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Abstract

Neural-symbolic AI (NeSy) allows neural net-
works to exploit symbolic background knowledge
in the form of logic. It has been shown to aid learn-
ing in the limited data regime and to facilitate in-
ference on out-of-distribution data. Probabilistic
NeSy focuses on integrating neural networks with
both logic and probability theory, which addition-
ally allows learning under uncertainty. A major
limitation of current probabilistic NeSy systems,
such as DeepProbLog, is their restriction to finite
probability distributions, i.e., discrete random vari-
ables. In contrast, deep probabilistic programming
(DPP) excels in modelling and optimising con-
tinuous probability distributions. Hence, we intro-
duce DeepSeaProbLog, a neural probabilistic lo-
gic programming language that incorporates DPP
techniques into NeSy. Doing so results in the sup-
port of inference and learning of both discrete and
continuous probability distributions under logical
constraints. Our main contributions are 1) the se-
mantics of DeepSeaProbLog and its corresponding
inference algorithm, 2) a proven asymptotically
unbiased learning algorithm, and 3) a series of
experiments that illustrate the versatility of our
approach.

1 INTRODUCTION

Neural-symbolic AI (NeSy) [Garcez et al., 2002, De Raedt
et al., 2021] focuses on the integration of symbolic and
neural methods. The advantage of NeSy is that it combines
the reasoning power of logical representations with the learn-
ing capabilities of neural networks. Additionally, it has been
shown to converge faster during learning and to be more ro-
bust [Rocktäschel and Riedel, 2017, Xu et al., 2018, Evans
and Grefenstette, 2018].

The challenge of NeSy lies in combining discrete symbols
with continuous and differentiable neural representations.
So far, such a combination has been realised for Boolean
variables by interpreting the outputs of neural networks as
the weights of these variables. These weights can then be
given either a fuzzy semantics [Badreddine et al., 2022,
Diligenti et al., 2017] or a probabilistic semantics [Man-
haeve et al., 2021, Yang et al., 2020]. The latter is also used
in neural probabilistic logic programming (NPLP), where
neural networks parametrise probabilistic logic programs.

A shortcoming of traditional probabilistic NeSy approaches
is that they fail to capture models that integrate continuous
random variables and neural networks – a feature already
achieved with mixture density networks [Bishop, 1994] and
more generally deep probabilistic programming (DPP) [Tran
et al., 2017, Bingham et al., 2019]. However, it is unclear
whether DPP can be generalised to enable logical and rela-
tional reasoning. Hence, a gap exists between DPP and NeSy
as reasoning is, after all, a fundamental component of the
latter. We contribute towards closing this DPP-NeSy gap by
introducing DeepSeaProbLog1, an NPLP language with sup-
port for discrete-continuous random variables that retains
logical and relational reasoning capabilities. We achieve this
integration by allowing arbitrary and differentiable probabil-
ity distributions expressed in a modern DPP language while
combining knowledge compilation [Darwiche and Marquis,
2002] with the reparametrisation trick [Ruiz et al., 2016]
and continuous relaxations [Petersen et al., 2021].

Our main contributions are (1) the well-defined probabil-
istic semantics of DeepSeaProbLog (Section 3) with an
inference algorithm based on weighted model integration
(WMI) [Belle et al., 2015] (Section 4.1), (2) a proven asymp-
totically unbiased gradient estimate for WMI that turns
DeepSeaProbLog into a differentiable, discrete-continuous
NPLP language (Section 4.2), and (3) an experimental eval-
uation showing the versatility of discrete-continuous reas-
oning and the efficacy of our approach (Section 6).

1‘Sea’ stands for the letter C, as in continuous random variable.
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2 LOGIC PROGRAMMING CONCEPTS

A term t is either a constant c, a variable V or a structured
term of the form f(t1,...,tK), where f is a functor
and each ti is a term. Atoms are expressions of the form
q(t1,...,tK). Here, q/K is a predicate of arity K and
each ti is a term. A literal is an atom or the negation of an
atom ¬q(t1,...,tK). A definite clause (also called a
rule) is an expression of the form h:- b1,...,bK where
h is an atom and each bi is a literal. Within the context of
a rule, h is called the head and the conjunction of bi’s is
referred to as the body of the rule. Rules with an empty body
are called facts. A logic program is a finite set of definite
clauses. If an expression does not contain any variables, it is
called ground. Ground expressions are obtained from non-
ground ones by means of substitution. A substitution θ =
{V1 = t1, . . . ,VK = tK} is a mapping from variables Vi

to terms ti. Applying a substitution θ to an expression e
(denoted eθ) replaces each occurrence of Vi in e with the
corresponding ti.

While pure Prolog (or definite clause logic) is defined using
the concepts above, practical implementations of Prolog
extend definite clause logic with an external arithmetic en-
gine [Sterling and Shapiro, 1994, Section 8]. Such engines
enable the use of system specific routines in order to handle
numeric data efficiently. Analogous to standard terms in def-
inite clause logic, as defined above, we introduce numeric
terms. A numeric term ni is either a numeric constant (a
real, an integer, a float, etc.), a numeric variable Ni, or a
numerical functional term, which is an expression of the
form φ(n1,...,nK) where φ is an externally defined nu-
merical function. The difference between a standard logical
term and a numerical term is that ground numerical terms
are evaluated and yield a numeric constant. For instance, if
add is a function, then add(3, add(5, 0)) evaluates
to the numerical constant 8.

Lastly, numeric constants can be compared to each
other using a built-in binary comparison operator ▷◁ ∈
{<,=<,>,>=,=:=,=\=}. Here we use Prolog syntax to
write comparison operators, which correspond to {<,≤, >
,≥,=, ̸=} in standard mathematical notation. Comparison
operators appear in the body of a rule, have two arguments,
and are generally written as φl(nl,1,...,nn,K) ▷◁
φr(nr,1,...,nr,K). They evaluate their left and right
side and subsequently compare the results, assuming
everything is ground. If the comparison holds, it is inter-
preted as true, else as false.

3 DEEPSEAPROBLOG

3.1 SYNTAX

While facts in pure Prolog are deterministically true, in
probabilistic logic programs they are annotated with the

probability with which they are true. These are the so-called
probabilistic facts [De Raedt et al., 2007]. When working in
discrete-continuous domains, we need to use the more gen-
eral concept of distributional facts [Zuidberg Dos Martires
et al., 2023], inspired by the distributional clauses of Gut-
mann et al. [2011].

Definition 3.1 (Distributional fact). Distribu-
tional facts are expressions of the form x ~
distribution(n1,...,nK), where x denotes
a term, the ni’s are numerical terms and distribution
expresses the probability distribution according to which x
is distributed.

Example 3.1 (Distributional fact). To declare a Poisson
distributed variable x with rate parameter λ, one would
write x ~ poisson(λ).

The meaning of a distributional fact is that all ground in-
stances xθ serve as random variables that are distributed ac-
cording to distribution(n1θ,...,nKθ). To obtain
a neural-symbolic interface, we will allow neural networks
to parametrise these distributions.

Definition 3.2 (Neural distributional fact). A neural dis-
tributional fact (NDF) is a distributional fact in which a
subset of the set of numerical terms {ni}Ki=1 is implemented
by neural networks that depend on a set of parameters Λ.

Random variables defined by NDFs can then be used in the
logic in the form of comparisons, e.g., x > y, to reason
about desired ranges of the variables.

Definition 3.3. (Probabilistic comparison formula) A prob-
abilistic comparison formula (PCF) is an expression of the
form (g(x) ▷◁ 0), where g is a function applied to the set
of random variables x and ▷◁ ∈ {<,=<,>,>=,=:=,=\=}
is a binary comparison operator. A PCF is called valid if
{x | g(x) ▷◁ 0} is a measurable set.

Example 3.2 (Probabilistic comparison formula). If x is
Poisson distributed and represents the number of chocolate
pieces put in a chocolate biscuit, then we can use a simple
PCF to define when such a biscuit passes a quality test
through the rule passes_test :- (x > 11).

Note that the general form of a PCF in Definition 3.3 has a 0
on the right hand side, which can always be obtained by sub-
tracting the right hand-side from both sides of the relation.
With the definitions of NDFs and PCFs, a DeepSeaProbLog
program can now be formally defined.

Definition 3.4 (DeepSeaProbLog program). A Deep-
SeaProbLog program consists of a finite set of NDFs FD

(defining random variables), a finite set CM of valid PCFs
and a set of logical rules RL that can use any of those valid
PCFs in their bodies.
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Example 3.3 (DeepSeaProbLog program). humid denotes
a Bernoulli random variable that takes the value 1 with
a probability p given by the output of a neural network
humid_detector. temp denotes a normally distrib-
uted variable whose parameters are predicted by a network
temperature_predictor. The program further con-
tains two rules that deduce whether we have good weather or
not. The first one expresses the case of snowy weather, while
the second holds for a rather temperate and dry situation.
The atom query(good_weather( )) declares that
we want to compute the probability of good_weather
when evaluated on the data . It illustrates the neural-
symbolic nature of DeepSeaProbLog, as its ground argu-
ment is a sub-symbolic representation ( ) of the world. In
an actual program, the symbol would be represented by
a variable.

humid(Data) ~
bernoulli(humid_detector(Data)).

temp(Data) ~
normal(temperature_predictor(Data)).

good_weather(Data):-
humid(Data) =:= 1, temp(Data) < 0.

good_weather(Data):-
humid(Data) =:= 0, temp(Data) > 15.

query(good_weather( )).

Notice how the random variables humid and temp appear
in the body of a logical rule with comparison operators. In
our probabilistic setting, the truth value of a comparison
depends on the value of its random variables and is thus
random itself.

DeepSeaProbLog generalises a range of existing PLP
languages. For instance, if we were to remove the distribu-
tional fact on temp and all the PCFs using them, we would
obtain a DeepProbLog program [Manhaeve et al., 2021]. If
we additionally replace the neural network in humid with
a fixed probability p, we end up with a probabilistic logic
program [De Raedt et al., 2007]. Replacing that constant
probability p by a constant 1 yields a non-probabilistic Pro-
log program. Alternatively, considering all rules and facts in
Example 3.3 but replacing the neural parameters of the nor-
mal distribution with numeric constants results in a Distri-
butional Clause program [Gutmann et al., 2011]. We further
discuss these connections in Appendix A, where we also
formally prove that DeepSeaProbLog strictly generalises
DeepProbLog.

3.2 SEMANTICS

DeepSeaProbLog programs are used to compute the prob-
ability that a ground atom q is entailed. That probability

follows from the semantics of a DeepSeaProbLog program.
As is custom in (probabilistic) logic programming, we will
define the semantics of DeepSeaProbLog with respect to
ground programs. We will assume that each ground distribu-
tional fact f ∈ FD defines a different random variable, as
each random variable can only have one unique distribution.
Also notice that any ground neural distributional facts will
contain the inputs to their neural functions. In a sense, a
DeepSeaProbLog program is conditioned on these neural
network inputs.

To define the semantics of ground DeepSeaProbLog pro-
grams, we first introduce the possible worlds over the
PCFs. Every subset CM of a set of PCFs CM defines
a possible world ωCM

= {CM ∪ hθ | RL ∪ CM |=
hθ and hθ is ground}. Intuitively speaking, the comparis-
ons in such a subset are considered to be true and all others
false. A rule with a comparison in its body that is not in this
subset can hence not be used to determine the truth value
of atoms. The deterministic rules RL and the subset CM

together define a set of all ground atoms hθ that are deriv-
able, i.e., entailed by the program, and thus considered true.
Such a set is called a possible world. We refer the reader
to the paper of De Raedt and Kimmig [2015] for a detailed
account of possible worlds in a PLP context. Following the
distribution semantics of Sato [1995] and by taking inspira-
tion from Gutmann et al. [2011], we define the probability
of a possible world.

Definition 3.5 (Probability of a possible world). Let
P be a ground DeepSeaProbLog program and CM =
{c1, . . . , cH} ⊆ CM a set of PCFs that depend on the ran-
dom variables declared in the set of distributional facts FD.
The probability P (ωCM

) of a world ωCM
is then defined as∫ ( ∏

ci∈CM

1(ci)
)( ∏

ci∈CM\CM

1(c̄i)
) dPFD

. (1)

Here the symbol 1 denotes the indicator function, c̄i is the
complement of the comparison ci and dPFD

represents the
joint probability measure of the random variables defined in
the set of distributional facts FD.

Example 3.4 (Probability of a possible
world). Given P as in Example 3.3, where
humid_detector(data1) predicts p(data1)
and temperature_predictor(data1) predicts
the tuple (µ(data1), σ(data1)), the probability of the
possible world ω{temp(data1)>15, humid(data1)=:=1} is
given by

p(data1) ·
∫
1(x>15)

exp
(
− (x−µ(data1))2

2σ2(data1)

)
√
2πσ(data1)

dx. (2)

Indeed, the measure dPFD
decomposes into a counting

measure and the product of a Gaussian density func-
tion with a differential. The counting measure leads to
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the factor p(data1), since that is the probability that
humid(data1)=:=1. Hence, the products in Equation 1
reduce to a single indicator of the PCF (x > 15).

Definition 3.6 (Probability of query atom). The probability
of a ground atom q is given by

P (q) =
∑

CM⊆CM :q∈ωCM

P (ωCM
). (3)

Proposition 3.1 (Measureability of query atom). Let P be a
DeepSeaProbLog program, then P defines, for an arbitrary
query atom q, the probability that q is true.
Proof. See Appendix B.

4 INFERENCE AND LEARNING

4.1 INFERENCE VIA WEIGHTED LOGIC

A popular technique to perform inference in probabilistic
logic programming uses a reduction to so-called weighted
model counting (WMC); instead of computing the probabil-
ity of a query, one computes the weight of a propositional
logical formula [Chavira and Darwiche, 2008, Fierens et al.,
2015]. For DeepSeaProbLog, the equivalent approach is to
map a ground program onto a satisfiability modulo theory
(SMT) formula [Barrett and Tinelli, 2018]. The analogous
concept to WMC for these formulas is weighted model integ-
ration (WMI) [Belle et al., 2015], which can handle infinite
sample spaces. In all that follows, for ease of exposition, we
assume that all joint probability distributions are continuous.

Proposition 4.1 (Inference as WMI). Assume that the meas-
ure dPFD

decomposes into a joint probability density func-
tion w(x) and a differential dx, then the probability P (q)
of a query atom q can be expressed as the weighted model
integration problem

∫  ∑
CM⊆CM :q∈ωCM

∏
ci∈CM∪CM

1(ci(x))

w(x) dx, (4)

where CM := {c̄i | ci ∈ CM\CM} .
Proof. See Appendix C.

Being able to express the probability of a queried atom in
DeepSeaProbLog as a weighted model integral allows us
to adapt and deploy inference techniques developed in the
weighted model integration literature for DeepSeaProbLog.
We opt for the approximate inference algorithm ‘Sampo’
presented in Zuidberg Dos Martires et al. [2019] because
of its more scalable nature. Sampo uses knowledge com-
pilation [Darwiche and Marquis, 2002], a state-of-the-art
technique for probabilistic logic inference [Chavira and Dar-
wiche, 2008, Fierens et al., 2015]. Intuitively, knowledge

+

× ×

[T < 0] [T > 0] [T < 15][T > 15]

× ×p(H = 1) p(H = 0)

data1

Figure 1: Diagrammatic representation of the result of know-
ledge compilation for the query in Example 3.3. The blue
boxes originate from PCFs over discrete variables, while the
orange ones are PCFs over continuous variables. Note how
the discrete variable PCFs are reduced to their exact probab-
ilities while the continuous PCFs still need to be inferred.

compilation is a two-step procedure applied to a logical
formula with PCFs, i.e., an SMT formula. First, it infers the
exact probability of all PCFs containing discrete variables
through symbolic inference. Then, it converts the remainder
of the SMT formula into a polynomial in terms of those
exact probabilities and the PCFs containing continuous ran-
dom variables (Figure 1). This polynomial is the integrand
of Equation 4. All that remains is to approximate the integ-
ration of this polynomial by sampling from the joint probab-
ility distribution w(x) of the continuous random variables.
In other words, Sampo computes the expression

P (q) =

∫
SP(x) · w(x) dx ≈ 1

|X |
∑
x∈X

SP(x), (5)

where X denotes a set of samples drawn from w(x) and
SP(x) is the result of knowledge compilation, i.e., the sum
of products of indicator functions in Equation 4.

We stress that the Sampo algorithm only samples random
variables whose expected value with respect to the function
SP(x) can not be computed exactly. Hence, in the absence of
continuous random variables, our implementation of Deep-
SeaProbLog using Sampo coincides with DeepProbLog on
both a semantics level and inference level.

4.2 LEARNING VIA DIFFERENTIATION

A DeepSeaProbLog program depend on a set of (neural)
parameters Λ (Definition 3.2). In order to optimise these
parameters, we need to take their gradients of a loss function
that compares the probability P (q) to a training signal. More
precisely, we need to compute the derivative

∂λL(PΛ(q)) = ∂PΛ(q)L(PΛ(q)) · ∂λPΛ(q), (6)

where we explicitly indicate the dependency of the probabil-
ity on Λ and λ ∈ Λ. Differentiating PΛ(q) with respect to λ
presents two obstacles. First, the question of differentiating
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through the sampling process of Equation 5 and second,
the non-differentiability of the indicator functions in SP(x)
[Zuidberg Dos Martires, 2019].

The non-differentiability of sampling is tackled using the re-
parametrisation trick [Ruiz et al., 2016]. Reparametrisation
offers better estimates than other approaches, such as REIN-
FORCE [Williams, 1992] and is readily utilised in modern
probabilistic programming languages such as Tensorflow
Probability [Tran et al., 2017] and Pyro [Bingham et al.,
2019]. Conversely, the non-differentiability of the indicator
functions prevents swapping the order of differentiation and
integration [Flanders, 1973], which we resolve by applying
continuous relaxations following the work of Petersen et al.
[2021]. Together, we obtain the gradient estimate

∂λPΛ(q) = ∂λ

∫
SP(x) · wΛ(x) dx (7)

≈
∫

[∂λSPs(r(u,Λ))] · p(u) du, (8)

where the subscript s in SPs(x) denotes the continuously
relaxed or ‘softened’ version of SP(x) and r(u,Λ) is the
reparametrisation function.

Our gradient estimate using relaxations is asymptotically
unbiased. As an example of these relaxations, consider
the indicator of a PCF (g(x) > 0), which is relaxed into
the sigmoid σ(β · g(x)). Appendix D provides more details
on relaxations of general PCFs. The coolness parameter
β ∈ R0

+ determines the strictness of the relaxation. Hence,
we recover the hard indicator function when β→+∞. Note
that relaxing indicator functions introduces bias. Petersen
et al. [2021] already stated in their work that, in the in-
finite coolness limit, a relaxed function coincides with the
non-relaxed one. Proposition 4.2 extends this result to the
derivatives of relaxed and non-relaxed functions, proving
that our gradient estimate is asymptotically unbiased.

Proposition 4.2 (Unbiased in the infinite coolness limit).
Let P be a DeepSeaProbLog program with PCFs (gi(x) ▷◁
0) and corresponding coolness parameters βi.
If all ∂λ(gi ◦ r) are locally integrable over Rk and every
βi → +∞, then we have, for any query atom q, that

∂λP (q) =

∫
∂λSPs(r(u,Λ)) · p(u) du. (9)

Proof. The proof makes use of the mathematical theory of
distributions [Schwartz, 1957], which generalise the concept
of functions, and is given in Appendix E.

Finally, we obtain a practical and unbiased estimate of

∂λPΛ(q) using a set of samples U drawn from p(u).

∂λP (q) ≈
∫

[∂λSPs(r(u,Λ))] · p(u) du (10)

≈ 1

|U|
∑
u∈U

∂λSPs(r(u,Λ)). (11)

Computing this gradient estimate does not require draw-
ing new samples. Implementing the relaxations of PCFs
in a ‘straight-through’ manner allows us to directly apply
automatic differentiation on the inferred probability.

4.3 PROBABILISTIC PROGRAMMING
CONNECTIONS

Since knowledge compilation symbolically infers discrete
random variables, we only have to sample from a continuous
joint probability distribution. To sample such distributions,
we can fully exploit the advanced inference and learning
techniques [Hoffman et al., 2014] of modern probabilistic
programming languages [Tran et al., 2017, Bingham et al.,
2019]. Our implementation of DeepSeaProbLog utilises
Tensorflow Probability for this task, effectively using know-
ledge compilation as a differentiable bridge between logical
and probabilistic reasoning. While this bridge is limited
to sampling techniques for now, it presents an interesting
direction for future work to completely unify NeSy with
DPP.

4.4 LIMITATIONS

While the use of relaxations is well-known and used in re-
cent gradient estimators [Tucker et al., 2017, Grathwohl
et al., 2018], the bias they introduce is often hard to deal
with in practice. In our case, this bias only reduces to zero
in the infinite coolness limit (Proposition 4.2), meaning the
use of annealing can be necessary. Finding a good annealing
scheme for any problem is non-trivial and effectively intro-
duces another component in need of optimisation. However,
as relaxations allow the use of the reparametrisation trick,
the resulting lower variance estimates together with our
theoretical guarantees support our choice. A more detailed
discussion of the current limitations of DeepSeaProbLog
can be found in Appendix H.

5 RELATED WORK

From a NeSy perspective the formalism most closely re-
lated to DeepSeaProbLog is that of Logic Tensor Networks
(LTNs) [Badreddine et al., 2022]. The main difference
between LTNs and DeepSeaProbLog is the fuzzy logic se-
mantics of the former and the probabilistic semantics of the
latter. Interestingly, LTNs and other NeSy approaches based
on fuzzy logic also require relaxations to incorporate con-
tinuous values. However, fuzzy-based approaches require
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these relaxations at the semantics level, in contrast to Deep-
SeaProbLog. Even more, they can only compare continuous
point values instead of more general continuous random
variables. LTNs’ fuzzy semantics also exhibit drawbacks
on a more practical level. Unlike DeepSeaProbLog with its
probabilistic semantics, LTNs are not inherently capable
of neural-symbolic generative modelling (Section 6.3). For
a broader overview of the field of neural-symbolic AI, we
refer the reader to a series of survey papers that have been
published in recent years [Garcez et al., 2019, Marra et al.,
2021, Garcez et al., 2022].

From a probabilistic programming perspective, Deep-
SeaProbLog is related to languages that handle discrete
and continuous random variables such as BLOG [Milch,
2006], Distributional Clauses [Gutmann et al., 2011] and
Anglican [Tolpin et al., 2016], which have all been given
declarative semantics, i.e., the meaning of the program does
not depend on the underlying inference algorithm. However,
these languages have the drawback of non-differentiability.
This drawback stands in stark contrast to end-to-end (deep)
probabilistic programming languages such as Pyro [Bing-
ham et al., 2019] or Tensorflow Probability [Dillon et al.,
2017], but these have only been equipped with operational
semantics and do not support logical constraints. Deep-
SeaProbLog not only introduces the ability to express such
logical constraints in the form of PCFs to construct challen-
ging posterior distributions, but does so in an end-to-end
differentiable fashion.

Finally, our gradient estimate can be related to relaxation-
based methods like REBAR [Tucker et al., 2017] or RE-
LAX [Grathwohl et al., 2018], but without the REIN-
FORCE [Williams, 1992] inspired component. Instead, we
utilise the differentiability of knowledge compilation to ob-
tain exact gradients of discrete variables. Since our inference
scheme innately requires knowledge compilation, the use of
other discrete gradient estimators like [Niepert et al., 2021]
does not directly apply to DeepSeaProbLog. Moreover, we
exploit the structure of our problem by directly relaxing
comparison formulae in a sound manner [Petersen et al.,
2021], in contrast to introducing an artificial relaxation of
the whole problem [Grathwohl et al., 2018].

6 EXPERIMENTAL EVALUATION

We illustrate the versatility of DeepSeaProbLog by tackling
three different problems. Section 6.1 discusses the detec-
tion of handwritten dates without location supervision. In
Section 6.2 a hybrid Bayesian network with conditional
probabilities dependent on the satisfaction of certain logical
constraints will be optimised. Finally, Section 6.3 intro-
duces neural-symbolic variational auto-encoders, inspired
by Misino et al. [2022].

The details of our experimental setup, including the precise

Figure 2: On the left, an example of a handwritten year. On
the right, the attention map for the digit ‘8’ as a generalised
normal distribution. Intuitively, we can view generalised
normal distributions as differentiable bounding boxes. This
allows gradients to flow from a downstream classification
network to the regression component.

DeepSeaProbLog programs, coolness annealing schemes
and hyperparameters used for the neural networks are given
in Appendix F.

6.1 NEURAL-SYMBOLIC ATTENTION

A problem that cannot yet be solved to a satisfactory de-
gree by purely neural or other neural-symbolic systems is
detecting handwritten years. Given a single image with a
handwritten year, the task is to predict the correct year as
a sequence of 4 digits together with the location of these
digits (Figure 2, left). This year can be anywhere in the
image and the only supervision is in the digits of the year,
not where these digits are in the image. In other words, the
problem is equivalent to object detection without bounding
box supervision.

Solving such a problem seems to be out of scope for current
methods. On the one hand, existing neural approaches are
often complex pipelines of neural components that break
end-to-end differentiability [Seker and Ahn, 2022]. On the
other hand, current neural-symbolic methods lack sufficient
spatial reasoning capabilities in order to perform the neces-
sary image segmentation.

We exploit probabilistic programming by modelling the
location of a digit as a deep generalised normal distribu-
tion [Nadarajah, 2005]. That is, we use a convolutional
neural network to regress the parameters of four gener-
alised normal distributions, one for each digit of a year.
Then, we take inspiration from the spatial transformer lit-
erature [Carion et al., 2020] and convert the distribution of
each location to an attention map (Figure 2, right).

In our experimental validation we compare DeepSeaProb-
Log to a neural baseline and logic tensor networks. The
neural baseline applies the four probabilistic attention maps,
one for the location of each of the four digits, to the input
image. The resulting four attenuated images correspond to
the four digits from left to right and are passed on in that or-
der to a classification network without additional reasoning.
Importantly, we maintain the same order from left to right
for the classifications. With DeepSeaProbLog, we encode
that a year is a sequence of digits, i.e., the order matters, by
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Table 1: Mean accuracy and IoU with standard error for
classifying the correct year, taken over 10 runs.

Method Results

acc. IoU

DeepSeaProbLog 93.77± 0.57 17.69± 0.23
LTN 76.50± 12.10 10.73± 1.69

Neural Baseline 54.71± 14.33 6.26± 1.77

enforcing an explicit order on the digit locations. Doing so
requires spatial reasoning, i.e., reasoning which digit is at
which location. For LTNs, we encode the same information.
However, as LTNs lack a proper distribution semantics, they
can only reason on the level of the expected values of the
generalised normal distributions.

In our experiment, the sets of years appearing in the train-
ing, validation and test data are all disjoint. Moreover, the
sets of handwritten digits used to generate those years are
also disjoint. Partitioning the data in such a way leads to a
challenging learning problem; the difficulty lies in out-of-
distribution inference, as the years and handwritten digits
in the validation and test set have never been seen during
training.

We evaluate all methods in terms of accuracy and
Intersection-over-Union (IoU). For the accuracy, we com-
pare the sequence of predicted digits to the correct sequence
of digits constituting a year. A prediction is correct if all
digits are correctly predicted in the right order. For the IoU,
we map each predicted generalised normal distribution to a
bounding box by using the mean as the centre and the scale
parameter as the width of the box. The IoU is then given
by the overlap between this box and the true location of the
handwritten digit.

We present our results in Table 1. The most striking obser-
vation is the poor performance and large variance of the
neural baseline. It fails to predict the location of the digits
in the right order, as can be seen from the lower IoU val-
ues. Since classification depends on the predicted locations,
these lower values also explain the lack in accuracy. We
can conclude that the neural baseline struggles to general-
ise to out-of-distribution data. While LTNs fare better, the
high standard error on the accuracy indicates that their con-
tinuous reasoning capabilities are insufficient to guarantee
consistent solutions. DeepSeaProbLog distinguishes itself
by a higher and more consistent accuracy. The reason is also
clear; DeepSeaProbLog exploits the entire domain of the
distribution of each location. This then leads to a higher IoU
value that in turn results in a higher accuracy.

THC

R G

D E
Figure 3: Graphical model of Enjoying the weather (E).(E)
holds when Depressed (D) is not true and there is Good
weather (G). A person has a higher probability of being
depressed when it is Cloudy (C), while the degree of good
weather is beta distributed depending on various logical
constraints on Temperature (T) and Rain (R). Finally, rain
is probable when it is both Cloudy and Humid (H).

6.2 NEURAL HYBRID BAYESIAN NETWORKS

Hybrid Bayesian networks [Lerner, 2003] are probabilistic
graphical models that combine discrete and continuous ran-
dom variables. DeepSeaProbLog allows for the introduction
of optimisable neural components and logical constraints
to such models, as shown in Example 3.3. We further ex-
tend this example (Figure 3) and specify the datasets that
form the input to the various neural networks. The temper-
ature is predicted from a real meteorological dataset [Cho
et al., 2020] and we use CIFAR-10 images as proxies for
observing clouds and humidity. Moreover, dependencies on
a number of constraints are added, which goes beyond the
capabilities of traditional probabilistic programming.

Our neural Bayesian model was optimised by only giving
probabilistic supervision on whether E was true or false,
i.e., the weather was enjoyed or not. Given our model, such
distant supervision only translates into a learning signal on
different ranges of temperature values that satisfy different
PCFs. We will see that DeepSeaProbLog’s reasoning over
the full domain of the temperature distribution allows it to
perform meaningful density estimation from such a signal.

The optimised Bayesian model can be evaluated in two ways.
First, the accuracy on CIFAR-10 of the networks utilised in
Cloudy and Humid, which were 95.24± 3.32 and 98.96±
0.11, respectively. Second, we measure the quality of the
density estimation on Temperature by looking at the MSE
between the true and predicted mean values, which was
0.1799± 0.0139 . Importantly, DeepSeaProbLog was able
to approximate the standard deviation of Temperature from
just the distant supervision, deviating by only 0.60± 0.22.
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Diff is 6 - 3

6

3

recon_loss

recon_loss

vae_latent digit

latent

latent

Figure 4: Given example pairs of images and the value of
their subtraction, e.g., ( , ) and 3, the CVAE encoder
vae_latent first encodes each image into a multivariate
normal NDF (latent) and a latent vector. The latter is the
input of a categorical NDF digit, completing the CVAE
latent space. Supervision is dual; generated images are com-
pared to the original ones in a probabilistic reconstruction
loss, while both digits need to subtract to the given value.

6.3 NEURAL-SYMBOLIC VARIATIONAL
AUTO-ENCODER

Probabilistic programming is well-suited to generative tasks,
but it can not perform generation conditioned on logical
constraints. Inspired by the work of Misino et al. [2022],
we showcase how DeepSeaProbLog extends the generative
power of probabilistic programming to such constraints. To
this end, we will consider the task of learning to generate 2
images of digits given the value of their subtraction.

A diagrammatic overview of our DeepSeaProbLog program
is given in Figure 4. It uses a conditional variational auto-
encoder (CVAE) [Sohn et al., 2015] to generate images
conditioned on a digit value. DeepSeaProbLog finds those
digit values from a given subtraction result by logical reas-
oning. It can also condition generation on other variables
in the CVAE latent space as this space is an integral part of
DeepSeaProbLog’s deep, relational model. We will exploit
this property later on when we extend the task to generating
digits in the same writing style as a given image without
any additional optimisation.

Both the CVAE and digit classifier are successfully trained
jointly. Example generations of images that satisfy the sub-
traction result ?−? = 5 can be seen below. In general,
DeepSeaProbLog finds all possible digits that subtract to a
given value and generates images for each correct combina-
tion. Below, we left out 2 such combinations for clarity of
exposition.

While our program is inspired by the VAEL architecture
of Misino et al. [2022], conceptual differences exist. Most
notably, for VAEL, the image generation resides outside the
probabilistic logic program. Conversely, the CVAE, includ-

Figure 5: Four random images of right digits (top row) and
their generated left digits for 3 given random difference
values (bottom row). Note the preservation of the style of
the given minuends.

ing its latent space, is explicitly declared and accessible in
DeepSeaProbLog. This difference allows DeepSeaProbLog
to generalise to conditional generative queries that differ sig-
nificantly from the original optimisation task. For example,
we can zero-shot query the program to fill in the blank in
−? = Diff instead of the two blanks of the learning

task ?−? = Diff. Even more, we can enforce that the
generated digit is in the same writing style as the given digit
by conditioning the generation on the latent space of the
given image (Figure 5).

7 CONCLUSION

We presented DeepSeaProbLog, a novel neural-symbolic
probabilistic logic programming language that integrates
hybrid probabilistic logic and neural networks. Inference is
dealt with efficiently through approximate weighted model
integration while learning is facilitated by reparametrisa-
tion and continuous relaxations of non-differentiable logic
components. Our experiments illustrate how DeepSeaProb-
Log is capable of intricate probabilistic modelling allowing
for meaningful weak supervision while maintaining strong
out-of-distribution performance. Moreover, they show how
hybrid probabilistic logic can be used as a flexible structur-
ing formalism for the neural paradigm that can effectively
optimise and reuse neural components in different tasks.
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