
Neural Probilistic Logic Programming in Discrete-Continuous Domains:
Supplementary Material

Lennert De Smet1 Pedro Zuidberg Dos Martires2 Robin Manhaeve1 Giuseppe Marra1 Angelika Kimmig1

Luc De Raedt1,2

1Department of Computer Science, KU Leuven, Belgium
2Center for Applied Autonomous Systems, Örebro, Sweden

A SPECIAL CASES OF DEEPSEAPROBLOG

The syntax and semantics of DeepSeaProbLog generalise a number of probabilistic logic programming dialects. For
instance, if we assume no dependency of the distributional facts on input data or external neural functions, we obtain a
language equivalent to Gutmann et al.’s Distributional Clauses (DC) [Gutmann et al., 2011] when restricted to distributional
facts. Finally, if we allow for data dependent neural functions in the NDFs but restrict them to Bernoulli and categorical
distributions, we obtain Manhaeve et al.’s DeepProbLog [Manhaeve et al., 2021a] as a special case.

Proposition A.1 (DeepSeaProbLog strictly generalises DeepProbLog). DeepProbLog is a strict subset of DeepSeaProbLog
where the set of comparison predicates is restricted to {=:=}, comparisons involve exactly one random variable and
the measure dPFD

factorizes as a product of independent Bernoulli measures
∏

i:xi~bi∈FD
dPbi . The subscript on dPbi

explicitly identifies the measure as the ith Bernoulli measure and the indices of the product go over all the (Bernoulli) random
variables defined in the set of distributional facts FD.

Proof. We prove Proposition A.1 by showing that applying the restrictions on the constraints and measure in a Deep-
SeaProbLog program leads to possible worlds that have the same probability of being true as in DeepProbLog. First we
write down the definition of the probability P (ωCM

) of a possible world in a DeepSeaProbLog program∫ (∏
ci∈CM

1(ci)

) ∏
ci∈CM\CM

1(c̄i)

 dPFD
. (1)

Now observe that, since there are only Bernoulli distributions, we only need to consider two possible outcomes of a
random variable xi, either zero or one. Therefore, only two kinds of comparisons are present in the program, xi=:=0
or xi=:=1 (remember that we restrict ourselves to univariate comparisons). Now note that the following equivalence
xi=:=1 ↔ ¬(xi=:=0) holds, which means that we can arbitrarily limit comparisons to one of the two possible outcomes
of a random variable, e.g., xi=:=0.

This equivalence can be used to replace the constraints ci in Equation 1 by equality constraints involving comparisons to the
zero outcome, i.e., P (ωCM

) is equal to∫ (∏
i:ci∈CM

1(xi=0)

)
·

 ∏
i:ci∈CM\CM

1(xi ̸=0)

 ∏
i:xi~bi∈FD

dPbi , (2)

where the factorisation of the measure was also applied. Next, we introduce the following notation for the random variables
present in the set of constraints CM and CM \ CM :

x+ := xi : ci ∈ CM (3)

x− := xi : ci ∈ CM \ CM (4)

Accepted for the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023).

mailto:<lennert.desmet@kuleuven.be>?Subject=Your UAI 2023 paper

Note that we only need to consider the case where x+ ∩ x− = ∅, as otherwise the probability of the possible world would
simply be zero and would not contribute to the overall probability of the query atom. Because of this, we can further factorize
the measure as

∏
i:xi~bi∈FD

dPbi =

 ∏
i:xi∈x+

dPbi

︸ ︷︷ ︸

=:dP+

 ∏
i:xi∈x−

dPbi

︸ ︷︷ ︸

=:dP−

, (5)

so the integral of a product in Equation 2 can be rewritten as the product of integrals

P (ωCM
) =

[∫ (∏
i:ci∈CM

1(xi=0) dP+

)]
·

∫ ∏
i:ci∈CM\CM

1(xi ̸=0) dP−

 . (6)

We have two integrals with integrands that are a product of univariate comparisons. In other words, the factors are all
independent. Furthermore, we have a Bernoulli product measure, which means that we can again push the integral inside the
product to yield

P (ωCM
) =

[∏
i:ci∈CM

(∫
1(xi=0) dP+

)]
·

 ∏
i:ci∈CM\CM

(∫
1(xi ̸=0) dP−

) . (7)

At this point we can simply perform the integrations and obtain

P (ωCM
) =

∏
i:ci∈CM

pi
∏

i:ci∈CM\CM

(1− pi), (8)

which coincides with the probability of a possible world in DeepProbLog [Manhaeve et al., 2021a, Section 3].

Proposition A.1 can easily be extended to also allow for measures of finite categorical distributions, which then translates
to (neural) annotated disjunctions. Consequently, as DeepProbLog is a strict superset of ProbLog [Fierens et al., 2015],
DeepSeaProbLog also strictly generalises ProbLog.

B PROOF OF PROPOSITION B.1

Proposition B.1 (Measureability of query atom). Let P be a DeepSeaProbLog program, then P defines, for an arbitrary
query atom q, the probability that q is true.
Proof. DeepSeaProbLog is in essence a subset of the probabilistic logic programming language defined by Gutmann et al.
[2011] – the only difference being that the parameters on the right-hand side of a neural distributional fact are not limited to
numerical constants any more but can be arbitrary numeric terms. Under the condition that all NDFs and PCFs are valid, this
does, however, not violate any of the assumptions made in [Gutmann et al., 2011, Proposition 1] (proving the measurability
of a program). We can, hence, conclude that a valid DeepSeaProbLog program induces a probability measure for q.

Note that, similar to ProbLog and DeepProbLog, the semantics for DeepSeaProbLog are only defined for so-called sound
programs [Riguzzi and Swift, 2013], which means that all programs become ground eventually when queried.

C PROOF OF PROPOSITION C.1

Proposition C.1 (Inference as WMI). Assume that the measure dPFD
decomposes into a joint probability density function

w(x) and a differential dx, then the probability P (q) of a query atom q can be expressed as the weighted model integration
problem ∫ ∑

CM⊆CM :q∈ωCM

∏
ci∈CM∪CM

1(ci(x))

w(x) dx, (9)

where CM := {c̄i | ci ∈ CM\CM} .

Proof. First, let us consider the indices of the two product expressions in

P (ωCM
) =

∫ (∏
ci∈CM

1(ci)
)(∏

ci∈CM\CM

1(c̄i)
) dPFD

. (10)

We define

CM := {c̄i | ci ∈ CM\CM}

such that Equation 10 can be rewritten as

P (ωCM
) =

∫ ∏
ci∈CM∪CM

1(ci(x)

 dPFD
(11)

Furthermore, decomposing the measure into a probability density function w(x) and a differential dx of the integration
variables yields

∫ ∏
ci∈CM∪CM

1(ci(x))

 · w(x) dx. (12)

We can now plug this last expression into

P (q) =
∑

CM⊆CM :q∈ωCM

P (ωCM
), (13)

resulting in

P (q) =

∫ ∑
CM⊆CM :
q∈ωCM

 ∏
ci∈CM∪CM

1(ci(x))

 · w(x) dx. (14)

Note that we changed the order of the integration and summation. This operation was shown to be valid in Zuidberg
Dos Martires et al. [2019] using de Finetti’s theorem. Zuidberg Dos Martires et al. [2019] also showed that the expression
in Equation 14 is indeed a weighted model integral as defined by Belle et al. [2015]. Specifically, line P2 in the proof of
Theorem 2 in Zuidberg Dos Martires et al. [2019] corresponds to C.3, which is shown to be equal to an instance of WMI.

D DETAILS ON DERIVATIVE ESTIMATE

To give further details on estimating the derivative we will write the expression ∂λPΛ(q) in terms of indicator functions

∂λPΛ(q) = ∂λ

∫
SP(x) · wΛ(x) ∂x (15)

= ∂λ

∫ ∑
CM⊆CM :
q∈ωCM

 ∏
ci∈CM∪CM

1(ci(x))

 · wΛ(x) dx, (16)

where the dependency of the probability on the neural parameters Λ is again made explicit. Reparametrising the distribution
wΛ(x) yields

∂λPΛ(q) = ∂λ

∫ ∑
CM⊆CM :
q∈ωCM

 ∏
ci∈CM∪CM

1(ci(r(u,Λ))

 · p(u) du. (17)

Explicitly writing out the indicators clearly illustrates the non-differentiability of SP(x), which prevents us from applying
Leibniz’ integral rule [Flanders, 1973] to swap the order of integration and differentiation. To obtain the necessary
differentiability of the integrand, the continuous relaxations introduced by Petersen et al. [2021] are utilised. These
relaxations allow for comparison formulae of the form

(g(x) ▷◁ 0), with ▷◁ ∈ {<,≤, >,≥,=, ̸=} (18)

to be relaxed. We write the continuous relaxation of an indicator function 1(ci(x)) = 1(gi(x) ▷◁ 0) as si(x). Four specific
cases of relaxations arise, depending on the comparison operator used. Specifically, we define

si(x) =

σ(βi · gi(x)) if ▷◁ ∈ {>,≥},
σ(−βi · gi(x)) if ▷◁ ∈ {<,≤},∏

σ(βi · gi(x)) · σ(−β′
i · gi(x)) if ▷◁ ∈ {=},

1− σ(βi · gi(x)) · σ(−β′
i · gi(x)) if ▷◁ ∈ {≠},

(19)

where βi and β′
i are the coolness parameters of the continuous relaxations and σ denotes the sigmoid function. Note that all

four cases originate from the root choice of approximating the step function as a sigmoid function. Additionally, this choice
is sound as we have that

lim
βi→+∞

σ(βi · gi(x)) = 1(gi(x) ≥ 0). (20)

Continuously relaxing indicator functions using the definition of Equation 19 renders the integrand differentiable, allowing
the application of Leibniz’ integral rule and yielding

∂λPΛ(q) ≈
∫

∂λ
∑

CM⊆CM :
q∈ωCM

 ∏
i:ci∈CM∪CM

si(r(u,Λ))

 · p(u) du.

The derivative ∂λPΛ(q) can now be computed using off-the-shelf automatic differentiation software such as PyTorch
[Paszke et al., 2019] or TensorFlow [Abadi, 2016], which entails that estimating the gradient ∇ΛP (q) = (∂λP (q))λ∈Λ is
computationally as expensive as computing the probability itself, up to a constant factor [Griewank and Walther, 2008].

E PROOF OF PROPOSITION E.1

Proposition E.1 (Unbiased in the infinite coolness limit). Let P be a DeepSeaProbLog program with PCFs (gi(x) ▷◁ 0)
and corresponding coolness parameters βi.
If all ∂λ(gi ◦ r) are locally integrable over Rk and every βi → +∞, then we have, for any query atom q, that

∂λP (q) =

∫
∂λSPs(r(u,Λ)) · p(u) du. (21)

Proof. First we express P (q) using Equation 14, which we then rewrite without loss of generalisation using only Heaviside
distributions1.

P (q) =

∫ ∑
CM⊆CM :
q∈ωCM

 ∏
ci∈CM∪CM

1(ci(x))

 · w(x) dx (22)

=

∫ ∑
CM⊆CM :
q∈ωCM

 ∏
gi∈ΣCM∪CM

H(gi(r(u,Λ)))

 · p(u) du. (23)

1Here we use the term distribution in the sense of a generalised function [Schwartz, 1957] and not in the sense of a probability
distribution.

In the Equation above, H(x) denotes the Heaviside distribution and ΣCM∪CM
is the set of all sigmoid functions involved in

the continuous relaxations of the set CM∪CM .

This rewrite is possible as the indicator function of any PCF c(x) is either a step function or decomposes into a product
of step functions. Indeed, if c(x) is of the form g(x) ≥ 0, then 1(c(x)) = H(g(x)). If it is of the form g(x) = 0, then
1(c(x)) = H(g(x)) ·H(−g(x)). The other cases with different comparison operators follow from these two.

Differentiating in a distributional sense and applying Leibniz’ integral rule [Flanders, 1973] then yields∑
CM⊆CM :
q∈ωCM

∑
gj∈ΣCM∪CM

∫
∂λH(gj(r(u,Λ))) ·

∏
i ̸=j

H(gi(r(u,Λ))) · p(u) du. (24)

We can reduce the discussion by considering each term in this equation separately, because of the linearity of the integral. In
other words, to prove our statement, it suffices to show that∫

∂λH(gj(r(u,Λ))) ·
∏
i ̸=j

H(gi(r(u,Λ))) · p(u) du, (25)

is equal to

lim
β1,...,βn→+∞

∫
∂λσ(βj · gj(r(u,Λ))) ·

∏
i ̸=j

σ(βi · gi(r(u,Λ))) · p(u) du. (26)

For brevity’s sake, we will write the products∏
i ̸=j

H(gi(r(u,Λ))) and
∏
i ̸=j

σ(gi(r(u,Λ))), (27)

as πj(u) and πσ
j (u), respectively. Next, using distributional notation, Equation 25 can be further simplified as

⟨∂λ(H ◦ gj ◦ r), πj · p⟩ = ⟨δ ◦ gj ◦ r, ∂λ (g ◦ r) · πj · p⟩ . (28)

Note that this expression utilises the assumption that ∂λ(gj ◦ r) ∈ L1
loc(Rk), i.e., ∂λ(gj ◦ r) is locally integrable over Rk.

This asssumption is not very demanding, since distributions (generalised functions) are only well-defined when acting on
functions that are at least locally integrable. Equation 26 can similarly be rewritten and simplified to obtain the equality

lim
β1,...,βn→+∞

〈
∂λ(σ ◦ gj ◦ r), πσ

j · p
〉
= lim

β1,...,βj−1,βj+1,...,βn→+∞

〈
δ ◦ gj ◦ r, ∂λ(g ◦ r) · πσ

j · p
〉
. (29)

More explicitly,

(26) = lim
β1,...,βn→+∞

∫
∂λσ(βj · gj(r(u,Λ))) · πσ

j (u) · p(u) du (30)

= lim
β1,...,βn→+∞

∫
l · e−g(r(u,Λ))·βj

(1 + e−g(r(u,Λ))·βj)2
·
∫

∂λgj(r(u,Λ)) · πσ
j (u) · p(u) du (31)

= lim
β1,...,βj−1,βj+1,...,βn→+∞

∫
δ(gj(r(u,Λ))) ·

∫
∂λgj(r(u,Λ)) · πσ

j (u) · p(u) du. (32)

The last transition uses the fact that

lim
βj→+∞

βj · e−g(r(u,Λ))·βj

(1 + e−g(r(u,Λ))·βj)2
= δ(g(r(u,Λ))), (33)

in the distributional sense. In addition, we also have (again in distributional sense) that

lim
βi→+∞

σ(βi · gi(r(u,Λ))) = H(gi(r(u,Λ))). (34)

This final equation allows us to replace πσ
j (u) in the final line of Equation 26 with πj(u) by repeating the above steps for

each index i separately. Hence, we can conclude that our relaxation of ∂λP (q) is indeed unbiased in the infinite coolness
limit.

F EXPERIMENTAL DETAILS

This section will give detailed DeepSeaProbLog programs, neural network architectures and elaborated figures for each
of the experiments present in the main body of the paper. All experiments were run on an RTX 3080 Ti coupled with a
Intel Xeon Gold 6230R CPU @ 2.10GHz and 256 GB of RAM, except the LTN results. Note that the optimisation of any
hyperparameters, such as learning rate or number of training epochs, was done via a grid search on a separate validation set.

F.1 NESY ATTENTION

Setup details and DeepSeaProbLog program. The full DeepSeaProbLog program for the detection of handwritten years
is given in Listing 1. The query year is optimised for a different number of samples depending on the experiment. For (E1),
we have 28 000 training samples while there are 4000 validation and 8000 test samples. The set of years in the training,
validation and test set are disjoint. For (E2), the size of validation and test set is the same as in the case of (E1), but with a
training set of 40 000 samples. Here, the set of years in validation and test set are disjoint, but both are a subset of the set of
years of the training set.

box(Params, B) ~ generalisednormal(Params).
digit(Im, Loc, D) ~ categorical(classifier([Im, Loc]), [0, ..., 9]).

year(Im, Year1, Year2, Year3, Year4) :-
region(Im, [Y1, Y2, Y3, Y4]), ordered_output([Y1, Y2, Y3, Y4]),
box(Y1, B1), box(Y4, B4),
x_diff(0.0, B1, B1diff), B1diff < 0,
x_diff(1.0, B4, B4diff), 0 < B4diff,
digit(Im, Y1, D1), digit(Im, Y2, D2), digit(Im, Y3, D3), digit(Im, Y4, D4),
Year1 =:= D1, Year2 =:= D2, Year3 =:= D3, Year4 =:= D4.

ordered_output([]).
ordered_output([[Mu, Sigma]]).
ordered_output([[Mu, Sigma], H2 | T]) :-

box([Mu, Sigma], B1), box(H2, B2), x_diff(B1, B2, Bdiff),
Bdiff < 0, ordered_output([H2 | T]).

Listing 1: There is one continuous NDF, box, which represents a bounding box as a generalised normal distribution
with mean and scale being the center and width of the box, respectively. digit is a discrete NDF that denotes the
categorical distribution of the digit classifications made by the network classifier. region is the detection network
that predicts the 4 bounding boxes, i.e., the parameters of four instances of box. Given these parameters, the predicate
ordered_output will enforce the spatial constraints that region predicts its boxes in order from left to right on the
image. It does so by taking the difference of the x coordinate of each subsequent bounding box, which is a 2-dimensional
random variable, and employing a ‘<’ PCF. Finally, the supervision on the digits of the year is given to the correct bounding
box.

Parameters and neural architectures. A schematic overview of the neural architecture used for all different methods can
be seen in Figure F.1. The neural baseline simply outputs the four predictions of the classification network and optimises
them by minimising the categorical cross-entropy on each digit of the year. In the case of the neural-symbolic methods,
the output of both the regression and classification components are used in the logic. DeepSeaProbLog optimises a binary
cross-entropy on the probability of year, while LTN optimises the MAX-sat objective function. As optimiser, we utilised
Adamax [Kingma and Ba, 2015] with its default learning rate of 10−3. DeepSeaProbLog and LTNs were run for 10 epochs,
while the neural baseline was given 20 epochs, all with a batch size of 10. This number of epochs proved sufficient for all
methods to converge. Interestingly, no special annealing scheme was necessary for this experiment as constant value of 50
for the coolness parameters lead to satisfactory results. All these hyperparameters were determined through a grid search on
the validation set.

Additional results and interpretations. Roughly speaking, every 100 iterations took about 25 seconds for DeepSeaProb-
Log while the neural baseline took around 15 seconds. Given the results and DeepSeaProbLog’s satisfactory solution to the
problem, the additional computational cost of adding probabilistic logic is worthwhile in this case.

Conv2D(16, 5) Conv2D(32, 5) Conv2D(64, 5)

Conv2D(10, 5) GlobalMaxPool + Softmax

Figure F.1: Overall neural architecture for the dates experiment. Following the orange arrows first, the parameters of 4
generalised normal distributions are predicted for each image. Then, following the green arrows, the images are attenuated
separately by each of the 4 distributions and then classified as a digit between 0 and 9 to give the total overall year prediction
as an ordered tuple of 4 digits.

F.2 NEURAL HYBRID BAYESIAN NETWORK

Setup details and DeepSeaProbLog program. Our encoding of the neural hybrid Bayesian network is given in Listing 2.
The goal is to optimise the neural networks responsible for the classification of humid and cloudy conditions, as well as
the network that predicts the temperature value. Additionally, we explicitly model the noise present on the true temperature
labels as a learnable parameter. To achieve this, a set of 1200 triples (Im1, Im2, X) are used as training set, where Im1 is
a CIFAR-10 image belonging to one of the first three classes, while Im2 belongs to the last two classes. In other words,
we use CIFAR-10 images as proxies for real imagery data. X is a set of 25 numerical meteorological features sampled
from a publicly available Kaggle dataset [Cho et al., 2020]. The label of each triple is the probability that the weather,
as described by the correct labels of humid, cloudy and temperature, is good. Computing this probability label is
non-trivial in itself. We utilised a large set of 1000 samples to approximate the correct underlying distributions and to obtain
an approximate probability label.

humid(Im, H) ~ bernoulli(humid_detector(Im)).
cloudy(Im, C) ~ categorical(cloud_detector(Im), [0, 1, 2]).

temperature(X, T) ~ normal(temperature_detector(X), t(_)).
snowy_pleasant ~ beta(11, 7).
rainy_pleasant ~ beta(1, 9)
cold_sunny_pleasant ~ beta(1, 1).
warm_sunny_pleasant ~ beta(9, 2).

rainy(I1, I2) :-
cloudy(I1, C), C =\= 0, humid(I2, H), H =:= 1.

good_weather(I1, I2, X) :-
rainy(I1, I2), temp(X, T), T < 0,
snowy_pleasant > 0.5.

good_weather(I1, I2, X) :-
rainy(I1, I2), temp(X, T), T >= 0, rainy_pleasant > 0.5.

good_weather(I1, I2, X) :-
\+rainy(I1, I2), temp(X, T), T > 15, warm_sunny_pleasant > 0.5.

good_weather(I1, I2, X) :-
\+rainy(I1, I2), temp(X, T), T <= 15, cold_sunny_pleasant > 0.5.

P :: depressed(I1) :-
cloudy(I1, C), C =:= N, P is N * 0.2.

enjoy_weather(I1, I2, X) :-
\+depressed(I1), good_weather(I1, I2, X).

Listing 2: The NDFs humid and cloudy classify a given image as describing humid and cloudy conditions, respectively.
temp takes a set of 25 numerical features and predicts a mean temperature from those. Note that t(_) is ProbLog notation
for a single optimisable parameter. Depending on the value of the temperature, 4 different cases of weather and their degree
of pleasantness are described by beta distributions. We define good_weather as being true if the degree of pleasantness
of any case is larger than 0.5. Finally, a person can be depressed with probability 0.2 or 0.4 depending on the degree of
cloudy. Both then determine whether a person can enjoy the weather, if they are not depressed and good_weather
is the case.

Parameters and neural architectures. We utilise simple classifiers (Figure G.3) in the NDFs cloudy and humid,
while the network in the neural predicate temperature has three dense layers of size 35, 35 with ReLU activations and 1
with linear activation. Both classifiers share a common set of convolutional layers, requiring the learning of features that
generalise to both classification problems. Additionally, the noise on the temperature prediction is modelled explicitly as a
learnable TensorFlow variable with an initial value of 10. This choice is not arbitrary, as the initial neural parameter estimate
will hover around the middle of the possible temperature values and a choice of 10 as initial standard deviation allows
covering the entire range of temperature values with a non-insignificant probability mass. In this way, gradient information
across the entire temperature domain can be accumulated during learning. Finally, DeepSeaProbLog was trained for 10
epochs using Adamax with learning rate 10−3 and batch size of 10.

Complications. Ideally, simple 0-1 labels of enjoy_weather would be more intuitive, as we often do not observe the
probability of an event but single cases where it is either true or false. However, our experiments have showed that our
small dataset is insufficient to find an optimal solution using such labels in conjunction with the very distant supervision.
To show that DeepSeaProbLog is still able to find solutions in cases where the supervision is slightly less distant using
only 0-1 labels, we added a different neural hybrid Bayesian network experiment in Section G based on the well-known
burglary-alarm example of probabilistic logic.

Additional results and interpretations. We want to stress that learning to predict the right mean temperature from the
distant supervision is not straightforward. The only learning signal for the temperature has to pass through PCFs with a very
wide range, meaning they do not specify the exact temperature value. Additionally, these PDFs still do not directly influence
the supervision of enjoy_weather, only good_weather. The Gaussian noise that renders the temperature into a
continuous random variable only further convolutes the task. We conclude that DeepSeaProbLog can extract meaningful
learning signals from reasonably distant supervision.

F.3 NEURAL-SYMBOLIC VARIATIONAL AUTOENCODER

Setup details and DeepSeaProbLog programs. Each data sample consists of 2 regular MNIST digits and the result of
their subtraction. The first digit takes the place of the minuend while the second one is interpreted as the subtrahend. The
training, validation and test sets had 30 000, 1 000 and 1 000 samples of this form, respectively. Encoding a VAE without
additional logic in DeepSeaProbLog is straightforward (Listing 3), while adding logic involves more engineering freedom
(Listing 4). We opted for the simplest use of a conditional variational auto-encoder by only using the classified digit as
additional input to the decoder. Note that during optimisation, both the VAE and digit classifier are trained jointly.

prior(P) ~ normal(0, 1).
latent(Im, L) ~ normal(encoder_net(Im)).

good_image(Image) :-
prior(P), latent(Im, L), P =:= L,
decoder_net(L, G), soft_unification(G, Image).

Listing 3: Prototypical implementation of a Gaussian VAE in DeepSeaProbLog. A normal prior prior is used to regularise
a Gaussian latent space modelled by the second NDF by expressing that they should be equal. The decoder component
of the VAE is given by decoder_net and returns a generated image G by sampling the latent space. This generation is
self-supervised by soft unifying it with the given image. Note that we do not define the decoder component of the VAE using
a delta-distribution g ~ delta(decoder_net(L)). While such a definition would strictly comply with our defined
syntax, we introduce the easier predicate notation decoder_net(L, G) as a form of syntactic sugar.

prior(ID, P) ~ normal(0, 1).
digit(Emb, D) ~ categorical(digit_classifier(Emb), [0, ..., 9]).
latent(Im, L) ~ normal(encoder_net(Im)).

good_subtraction(Im1, Im2, Diff) :-
prior(1, P1), prior(2, P2), latent(Im1, L1), latent(Im2, L2),
L1 =:= P1, L2 =:= P2, embedding(Im1, E1), embedding(Im2, E2),
digit(E1, D1), digit(E2, D2), Diff =:= D1 - D2,
concat(L1, D1, ConditionalL1), concat(L2, D2, ConditionalL2),
decoder_net(ConditionalL1, G1), decoder_net(ConditionalL2, G2),
soft_unification(G1, Image1), soft_unification(G1, Image1).

Listing 4: Combining subtraction logic with a VAE in DeepSeaProbLog. Each image is encoded into a Gaussian latent space
and embedded into a lower-dimensional real space. The latent space is regularised by the standard normal prior while the
embedding forms the input to a digit classifier to find which digit is on the image. The two classified digits, which follow a
categorical distribution, should subtract to the given value of Diff. Finally, the Gaussian latent space and the categorical
digits are concatenated into the conditional latent space of the CVAE. The decoder network again samples from this space to
construct a generation for both images, which should softly unify with the original images.

Parameters and neural architectures. The NeSy VAE has two main neural components (Figure F.2), one for the VAE
itself and another that handles the digit classification used in the subtraction logic. A small set of 256 samples with direct
supervision on the digit labels is used to pre-train the classification portion of the overall network to avoid degenerate
solutions. All training utilised Adam as optimiser with a learning rate of ·10−3 and took 20 epochs using a batch size of 10.
The pre-training was given 1 epoch with a batch size of 4.

Sampling

Sampling

Conv2D(32, 3)

Conv2D(32, 3) Conv2D(64, 3)

Conv2D(64, 3)

Dense(32) + Dense(24) + Dense(10) + Softmax)

Figure F.2: VAE encoder-decoder architecture. The decoder is equivalent to the transpose of the encoder. All layers use
ReLU activation functions, except the final convolutional one, which applies a hyperbolic tangent.

Complications. Regular Gaussian VAE optimisation has two components: a Kullback-Leibler (KL) divergence term
and a reconstruction loss term. Since DeepSeaProbLog requires probabilistic values, i.e., between 0 and 1, a probabilistic
translation of these terms is necessary for optimisation in DeepSeaProbLog. The KL divergence term compares the latent
distribution of the VAE to a standard normal prior and can as such be replaced by a =:= comparison in the logic. The
reconstruction loss is chosen to be the exponentiation of a negated average L1 loss function, as it yields a value between
0 and 1 that can be interpreted as the probability that two images match. Specifically, the loss between two such images
I1, I2 ∈ R768 is given by

exp

(
− 1

768

768∑
i=1

|I1i − I2i|

)
. (35)

The latter can be interpreted as a form of soft unification [Rocktäschel and Riedel, 2017], which is why we denote it by the
predicate soft_unification.

Additional results and interpretations. Emphasis has to be put on the flexibility of generation in DeepSeaProbLog, as
the generation of digits can be carried out in a range of different contexts without further optimisation. One only needs to
write a query describing that logical context. The query that yields an image of both a left and right digit that subtract to a
given value is given in Listing 5. The conditional query that generates an image of a right digit given an image of the left
digit and their difference value is given in Listing 6.

generate_subtraction(G1, G2, Diff) :-
member(D1, [0, ..., 9]), member(D2, [0, ..., 9]),
prior(1, P1), prior(2, P2), Diff =:= D1 - D2,
concat(P1, D1, ConditionalL1), concat(P2, D2, ConditionalL2),
decoder_net(ConditionalL1, G1), decoder_net(ConditionalL2, G2).

Listing 5: The logic finds all possible combinations for D1 and D2 that meet the subtraction evidence Diff and concatenates
these to a standard normal prior component into the conditional latent space. The decoder then generates images from a
sample of this space.

generate_left(RightIm, Diff, LeftG) :-
member(D1, [0, ..., 9]), embedding(RightIm, RightE), digit(RightE, RightD),
Diff =:= LeftD - RightD, latent(RightIm, RightL),
concat(RightL, LeftD, LeftCondL), decoder_net(LeftCondL1, LeftG).

Listing 6: Given an image of the right digit and a difference value, we generate an image of the left digit. The right’s image
is classified such that the logic can find the value of LeftD that meets the given difference. By attaching that value to the
Gaussian latent space of the right digit, the VAE can generate an image of the correct left digit in the ‘style’ of the right one.

G ADDITIONAL EXPERIMENT

An additional experiment was performed to show the promise of discrete-continuous neural probabilistic logic programming.
It is similar to the neural hybrid Bayesian network, but with more practical 1-0 query supervision.

G.1 NEURAL-CONTINUOUS BURGLARY ALARM

Setup details and DeepSeaProbLog program. The neural-continuous burglary alarm (Listing 8) extends the classic
example from Bayesian network literature (Listing 7).

0.1 :: earthquake.
0.3 :: burglary.
0.9 :: hears.

0.7 :: alarm :- earthquake.
0.9 :: alarm :- burglary.

calls :- alarm, hears.

Listing 7: Classical burglary-alarm ProbLog program. Three probabilistic facts earthquake, burglary and hears are
given with their probabilities. A neighbour calls when hearing an alarm, while an alarm can go off because of an earthquake
or a burglary.

Each data sample is a triple (E,B,L), where E can be an MNIST digit 0, 1 or 2 while B can be an MNIST 8 or 9. Values
for E of 0, 1 and 2 correspond to no earthquake, a mild earthquake or a heavy earthquake respectively. If B is an MNIST
8, then there is no burglary. If it is 9, then there is a burglary. L can have either the value 0 or 1, indicating whether the
neighbour called or not. Our dataset contains 12 000 such triples for training, while having 1 000 for validation and 2000
for testing purposes. Obtaining the weak supervision L is done by sampling according to the true probability of calling
given the input To compute this true probability, a single sample is taken from the neighbour’s true distribution. This true
distribution has respective means of 6 and 3 for the horizontal and vertical Gaussian while both directions have a standard
deviation of 3. Additionally, there are two possible ways to express that the distance of the neighbour should be smaller than
10 distance steps before hearing the alarm. One can use either the squared distance or the true distance in the rule hears. A
separation is often maintained in the weighted model integration literature [Zuidberg Dos Martires et al., 2019] between
comparison formulae that are polynomial and those that are generally non-polynomial. To illustrate that DeepSeaProbLog
can deal with both classes of formulae, we will perform experiments for both the squared distance (polynomial, Listing 8)
and the true distance (non-polynomial, Listing 9). Both these functions are implemented in Python and DeepSeaProbLog
allows them to be easily imported as built-in predicates.

earthquake(Im, E) ~ categorical(earthquake_net(Im), [0, 1, 2]).
burglary(Im, B) ~ categorical(burglary_net(Im), [8, 9]).

neighbour(N) ~ normal([t(µx), t(µy)], [t(σx), t(σy)]).

hears :-
neighbour(N), squared_distance(0, N, D), D < 100.

P :: alarm(Im1, _) :-
earthquake(Im1, E), E =:= N, P is N * 0.35.

0.9 :: alarm(_, Im2) :-
burglary(Im2, B), B =:= 9.

calls(Im1, Im2) :-
alarm(Im1, Im2), hears.

Listing 8: Our extension of the burglary alarm example has two categorical NDFs that model the chance of an earthquake
and a burglary given an image. Additionally, whether the neighbour can hear the alarm if it goes off depends on their spatial
distribution, which is modelled as a two-dimensional Gaussian distribution. This distribution is randomly initialised and its
parameters need to be optimised.

hears :-
neighbour(N), distance(0, N, D), D < 10.

Listing 9: Using the true distance in the hears predicate as a case of a non-polynomial comparison formula.

Parameters and neural architectures. The complete neural architecture of both the earthquake and burglary classifiers is
given in Figure G.3. In addition to the neural parameters in these networks, four independent parameters are present in the
program. These are used as the means and standard deviations for the neighbour’s spatial distribution and are randomly
initialised. Specifically, the means are sampled uniformly from the interval [0, 10] while the standard deviations were
sampled from [2, 10]. All optimisation was performed using regular stochastic gradient descent with a learning rate of
8 · 10−2 for two epochs using a batch size of 10.

Complications. Because of the difference in nature between the parameters in the neural networks and the four independent
parameters in the Gaussian distribution, the latter required a boosted learning rate to provide consistent convergence.

Conv2D(6, 5)

Conv2D(16, 5) Conv2D(2, 2) + Softmax

Burglary

classifier

Earthquake

classifier

Right

Digit

GlobalAvgPool

Figure G.3: Overview of the architecture of the earthquake and burglary networks. Both share two convolutional layers, but
each specific network applies its own final convolutional layer followed by a global average-pooling operation with softmax
activation. All other activation functions are ReLUs.

Specifically, the gradients for these four parameters were multiplied by a value of 20, which was found by a hyperparameter
optimisation on the validation set.

Results and interpretation. Initial learning progress of the neural networks seems volatile (Figure G.4), which is likely
due to the unoptimised state of the neighbour’s spatial distribution. Two epochs of training proves to be sufficient to optimise
both the neural detectors and the neighbour’s distribution. The 4 parameters of the neighbour’s distribution do not converge
to the true values, which is to be expected as their supervision is underspecified. However, they do converge to values
that result in PCF probabilities that are close to those of the true underlying distribution. All in all, three conclusions can
be drawn. First, this experiment indicates that DeepSeaProbLog is capable of jointly optimising neural parameters and
independent, distributional parameters. Second, DeepSeaProbLog seems to be able to fully exploit both polynomial and
more general non-polynomial comparison formulae. It shows the strength of our approximate approach, as exact methods
often fail to efficiently deal with non-polynomial formulae [Zuidberg Dos Martires et al., 2019]. Third, DeepSeaProbLog
can deduce meaningful probabilistic information from weak labels. Indeed, in order to optimise the neural detectors and the
neighbour’s distribution, DeepSeaProbLog has to aggregate meaningful update signals from the 0-1 labels across the given
training data set to approximate the underlying probability of calls.

0 500 1000 1500 2000
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 lo
ss

0.0

0.2

0.4

0.6

0.8

1.0

Cl
as

sif
ica

tio
n

ac
cu

ra
cy

Earthquake detector
Burglary detector

0 500 1000 1500 2000
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 lo
ss

0.0

0.2

0.4

0.6

0.8

1.0
Cl

as
sif

ica
tio

n
ac

cu
ra

cy

Earthquake detector
Burglary detector

Figure G.4: Evolution of the training loss and validation accuracy of the neural ‘earthquake’ and ‘burglary’ detectors. For
both squared (left) and true distance (right), the discrete supervision seems to be sufficient to facilitate meaningful learning.

H LIMITATIONS

The main limitation of DeepSeaProbLog is one that it inherits from probabilistic logic in general, computational tractability.
Efficiently representing a probabilistic logic program is done via knowledge compilation, which is #P -hard. Once the
probabilistic program is knowledge compiled, evaluating the compiled structure is linear in the size of this structure.
Inference remains linear in the size of the compiled structure after the addition of continuous random variables as all samples
can be run in parallel with the current inference algorithm.

Although our sampling strategy is efficient in the sense that it is linear in the number of samples, uses the advanced inference
techniques of Tensorflow Probability to effectively sample higher dimensional distributions, and it can be executed in parallel
for each sample, it remains ignorant of the comparison formulae that are approximated. More intricate inference strategies
exist within the field of weighted model integration [Morettin et al., 2021], yet they currently lack the differentiability
property to be integrated in DeepSeaProbLog’s gradient-based optimisation. Conversely, our examples illustrate that our
rather naive strategy is sufficient to solve basic tasks. It is still an open question how to perform successful joint inference
and gradient-based learning under general comparisons.

Orthogonal to the estimation of the integral during inference, exact knowledge compilation also prevents the scaling of
DeepSeaProbLog to larger problem instances. Approximate knowledge compilation is the field of research that deals with
tackling this issue. While it contains interesting recent work [Fierens et al., 2015, Huang et al., 2021, Manhaeve et al., 2021b],
it was highlighted by Manhaeve et al. that the introduction of the neural paradigm does lead to further complications. As such,
we opted for exact knowledge compilation, but it has to be noted that we will be able to benefit from any future advances in
the field of approximate inference. Alternatively, different semantics [Winters et al., 2022] can simplify inference, but they
lead to a degradation of expressivity of the language.

A potential future avenue for scaling up DeepSeaProbLog inference would be the use of further continuous relaxation
schemes. More specifically, replacing discrete random variables with relaxed categorical variables [Maddison et al., 2017,
Jang et al., 2017] might allow us, for instance, to forego the knowledge compilation step while still being able to pass around
training signals

References

Martín Abadi. Tensorflow: learning functions at scale. In International Conference on Functional Programming, 2016.

Vaishak Belle, Andrea Passerini, and Guy Van den Broeck. Probabilistic inference in hybrid domains by weighted model
integration. In IJCAI, 2015.

Dongjin Cho, Cheolhee Yoo, Jungho Im, and Dong-Hyun Cha. Comparative assessment of various machine learning-based
bias correction methods for numerical weather prediction model forecasts of extreme air temperatures in urban areas.
Earth and Space Science, 2020.

Daan Fierens, Guy Van den Broeck, Joris Renkens, Dimitar Shterionov, Bernd Gutmann, Ingo Thon, Gerda Janssens, and
Luc De Raedt. Inference and learning in probabilistic logic programs using weighted boolean formulas. Theory and
Practice of Logic Programming, 2015.

Harley Flanders. Differentiation under the integral sign. The American Mathematical Monthly, 1973.

Andreas Griewank and Andrea Walther. Evaluating derivatives: principles and techniques of algorithmic differentiation.
SIAM, 2008.

Bernd Gutmann, Ingo Thon, Angelika Kimmig, Maurice Bruynooghe, and Luc De Raedt. The magic of logical inference in
probabilistic programming. Theory and Practice of Logic Programming, 2011.

Jiani Huang, Ziyang Li, Binghong Chen, Karan Samel, Mayur Naik, Le Song, and Xujie Si. Scallop: From probabilistic
deductive databases to scalable differentiable reasoning. NeurIPS, 2021.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparametrization with gumble-softmax. In ICLR, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous relaxation of discrete random
variables. In ICLR, 2017.

Robin Manhaeve, Sebastijan Dumančić, Angelika Kimmig, Thomas Demeester, and Luc De Raedt. Neural probabilistic
logic programming in deepproblog. Artificial Intelligence, 2021a.

Robin Manhaeve, Giuseppe Marra, and Luc De Raedt. Approximate inference for neural probabilistic logic programming.
In KR, 2021b.

Paolo Morettin, Pedro Zuidberg Dos Martires, Samuel Kolb, and Andrea Passerini. Hybrid probabilistic inference with
logical and algebraic constraints: a survey. In IJCAI, 2021.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin,
Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep learning library. NeurIPS,
2019.

Felix Petersen, Christian Borgelt, Hilde Kuehne, and Oliver Deussen. Learning with algorithmic supervision via continuous
relaxations. NeurIPS, 2021.

Fabrizio Riguzzi and Terrance Swift. Well–definedness and efficient inference for probabilistic logic programming under
the distribution semantics. Theory and practice of logic programming, 2013.

Tim Rocktäschel and Sebastian Riedel. End-to-end differentiable proving. NeurIPS, 2017.

Laurent Schwartz. Théorie des distributions à valeurs vectorielles. i. In Annales de l’institut Fourier, 1957.

Thomas Winters, Giuseppe Marra, Robin Manhaeve, and Luc De Raedt. Deepstochlog: Neural stochastic logic programming.
In AAAI, 2022.

Pedro Zuidberg Dos Martires, Anton Dries, and Luc De Raedt. Exact and approximate weighted model integration with
probability density functions using knowledge compilation. In AAAI, 2019.

	Special cases of DeepSeaProbLog
	Proof of Proposition B.1
	Proof of Proposition C.1
	Details on derivative estimate
	Proof of proposition E.1
	Experimental details
	NeSy attention
	Neural hybrid Bayesian network
	Neural-symbolic variational autoencoder

	Additional experiment
	Neural-continuous burglary alarm

	Limitations

