
prediction comprises of the following equations:

P = dec(p)(M [:,−1],y
(p)
H ) (Output shape: dD ∗ F ),

PF = (Reshape of P into F × dD),

p̂s = dec(p)
F (PF [s, :],XF [s, :]), (Output shape: 2)

P̂F is a matrix s.t p̂[s, :] = p̂s.

In the first equation we use the MLP decoder to map the
last dimension of the attention encoding from the children
along with the past of the parent, to the future decoding of
shape dD ∗ F . The decoding is then reshaped to have shape
F × dD. The final parent decoding layer is an MLP dec(p)

F
with output dimension 2 that maps each future time-step’s
decoded features PF [s, :] along with the covariates at that
time-step to the final predicted parameters for that time-step.

Loss Function. Since we are interested in probabilistic fore-
casting, we would like to predict the distribution of the



Figure 2: We provide a complete description of the training architecture. MHA denotes multi-head self attention layers.
The indices {1, · · · , C} are used to denote the indices of the children of the parent node p. During inference, the top level
predictions are first sampled from the negative binomial distribution with the predicted parameters q̂s, r̂s. The children
prediction are then successively sampled by first sampling the fractions γ̂s from the Dirichlet distribution and then multiplying
with the parent sample.

parent’s future values. Therefore we will map the output pa-
rameters in each future time step (p̂s for time-step s ∈ [F ])
to the parameters of a negative-binomial distribution. The
p.m.f of negative binomial distribution with total count
r > 0 and success probability q ∈ [0, 1] is given by,

NBL(k; r, q) =
Γ(k + r)

Γ(k + 1)Γ(r)
(1− q)kqr for k = 1, 2, · · ·

(5)
We first map the predicted parameters from the parent de-
coder p̂s to the distribution parameters r̂s, q̂s using link
functions (designed to keep (r, q) in valid ranges):

r̂s = σ(p̂s[0])

q̂s =
1

1 + σ(p̂s[1])
,

where σ(x) := (2 + x− |x|)/(2− x+ |x|). Thus σ maps
R→ R+. Finally we minimize the negative log likelihood
of observing the actual future values of the parents under
the negative binomial distribution formed by the predicted
parameters,

`p(y
(p)
F , P̂F ) = − 1

F

F∑
s=1

log (NBL(yp,s; r̂s, q̂s)) . (6)

We use the negative binomial distribution since a most hi-
erarchical forecasting datasets contain count data that is
positive. In such cases, the negative binomial loss has been
used with great success in the context of time-series fore-
casting [ADSS21, SFGJ20].

The final loss is the summation of the children loss in Eq. (3)
and the parent loss in Eq. (6). We provide a full illustration
of our model in Figure 2. We refer to our model as DirProp.

Training. We train our model with mini-batch gradient de-
scent where each batch corresponds to different history and
future time-intervals of the same family. For example, if the
time batch-size is b and we are given a family (p,L(p)) the

input proportions that are fed into the model are of shape
b ×H × C and the output distribution parameters for the
Dirchlet loss are of shape b × F × C, where C = |L(p)|.
Note that we only need to load all the time-series of a given
family into a batch.

Note that the number of parameters of the model as well
as the size of the mini-batch does not need to scale with
the number of time-series in the tree, unlike prior works
like [RWB+21].

Inference. At inference we have to output a representation
of the predicted cumulative distribution F̂ (Y F ) such that
the samples are reconciled as in Section 2. For ease of
illustration, we will demonstrate the procedure for one time
point s ∈ {1, · · · , F}.

We first sample ŷ(p)s from the predictive distribution of the
parent for the family containing the root node. For instance,
in the tree of Figure 1, this family would be (0, [1, 2, 3]).
Then for each family (p,L(p)) in the tree we generate
a sample from the Dirchlet distribution with parameters
ÂF [s, :] that represents a sample of the predicted children
proportions for that family. The proportion samples and the
root sample can be combined to form a reconciled forecast
sample ŷs. We can generate many such samples and then
take empirical statistics to form the predictive distribution
f̂(Y s), which is by definition reconciled.

4 THEORETICAL JUSTIFICATION FOR
THE TOP-DOWN APPROACH

In this section, we theoretically analyze the advantage of the
top-down approach over the bottom-up approach for hierar-
chical prediction in a simplified setting. Again, the intuition
is that the root level time series is much less noisy and hence
much easier to predict, and it is easier to predict proportions
at the children nodes than the actual values themselves. As
a result, combining the root level prediction with the propor-



tions prediction actually yields a much better prediction for
the children nodes. Consider a 2-level hierarchy of linear
regression problem consisting of a single root node (indexed
by 0) with K children. For each time step t ∈ [n], a global
covariate xt ∈ Rd is independently drawn from a Gaussian
distribution xt ∼ N (0,Σ), and the value for each node is
defined as follows:

• The value of the root node at time t is yt,0 = θ>0 xt + ηt,
where ηt ∈ R is independent of xt, and satisfies E[ηt] =
0,Var[ηt] = σ2.

• A random K-dimensional vector at ∈ RK is indepen-
dently drawn from distribution P such that E[at,i] = pi
and Var[at,i] = si, where at,i is the i-th coordinate of at.
For the i-th child node, the value of the node is defined as
at,i · yt,0.

Notice that for the i-th child node, E[yt,i|xt] = piθ
>
0 xt, and

therefore the i-th child node follows from a linear model
with coefficients θi := piθ0.

Now we describe the bottom-up approach and top-down
approach and analyze the expected excess risk of them re-
spectively. In the bottom-up approach, we learn a separate
linear predictor for each child node seprately. For the i-th
child node, the ordinary least square (OLS) estimator is

θ̂bi =

(
n∑
t=1

xtx
>
t

)−1 n∑
t=1

xtyt,i,

and the prediction of the root node is simply the summation
of all the children nodes.

In the top-down approach, a single OLS linear predictor is
first learnt for the root node:

θ̂t0 =

(
n∑
t=1

xtx
>
t

)−1 n∑
t=1

xtyt,0

Then the proportion coefficient p̂i, i ∈ [K] is learnt for
each node separately as p̂i = 1

n

∑n
t=1 yt,i/yt,0 and the

final linear predictor for the ith child is θ̂ti = p̂iθ̂
t
0. Let

us define the excess risk of an estimator θ̂i as r(θ̂i) =

(θ̂i − θi)>Σ(θ̂i − θi). The expected excess risk of both ap-
proaches are summarized in the following theorem, proved
in Appendix B.1.

Theorem 4.1 (Expected excess risk comparison between
top-down and bottom-up approaches). The total expected
excess risk of the bottom-up approach for all the children
nodes satisfies

K∑
i=1

E[r(θ̂bi )] ≥
K∑
i=1

(si + p2i )
d

n− d− 1
σ2,

and the total expected excess risk of the top-down approach

satisfies

K∑
i=1

E[r(θ̂ti )]

=

∑K
i=1 si
n

θ>0 Σθ0 +

(∑K
i=1 si
n

+

K∑
i=1

p2i

)
d

n− d− 1
σ2,

Applying the theorem to the case where the proportion distri-
bution at is drawn from a uniform Dirichlet distribution, we
show the excess risk of the traditional bottom-up approach
is min(K, d) times bigger than our proposed top-down ap-
proach in the following corollary. A proof of the corollary
can be found in Appendix B.2

Corollary 4.2. Assuming that for each time-step t ∈ [n],
the proportion coefficient at is drawn from aK-dimensional
Dirichlet distribution Dir(α) with αi = 1

K for all i ∈ [K]
and θ>0 Σθ0 = σ2, then

E[
∑K
i=1 r(θ̂

b
i )]

E[
∑K
i=1 r(θ̂

t
i )]

= Ω(min(K, d)).

In Section 5, we show that even the basic topdown approach
analyzed in this section outperforms several state of the art
methods, thus conforming to our theoretical justification.
Our learnt top-down model is a further improvement over
the historical fractions.

5 EXPERIMENTS

We implement our model in Tensorflow [ABC+16]3 and
compare our approach with state of the art models for coher-
ent probabilistic forecasting on 6 hierarchical forecasting
datasets. We now describe the datasets along with the corre-
sponding forecasting setups.

Datasets. We experiment with two retail forecasting
datasets, M5 [M520] and Favorita [Fav17]. These are our
largest datasets with 3060 and 4471 total time-series in
their respective hierarchices. For both these datasets, we use
the product hierarchy i.e each leaf time-series corresponds
to the sales of an item aggregated across the stores. The
other datasets include: Tourism-L [Tou19, WAH19] which
is a dataset consisting of tourist count data; Labour [oS20],
consisting of monthly employment data; Traffic [Cut11],
consisting of daily occupancy rates of cars on freeways; and
Wiki2 [Wik17], consisting of daily views on Wikipedia arti-
cles. For Tourism-L we benchmark on both the (Geo)graphic
and (Trav)el history based hierarchy. More details about the
dataset and the features used for each dataset can be found
in Appendix C and Table 6.

3Our implementation can be found here.

https://github.com/google-research/google-research/tree/master/dir_prop


Table 1: We present the normalized metrics WAPE / NRMSE across all levels. We report normalized metrics so that they
can be averaged to produce the mean column. All the numbers are averaged over 5 runs. The numbers in bold represent the
statistically significant best performances in each column, while the italized ones represent the second best.

Dataset Method L0 L1 L2 L3 Mean

M5

DirProp 0.0404 / 0.0487 0.0518 / 0.0773 0.0662 / 0.1061 0.3238 / 0.6818 0.1205 / 0.2285
Fedformer-Base
(incoherent)

0.0585 / 0.0715 0.0659 / 0.1036 0.0718 / 0.1219 0.3453 / 0.7065 0.1354 / 0.2509

Fedformer-BU 0.0641 / 0.0781 0.0739 / 0.1167 0.0795 / 0.1167 0.3453 / 0.7065 0.1407 / 0.2603
Fedformer-TD 0.0585 / 0.0715 0.0680 / 0.1067 0.0738 / 0.1258 0.3443 / 0.699 0.1361 / 0.2507
Fedformer-ERM 0.0979 / 0.1145 0.102 / 0.1462 0.1101 / 0.1755 0.3914 / 0.8100 0.1753 / 0.3110
Fedformer-MinT 0.0619 / 0.0749 0.0714 / 0.1131 0.0772 / 0.136 0.3462 / 0.7058 0.1392 / 0.2575

Favorita

DirProp 0.0485 / 0.0614 0.0948 / 0.2336 0.1513 / 0.4504 0.3039 / 1.0925 0.1496 / 0.4595
Fedformer-Base
(incoherent)

0.0667 / 0.0869 0.1004 / 0.2562 0.1904 / 0.4447 0.3875 / 1.1264 0.1863 / 0.4786

Fedformer-BU 0.0887 / 0.101 0.1114 / 0.2848 0.1605 / 0.4551 0.3875 / 1.1264 0.187 / 0.4918
Fedformer-TD 0.0667 / 0.0869 0.098 / 0.2492 0.2482 / 2.4286 0.5343 / 7.3585 0.2368 / 2.5308
Fedformer-ERM 0.0746 / 0.0967 0.0994 / 0.2721 0.1385 / 0.4397 0.3116 / 1.1243 0.156 / 0.4832
Fedformer-MinT 0.0667 / 0.0869 0.1035 / 0.2541 0.1777 / 0.4403 0.4089 / 1.1309 0.1892 / 0.478

Note that for the sake of reproducibility, except for the
additional M5 and Favorita datasets, the datasets and exper-
imental setup are largely identical to that in [RWB+21]
with an increased horizon for traffic and wiki datasets.
In [RWB+21], the prediction window for the latter two
datasets were chosen to be only 1 time-step which is ex-
tremely small; moreover on traffic the prediction window
only includes the day Dec 31st which is atypical especially
because the dataset includes only an year of daily data.
Therefore we decided to increase the validation and test size
to 7. In all datasets the last F time-steps form the test win-
dow while the preceding F time-steps form the validation
window – the same convention was followed in [RWB+21].

Benefits of end to end hierarchical modeling. Before com-
paring our method with state-of-the-art probabilistic coher-
ent forecasting baselines on the benchmark datasets, we
would like to showcase the benefit of end-to-end hierarchi-
cal modeling as a whole. To that end, we first choose a
simpler task of accurate point forecasting on our two largest
datasets, Favorita and M5.

In our baselines, as a base forecaster, we choose a recently
published strong multivariate point forecasting method,
FEDformer [ZMW+22], that uses a frequency-enhanced
transformer (along with other techniques like separate mod-
eling of seasonality and trend) to achieve state-of-the-art re-
sults in several long-horizon forecasting tasks. Then we rec-
oncile these base forecasts using popular reconciliation tech-
niques like Bottom-Up [HAAS11], Top-Down [HAAS11],
ERM [BTK19], MinT [WTH20] to yield the correspond-
ing baselines FEDformer-BU, FEDformer-TD, FEDformer-
ERM and FEDformer-MinT. Lastly we also report the met-
rics for the incoherent base forecasts dubbed FEDformer-

Base. We use the open source package Nixtla [OGL+22]
for the reconciliation and the FEDformer repository for the
base forecasts.

We present the WAPE / NRMSE metrics (defined in Ap-
pendix C) for the baseline forecasts and our p50 forecasts
in Table 1. Our end to end coherent method achieves better
performance across all levels compared to the base fore-
casts FEDformer-Base, even though we use a relatively
simple architecture. Post-hoc reconciliation seems to help in
some cases. For example, FEDformer-ERM has better per-
formance on the Favorita dataset than the base forecasts, but
even that falls short of our model (except in L2 of Favorita).
This suggests that using coherence as an inductive bias
during training might be important in propagating higher
level signals to leaf levels. We provide details about all our
hyperparameters in Appendix E.

Probabilistic Forecasting. Now that we have seen the
benefits of end-to-end hierarchical modeling, we are ready
to present our main empirical results for probabilistic hi-
erarchical forecasting. We compare our models to state-
of-the-art strictly coherent probabilistic forecasting base-
lines. The first two baselines capture dependencies using the
tree structure during generating the initial probabilistic fore-
casts even before reconciliation: (i) Hier-E2E [RWB+21] is
an end-to-end deep-learning approach for coherent proba-
bilistic forecasts. This method by design produces coherent
probabilistic forecasts. (ii) PERMBU [TTH17] is a copula
based approach for producing probabilistic hierarchical fore-
casts. The copula is used to capture dependencies among
each family and the the samples are reconciled using well-
known reconciliation methods like MinT and BottomUP
(BU). We report the best numbers between PERMBU-MinT



Table 2: Normalized CRPS scores for M5 and Favorita. We average the deep learning based methods over 5 independent
runs. The rest of the methods had very little variance. We report the corresponding standard error and only bold numbers
that are the statistically significantly better than the rest. The second best numbers in each column are italicized.

M5 L0 L1 L2 L3 Mean

DirProp 0.0379 ± 0.0014 0.0422 ± 0.0004 0.0536 ± 0.0023 0.2543 ± 0.0067 0.0970 ± 0.0013
Hier-E2E 0.1129 ± 0.0008 0.1106 ± 0.0008 0.1167 ± 0.0010 0.2940 ± 0.0012 0.1586 ± 0.0005
PERMBU 0.0639 0.0673 0.0737 0.2978 0.1257
Best of Nixtla
(AutoARIMA-TD)

0.0599 0.0643 0.0713 0.2808 0.1191

Favorita L0 L1 L2 L3 Mean

DirProp 0.0430 ± 0.0024 0.0709 ± 0.0016 0.1132 ± 0.0017 0.2446 ± 0.0023 0.1179 ± 0.0018
Hier-E2E 0.0955 ± 0.0009 0.1211 ± 0.0018 0.1648 ± 0.0039 0.3305 ± 0.0060 0.1780 ± 0.0028
PERMBU 0.0561 0.8279 0.6142 0.3184 0.4541
Best of Nixtla
(AutoARIMA-BU)

0.0563 0.0697 0.1119 0.3190 0.1392

Table 3: Normalized CRPS scores averaged over all levels
for all remaining datasets introduced in Sec 5. The full set of
level-wise metrics can be found in Appendix D. We report
the corresponding standard error and only bold numbers
that are the statistically significantly better than the rest. The
second best numbers in each column are italicized.

Mean metrics Labour Traffic Wiki2 Tourism-L

DirProp 0.0250 ± 0.0015 0.0526 ± 0.0028 0.2706 ± 0.0048 0.1407
Hier-E2E 0.0340 ± 0.0088 0.0506 ± 0.0011 0.2769 ± 0.004 0.1520
PERMBU 0.0393 0.1019 0.5033 0.2518
Best of Nixtla 0.0346 (ERM) 0.0757 (TD) 0.3631 (TD) 0.1474 (MinT)

and PERMBU-BU. (iii) For the sake of completeness we
also include post-hoc reconciliation baselines. We use the
Nixtla package [OGL+22] that produces base probabilistic
forecasts from AutoARIMA and then uses MinT, Bottom-
Up (BU), TopDown (TD), and ERM reconciliation using a
reverse engineered empirical covariance matrix to provide
probabilistic forecasts. (Note that we cannot use Fedformer
for base forecasts here, since it does not generate probabilis-
tic forecasts.) In the interest of space, we only provide the
numbers for the best performing Nixtla method in Table 2,
while providing the detailed numbers in the Appendix.

Evaluation. We evaluate forecasting accuracy using the
continuous ranked probability score (CRPS). The CRPS
is minimized when the predicted quantiles match the true
data distribution [GR07]. This is the standard metric used
to benchmark probabilistic forecasting in numerous pa-
pers [RSG+18, RWB+21, TTH17]. Similar to [RWB+21],
we also normalize the CRPS scores at each level, by the
absolute sum of the true values of all the nodes of that level.
We mathematically define the CRPS score in Appendix D.

We present level-wise performance of all methods on M5
and Favorita, as well as mean performance on the other

datasets (the full level-wise metrics on all datasets can be
seen in Appendix D). In these tables, we highlight in bold
numbers that are statistically significantly better than the
rest. The second best numbers in each column are italicized.
The deep learning based methods are averaged over 5 runs
while other methods had very little variance.

M5: We see that overall in all columns, DirProp performs
much better than all the baselines (around 18% better than
the best baseline (AutoARIMA-TD) on the mean). Interest-
ingly, even a simple top-down baseline like AutoARIMA-
TD outperforms recent state-of-the-art models like Hier-
E2E and PERMBU, attesting to the power of top-down
approaches. We hypothesize that Hier-E2E does not work
well on these larger datasets because the DeepVAR model
needs to be applied to thousands of time-series, which leads
to a prohibitive size of the fully connected input layer and a
hard joint optimization problem.

Favorita: As in the previous results, even in Favorita,
DirProp outperforms the other models by a large margin,
resulting in a 15% better mean performance than the best
baseline. Interestingly again, a simple AutoARIMA-BU
model outperforms both Hier-E2E and PERMBU.

Other Datasets: Table 3 presents mean CRPS scores
on Labor, Traffic, Tourism and Wiki2 datasets. In Traf-
fic, DirProp is within statistical error of the best base-
line, but in the other datasets, DirProp comfortably out-
performs all baselines. In three of the four smaller datasets,
Hier-E2E performs better than the other baselines, which
suggest that Hier-E2E works reasonably well on smaller
datasets compared to reconciliation-based methods (though
DirProp is still significantly better on Labor, Wiki2, and
Tourism by 26%, 2% and 4.5% respectively. We provide
more detailed results for all these datasets in Appendix D.

https://www.statsmodels.org/dev/generated/statsmodels.tsa.arima.model.ARIMA.html


Table 4: We provide an ablation study in the Favorita dataset.
We only provide the mean forecast for the sake of brevity
but our original model outperforms the ablated baselines on
all levels.

Favorita Ablation Mean

DirProp 0.1179 ± 0.0018
DirProp - No Attention 0.1340 ± 0.0028
DirProp Root + historical fractions 0.1436 ± 0.0010

Ablation. In Table 4, we study the role of various compo-
nents in our model on the Favorita dataset. We first remove
the attention layers after the encoder and see a 13% drop
in mean metric. Thus mixing the information among the
children in important. We also use historical static fractions
in combination to the root (L0) predictions from our model.
It can be seen that our learnt proportions model outperforms
historical proportions.

6 CONCLUSION

In this paper, we proposed a probabilistic top-down based hi-
erarchical forecasting approach, that obtains coherent, prob-
abilistic forecasts without the need for a separate recon-
ciliation stage. Our approach is built around a novel deep-
learning model for learning the distribution of proportions
according to which a parent time series is disaggregated
into its children time series. We show in empirical eval-
uation on several public datasets, that our model obtains
state-of-the-art results compared to previous methods.

For future work, we plan to explore extending our approach
to handle more complex hierarchical structural constraints,
beyond trees. We would also like to note that currently our
theoretical justification only applies to learning historical
proportions; it would be interesting to extend it to predicted
future proportions.
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A RELATED WORK ON HIERARCHICAL FORECASTING

Coherent Point Forecasting: As mentioned earlier, many existing coherent hierarchical forecasting methods rely on a
two-stage reconciliation approach. More specifically, given non-coherent base forecasts ŷt ∈ RN , reconciliation approaches
aim to design a projection matrix P ∈ Rm×N that can project the base forecasts linearly into new leaf forecasts, which are
then aggregated using S to obtain (coherent) revised forecasts ỹt = SP ŷt ∈ RN . The post-processing is call reconciliation
or on other words base forecasts are reconciled. Different hierarchical methods specify different ways to optimize for the
P matrix. The naive Bottom-Up approach [HA18] simply aggregates up from the base leaf predictions to obtain revised
coherent forecasts. The MinT method [WAH19] computes P that obtains the minimum variance unbiased revised forecasts,
assuming unbiased base forecasts. The ERM method from [BTK19] optimizes P by directly performing empirical risk
minimization over the mean squared forecasting errors. Several other criteria [HAAS11, VEC15, PGA+20] for optimizing
for P have also been proposed. Note that some of these reconciliation approaches like MinT can be used to generate
confidence intervals by estimating the empirical covariance matrix of the base forecasts [HA18].

Coherent Probabilistic Forecasting: The PERMBU method in [TTH17] is a reconciliation based hierarchical approach
for probabilistic forecasts. It starts with independent marginal probabilistic forecasts for all nodes, then uses samples from
marginals at the leaf nodes, applies an empirical copula, and performs a mean reconciliation step to obtain revised (coherent)
samples for the higher level nodes. [AGP+20] also discuss two approaches for coherent probabilistic forecasting: (i) using
the empirical covariance matrix under the Gaussian assumption and (ii) using a non-parametric bootstrap method. The recent
work of [RWB+21] is a single-stage end-to-end method that uses deep neural networks to obtain coherent probabilistic
hierarchical forecasts. Their approach is to use a neural-network based multivariate probabilistic forecasting model to jointly
model all the time series and explicitly incorporate a differentiable reconciliation step as part of model training, by using
sampling and projection operations. A recent approach of [OMM+21] uses a Deep Poisson Mixture Network to models the
joint probability of the leaf time series as a finite mixture of Poisson distributions.

Approximately Coherent Methods: Several approximately-coherent hierarchical models have also been recently proposed,
that mainly use the hierarchy information for improving prediction quality, but do not guarantee strict coherence, and often do
not generate probabilistic predictions. Many of them [MMV19, Gle20, HDG21, HHG21, PSAD21] use regularization-based
approaches to incorporate the hierarchy tree into the model via `2 regularization. [KKR+22] imposes approximate coherence
on probabilistic forecasts via regularization of the output distribution.

B PROOFS

B.1 PROOF OF THEOREM 4.1

We prove the claims about the excess risk of top-down and bottom-up approaches in the following two sections. Recall that
ordinary least square (OLS) estimator θ̂ =

(∑n
i=1 xix

>
i

)−1∑n
i=1 xiyi. The population squared error of a linear predictor

is defined as (θ̂ − θ)>Σ(θ̂ − θ), which is also known as excess risk.

B.1.1 Excess risk of the top down approach

For the root node, the OLS predictor is written as

θ̂0 =

(
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)−1 n∑
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and the expected excess risk is

E[(θ̂0 − θ0)>Σ(θ̂0 − θ0)]

(a)
= E

σ2
n∑
t=1

x>t

(
n∑
r=1

xtx
>
t

)−1
Σ

(
n∑
r=1

xtx
>
t

)−1
xt


(b)
= Tr

E
σ2

(
n∑
t=1

xtx
>
t

)−1
Σ


(c)
= σ2d/(n− d− 1) (7)

where equation (a) holds by expanding yi,0 = x>i θ0 + ηi and the fact that ηi is independent of xi, equation (b) holds by the
property of trace, and equation (c) follows from the mean of the inverse-Wishart distribution.

For each children node, we learn the proportion coefficient with

p̂i =
1

n

n∑
t=1

yt,i
yt,0

.

Notice that

Var[p̂i] =
1

n
Var
[
y1,i
y1,0

]
=

1

n
Var[ai]

= si/n. (8)

Recall that the optimal linear predictor of the i-th child node is piθ0. Therefore, the expected excess risk of the top down
predictor is

E
[
(p̂iθ̂0 − piθ0)>Σ(p̂iθ̂0 − piθ0)

]
= E

[
(p̂iθ̂0 − piθ̂0 + piθ̂0 − piθ0)>Σ(p̂iθ̂0 − piθ̂0 + piθ̂0 − piθ0)

]
= E

[
(p̂i − pi)2θ̂>0 Σθ̂0 + p2i (θ̂0 − θ0)>Σ(θ̂0 − θ0)

]
(a)
=

1

n
siθ
>
0 Σθ0 +

(
1

n
si + p2i

)
d

n− d− 1
σ2,

where we have applied Equation 8 and Equation 7 in equality (a). Taking summation over all the children, we get the total
excess risk equals ∑K

i=1 si
n

θ>0 Σθ0 +

(∑K
i=1 si
n

+

K∑
i=1

p2i

)
d

n− d− 1
σ2

B.1.2 Excess risk of the bottom up approach

For the i-th child node, the OLS estimator is

θ̂i =

(
n∑
t=1

xtx
>
t

)−1 n∑
t=1

xtyt,i.

Recall that the best linear predictor of the i-th child node is piθ0 The excess risk is

E(θ̂i − piθ0)>Σ(θ̂i − piθ0)

= E
[
((θ̂i − piθ̂0) + (piθ̂0 − piθ0))>Σ((θ̂i − piθ̂0) + (piθ̂0 − piθ0))

]



Notice that the cross term has 0 expectation as

E[(θ̂i − piθ̂0)>Σ(piθ̂0 − piθ0)]

(a)
= E

Ea

 n∑
t=1

(at,iyt,0 − piyt,0)x>t

(
n∑
t=1

xtx
>
t

)−1
Σ(piθ̂0 − piθ0)


(b)
= 0,

where the first equality holds by the definition of node i-th value yt,i. Therefore, it holds that

E
[
((θ̂i − piθ̂0) + (piθ̂0 − piθ0))>Σ((θ̂i − piθ̂0) + (piθ̂0 − piθ0))

]
= E

[
(θ̂i − piθ̂0)>Σ(θ̂i − piθ̂0)

]
+ p2i

d

n− d− 1
σ2

= ETr

 n∑
j=1

(aj,i − pi)2y2t,0xjx>j

(
n∑
t=1

xtx
>
t

)−1
Σ

(
n∑
t=1

xtx
>
t

)−1+ p2i
d

n− d− 1
σ2

= siETr

 n∑
j=1

(
(θ>0 xj)

2 + η2j
)
xjx

>
j

(
n∑
t=1

xtx
>
t

)−1
Σ

(
n∑
t=1

xtx
>
t

)−1+ p2i
d

n− d− 1
σ2

(a)
≥ siσ2ETr

 n∑
j=1

xjx
>
j

(∑xix
>
i

)−1
Σ
(∑

xix
>
i

)−1+ p2i
d

n− d− 1
σ2

(b)
= (si + p2i )σ

2 d

n− d− 1
,

where inequality (a) holds since (θ>0 xj)
2 term is non-negative, equality (b) holds by the property of inverse-Wishart

distribution. Taking summation over all the children, we get the total excess risk is lower bounded by

K∑
i=1

(si + p2i )
d

n− d− 1
σ2

This concludes the proof.

B.2 PROOF OF COROLLARY 4.2

In this section, we apply Theorem 4.1 to Dirichlet distribution to show that the excess risk of bottom-up approach is
min(d,K) times higher than top-down approach for a natural setting.

Recall that a random vector a drawn from a K-dimensional Dirichlet distribution Dir(α) with parameters α has mean
E[a] = 1∑K

i=1 αi
α, and the variance Var[ai] = αi(1−αi)∑K

i=1 αi+1
. Let αi = 1

K for all i ∈ [K], θ>0 Σθ0 = σ2. The total excess risk
of the top-down approach is

E

[
K∑
i=1

r(θ̂ti )

]
=

∑K
i=1 si
n

θ>0 Σθ0 +

(∑K
i=1 si
n

+

K∑
i=1

p2i

)
d

n− d− 1
σ2

=

(
1− 1/K

2n
+

(
1− 1/K

2n
+

1

K

)
d

n− d− 1

)
σ2.

The total excess risk of the bottom-up approach is lower bounded by

E

[
K∑
i=1

r(θ̂bi )

]
= (si + p2i )

d

n− d− 1
σ2

=

(
1− 1/K

2
+

1

K

)
d

n− d− 1
σ2



Now assuming that n ≥ 2d, the top-down approach has expected risk E[
∑K
i=1 r(θ̂

t
i )] = O( 1

n + d
nK ), and the bottom-up

approach has expected risk E[
∑K
i=1 r(θ̂

t
i )] = Ω( dn ). Therefore, it holds that

E[
∑K
i=1 r(θ̂

b
i )]

E[
∑K
i=1 r(θ̂

t
i )]

= Ω(min(d,K))

C DATASETS

We use publicly available benchmark datasets for our experiments.

1. M5 4: It consists of time series data of product sales from 10 Walmart stores in three US states. The data consists of two
different hierarchies: the product hierarchy and store location hierarchy. For simplicity, in our experiments we use only
the product hierarchy consisting of 3k nodes and 1.8k time steps. Time steps 1907 to 1913 constitute a test window of
length 7. Time steps 1 to 1906 are used for training and validation.

2. Favorita 5: It is a similar dataset, consisting of time series data from Corporación Favorita, a South-American grocery
store chain. As above, we use the product hierarchy, consisting of 4.5k nodes and 1.7k time steps. Time steps 1681 to
1687 constitute a test window of length 7. Time steps 1 to 1686 are used for training and validation.

3. Tourism-L6: consists of monthly domestic tourist count data in Australia across 7 states which are sub-divided into
regions, sub-regions, and visit-type. The data consists of around 500 nodes and 228 time steps. This dataset consists of
two hierarchies (Geo and Trav) as also followed in [RWB+21]. Time steps 1 to 221 are used for training and validation.
The test metrics are computed on steps 222 to 228.

4. Traffic [Cut11]: Consists of car occupancy data from freeways in the Bay Area, California, USA. The data is aggregated
in the same way as [BTK19], to create a hierarchy consisting of 207 nodes spanning 366 days. Time steps 1 to 359 are
used for training and validation. The remaining 7 time steps are used for testing.

5. Labour: Australian employement data consisting of 514 time steps sampled monthly, and 57 node hierarchy.

6. Wiki2: This dataset is derived from a larger dataset consisting of daily views of 145k Wikipedia articles. We use a
smaller version of the dataset introduced by [BTK19] which consists of a subset of 150 bottom level time series, and
199 total time series.

For both M5 and Favorita we used time features corresponding to each day including day of the week and month of the year.
We also used holiday features, in particular the distance to holidays passed through a squared exponential kernel. In addition,
for M5 we used features related to SNAP discounts, and features related to oil prices for Favorita. For Tourism, Traffic,
Labour, and Wiki2 we only used date features such as day of the week, month of the year, and holiday features from the
GluonTS package [ABBS+20]. All the input features were normalized to -0.5 to 0.5.

Metrics: For point forecasting we use the metrics WAPE (Weighted Average Percentage Error) and NRMSE (Normalized
Root Mean Squared Error). The definitions are as follows:

wape
(
Y , Ŷ

)
=

∑
t,i |Yt,i − Ŷt,i|∑

t,i |Yt,i|

nrmse
(
Y , Ŷ

)
=

√
1/(T ∗N)

∑
t,i(Yt,i − Ŷt,i)2

1/(T ∗N)
∑
t,i |Yt,i|

.

For probabilistic forecasting we use the CRPS metric. Denote the F step q-quantile prediction for time series i by

Q̂
(i)

F (q) ∈ RF . Q̂
(i)

s (q) denotes the q-th quantile prediction for the s-th future time-step for time-series i, where s ∈ [F ].
Then the CRPS loss is:

4https://www.kaggle.com/c/m5-forecasting-accuracy/
5https://www.kaggle.com/c/favorita-grocery-sales-forecasting/
6https://robjhyndman.com/publications/mint/

https://www.kaggle.com/c/m5-forecasting-accuracy/
https://www.kaggle.com/c/favorita-grocery-sales-forecasting/
https://robjhyndman.com/publications/mint/


Table 5: Normalized CRPS scores on all datasets. We average the deep learning based methods over 5 independent runs. The
rest of the methods did not show any variance. We report the corresponding standard error and only bold the numbers that
are significantly better than the rest. We also report the mean performance across all levels in the corresponding column. For
ease of comparison, we restate some of the PERMBU numbers by [RSG+18].

M5 L0 L1 L2 L3 Mean

DirProp 0.0379 ± 0.0014 0.0422 ± 0.0004 0.0536 ± 0.0023 0.2543 ± 0.0067 0.0970 ± 0.0013

Hier-E2E 0.1129 ± 0.0008 0.1106 ± 0.0008 0.1167 ± 0.0010 0.2940 ± 0.0012 0.1586 ± 0.0005

PERMBU 0.0639 0.0673 0.0737 0.2978 0.1257

AutoARIMA-BU 0.1188 0.1173 0.1202 0.2945 0.1627

AutoARIMA-ERM 2.9453 3.0110 3.0552 14.613 5.9062

AutoARIMA-TD 0.0599 0.0643 0.0713 0.2808 0.1191

AutoARIMA-MinT 0.0566 0.0725 0.0880 0.3074 0.1311

Favorita L0 L1 L2 L3 Mean

DirProp 0.0430 ± 0.0024 0.0709 ± 0.0016 0.1132 ± 0.0017 0.2446 ± 0.0023 0.1179 ± 0.0018

Hier-E2E 0.0955 ± 0.0009 0.1211 ± 0.0018 0.1648 ± 0.0039 0.3305 ± 0.0060 0.1780 ± 0.0028

PERMBU 0.0561 0.8279 0.6142 0.3184 0.4541

AutoARIMA-BU 0.0563 0.0697 0.1119 0.3190 0.1392

AutoARIMA-ERM 1.4857 1.7470 2.4220 4.8256 2.6201

AutoARIMA-TD 0.0802 0.2606 0.5253 1.1120 0.4945

AutoARIMA-MinT 0.0781 0.1539 0.2456 0.4448 0.2306

Tourism L0 L1 (Geo) L2 (Geo) L3 (Geo) L1 (Trav) L2 (Trav) L3 (Trav) L4 (Trav) Mean

DirProp 0.0457 ± 0.0033 0.0823 ± 0.0027 0.1341 ± 0.0028 0.1769 ± 0.0027 0.0812 ± 0.0018 0.1358 ± 0.0008 0.2015 ± 0.0009 0.2684 ± 0.0008 0.1407 ± 0.0022

Hier-E2E 0.0810 ± 0.0053 0.1030 ± 0.0030 0.1361 ± 0.0024 0.1752 ± 0.0026 0.1027 ± 0.0062 0.1403 ± 0.0047 0.2050 ± 0.0028 0.2727 ± 0.0017 0.1520 ± 0.0033

PERMBU 0.131 0.129 0.1723 0.2189 0.1698 0.3063 0.5461 0.3415 0.2518

AutoARIMA-BU 0.1240 0.1166 0.1612 0.2134 0.1249 0.1554 0.2401 0.3428 0.1848

AutoARIMA-ERM 0.0465 0.1181 0.1970 0.2781 0.0678 0.1571 0.2952 0.4304 0.1987

AutoARIMA-TD 0.0332 0.0823 0.1547 0.2137 0.4237 0.7107 1.0285 1.2487 0.4869

AutoARIMA-MinT 0.0322 0.0673 0.1270 0.1999 0.0733 0.1298 0.2149 0.3352 0.1474

Labour L0 L1 L2 L3 Mean

DirProp 0.0172 ± 0.0019 0.0242 ± 0.0018 0.0243 ± 0.0016 0.0345 ± 0.0007 0.0250 ± 0.0015

Hier-E2E 0.0311 ± 0.0120 0.0336 ± 0.0089 0.0336 ± 0.0082 0.0378 ± 0.0060 0.0340 ± 0.0088

PERMBU 0.0406 0.0389 0.0382 0.0397 0.0393

AutoARIMA-BU 0.0314 0.0402 0.0393 0.0361 0.0368

AutoARIMA-ERM 0.0246 0.0306 0.0335 0.0495 0.0346

AutoARIMA-TD 0.0343 0.0458 0.0462 0.0462 0.0431

AutoARIMA-MinT 0.0396 0.0392 0.0410 0.0436 0.0409

Traffic (F = 7) L0 L1 L2 L3 Mean

DirProp 0.0213 ± 0.0041 0.0247 ± 0.0039 0.0296 ± 0.0032 0.1350 ± 0.0001 0.0527 ± 0.0028

Hier-E2E 0.0245 ± 0.0011 0.0268 ± 0.001 0.0307 ± 0.0011 0.1206 ± 0.0019 0.0506 ± 0.0011

PERMBU 0.0780 0.0744 0.0708 0.1844 0.1019

AutoARIMA-BU 0.0682 0.0648 0.0621 0.1832 0.0946

AutoARIMA-ERM 0.0997 0.1086 0.1117 0.3364 0.1641

AutoARIMA-TD 0.0486 0.0507 0.0549 0.1485 0.0757

AutoARIMA-MinT 0.0340 0.0429 0.0570 0.1859 0.0800

Wiki2 (F = 7) L0 L1 L2 L3 L4 Mean

DirProp 0.1483 ± 0.0116 0.2096 ± 0.0056 0.2817 ± 0.0042 0.29 ± 0.0036 0.4233 ± 0.005 0.2706 ± 0.0048

Hier-E2E 0.133 ± 0.0102 0.2094 ± 0.0057 0.2942 ± 0.0032 0.3057 ± 0.0031 0.4421 ± 0.0016 0.2769 ± 0.004

PERMBU 0.1859 0.3437 0.5551 0.5635 0.8685 0.5033

AutoARIMA-BU 0.1954 0.3853 0.6083 0.6155 0.9732 0.5555

AutoARIMA-ERM 0.3238 0.4981 0.6285 0.6458 0.9778 0.6148

AutoARIMA-TD 0.2449 0.3398 0.3841 0.389 0.4577 0.3631

AutoARIMA-MinT 0.2171 0.3651 0.5525 0.6542 1.2531 0.6084



Table 6: Dataset characteristics. F denotes the horizon.

Dataset Total time series Leaf time series Levels Observations F

M5 3060 3049 4 1913 35 days
Favorita 4471 4100 4 1687 35 days
Tourism-L (Geo) 111 76 4 228 12 months
Tourism-L (Trav) 445 304 5 228 12 months
Traffic 207 200 4 366 7 days
Labour 57 32 4 514 8 months
Wiki2 199 150 5 366 7 days

CRPS(Q̂
(i)

F (q),Y
(i)
F ) =

1

F

∑
s∈[F ]

∫ 1

0

2(I[Y (i)
s ≤ Q̂

(i)

s (q)]− q)(Q̂
(i)

s (q)− Ŷ
(i)

s )dq.

We normalize the score by the absoluted true values.

D FULL RESULTS ON ALL DATASETS

Tables 5 show the full set of results for all remaining datasets for all probabilistic baselines.

E ADDITIONAL EXPERIMENTAL DETAILS

Hyper-parameters and validation. As mentioned before, we use the last F time-points as the test set and the F time-points
before the test window as the validation set. All hyper-parameters are tuned using the validation set. Then a model with the
best hyperparameter (hparams) is trained on training + validation set. We report the metrics obtained by this model on the
test set.

In order to reduce the total number of hparams we use a single hparam hiddenSize for all hidden state dimension
parameters. This controls the size of hidden state in enc, dec,decF , dec(p), dec(p)

F and the fully connected layer after
each attention layer in MultiHeadAtt. We tuned this between [128, 256, 512]. The number of hidden layers in enc is
dubbed numEncoderLayers and the number of hidden layers in dec and dec(p) is controlled by numDecoderLayers.
Both of them were tuned within [2, 3]. The other decoders have only one hidden layer. Learning rate is controlled by
learningRate, which was tuned in log-scale from 1e-5 to 1e-2. The attention layer has parameters numAttHeads (tuned
in [8, 16, 32]) and numAttLayers (tuned in [2, 3, 5]). We also tune the batchSize within [8, 16, 32].

Now we will specify the chosen hparams for all datasets. Note that we also tune the context length among a few values for
each dataset similar to what was done in [RWB+21].

Favorita. learningRate: 0.00085, hiddenSize: 128, numAttLayers: 3, numAttHeads: 8, batchSize: 32,
numEncoderLayers: 3, numDecoderLayers: 3. The context length is tuned between [140, 70, 35, 28] and 70 was
chosen.

M5. learningRate: 0.00034, hiddenSize: 128, numAttLayers: 3, numAttHeads: 16, batchSize: 32,
numEncoderLayers: 2, numDecoderLayers: 2. The context length is tuned between [140, 70, 35, 28] and 28 was
chosen.

Toursim-L. learningRate: 0.00007, hiddenSize: 512, numAttLayers: 5, numAttHeads: 16, batchSize: 16,
numEncoderLayers: 3, numDecoderLayers: 2. The context length was fixed to 36.

Traffic. learningRate: 0.0001, hiddenSize: 512, numAttLayers: 2, numAttHeads: 8, batchSize: 16,
numEncoderLayers: 3, numDecoderLayers: 3. The context length was fixed to 300.



Labour. learningRate: 0.00006, hiddenSize: 256, numAttLayers: 3, numAttHeads: 8, batchSize: 16,
numEncoderLayers: 3, numDecoderLayers: 2. The context length was tuned in [8, 16, 32 64] and 32 was chosen.

Wiki2. learningRate: 0.00006, hiddenSize: 512, numAttLayers: 2, numAttHeads: 16, batchSize: 8,
numEncoderLayers: 3, numDecoderLayers: 3. The context length was tuned in [140, 70, 35, 28] and 28 was chosen.

Training details. Our model is implemented in Tensorflow [ABC+16] and trained using the Adam optimizer with default
parameters. We set a step-wise learning rate schedule that decays by a factor of 0.5 a total of 8 times over the schedule. The
max. training epoch is set to be 50 while we early stop with a patience of 10. All our experiments were performed on a
single server with a 32 core Intel Xeon CPU and an Tesla V100 GPU.

Baselines. We used the experimental framework released by [RWB+21] for running the baselines PERMBU, Hier-E2E. On
the Favoroita dataset, the original R code of PERMBU does not work because of non positive definite covariance matrix.
Therefore we use the implementation in [OGL+22] as that code is more modular and easy to debug.
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