
Studying the Effect of GNN Spatial Convolutions On The Embedding Space’s
Geometry

Claire Donnat1 So Won Jeong1

1Department of Statistics, The University of Chicago, Chicago, Illinois, USA

Abstract

By recursively summing node features over entire
neighborhoods, spatial graph convolution opera-
tors have been heralded as key to the success of
Graph Neural Networks (GNNs). Yet, despite the
multiplication of GNN methods across tasks and
applications, the effect of this aggregation oper-
ation has yet to be analyzed. In fact, while most
recent efforts in the GNN community have focused
on optimizing the architecture of the neural net-
work, fewer works have attempted to characterize
(a) the different classes of spatial convolution op-
erators, (b) their impact on the geometry of the
embedding space, and (c) how the choice of a par-
ticular convolution should relate to properties of
the data. In this paper, we propose to answer all
three questions by dividing existing operators into
two main classes (symmetrized vs. row-normalized
spatial convolutions), and show how these corre-
spond to different implicit biases on the data. Fi-
nally, we show that this convolution operator is in
fact tunable, and explicit regimes in which certain
choices of convolutions — and therefore, embed-
ding geometries — might be more appropriate.

1 INTRODUCTION AND MOTIVATION

As the extension of the Deep Neural Network (DNN) ma-
chinery to the graph setting, Graph Neural Networks (GNN)
offers a powerful paradigm for extending Machine Learn-
ing tools to the analysis of relational data, typically mod-
eled through a graph [Battaglia et al., 2018, Dong et al.,
2020, Hamilton et al., 2017, Kipf and Welling, 2016, Wu
et al., 2020b, Zhou et al., 2020a]. The recent impressive
success of GNNs across tasks and applications [Casas et al.,
2019, Gaudelet et al., 2021, Gilmer et al., 2017, Li et al.,
2021, Ma et al., 2019, Wu et al., 2020a] in dealing with

this complex data type has been attributed to their two main
components: (a) a convolution operator C (or propagation
operator [Zhou et al., 2020a,b]) that aggregates information
contained in the neighborhood of any given node to cre-
ate neighborhood-aware embeddings; and b) a non-linear
layer — or transformator[Zhou et al., 2020b] —, that mul-
tiplies the convolved features by a weight matrix before
applying a non-linearity. All GNN parameters are typically
trained in an end-to-end fashion and — as for Deep Neural
Networks — have been deemed essential in creating pow-
erful non-linear node embeddings that can be tailored to
any downstream prediction task. Depending on the architec-
ture of the network, such graph convolution blocks are then
stacked and/or repeated to encode varying “receptive depths”
[Frasca et al., 2020, Kipf and Welling, 2016, Wu et al., 2019].
More formally, denoting as H(k) the output of the kth layer,
GNNs can be broadly understood as a sequence of node con-
volutions of the form H

(k)
u = σ(CN (u)(H

(k−1)
u)Wk + bk),

where H(0)
u = Xu are node u’s raw features, σ is a non-

linearity (e.g. ReLU), and CN (u) is the convolution operator
applied to the neighborhoodN (u) of node u. The final layer
is always taken to be linear and written as:

H(K)
u = CN (u)(H

(K−1)
u)W (K) + b(K). (1)

The convolution operator. Most existing theoretical anal-
yses of GNNs differentiate two main classes of convolu-
tion operators C[Zhou et al., 2020a]: (i) spectral operators
[Defferrard et al., 2016, Dong et al., 2020, Gama et al.,
2018a,b, Henaff et al., 2015], that build off of the eigen-
vectors of some version of the Graph Laplacian (defined
in its unnormalized version as L = D − A, with A the
adjacency matrix and D the degree matrix); and (ii) spatial
operators, that recursively aggregate node features within
a given neighborhood. While in practice, the dichotomy
between the two is attenuated by their implementation
(spectral methods usually resort to using low-order Cheby-
chev polynomials of the Laplacian [Defferrard et al., 2016,
Shuman et al., 2011, 2013], thus effectively “localizing”
the signal), these two approaches have different interpre-

Proceedings of the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023), PMLR 216:539–548.

tations and implications for downstream data analysis. In
this paper, we propose to focus on spatial convolutions,
as popularized by the framework of Kipf et al [Kipf and
Welling, 2016]. In this case, the convolution operator usually
amounts to summing nodes features over entire neighbor-
hoods N (u), so that the convolution becomes the function:
C : {Xv}v∈N (u) → C({Xv}v∈N (u)) = SX , where S is a
weight matrix. Kipf and Welling [2016] suggest taking S
to be normalized adjacency matrix with added self-loops:
S = D̂−1/2ÂD−1/2, where Â = A + I is the adjacency
matrix of the graph with self-loops, D̂ its diagonal degree
matrix, and X ∈ Rn×p is the feature matrix for the n nodes.
The summation is crucial in preserving permutation invari-
ance over the neighborhood and in encoding long-range
dependencies by repeatedly stacking GNN layers — thereby
allowing information to percolate through the graph.

Variations on the convolution operator. While GNN meth-
ods have grown increasingly popular, the form of the spatial
convolution operator seems to have received less attention
from the community. Table 1 in Appendix A provides a
summary of the main graph convolution operators that are
currently available in the Pytorch geometric package [Fey
and Lenssen, 2019] — here taken as a proxy for the most
popular convolution choices. As observed from this table,
all of the spatial operators rely on a (weighted) sum of
neighborhood features, in line with the framework of Kipf
et al [Kipf and Welling, 2016]. In fact, while GraphSage
[Hamilton et al., 2017] has been attempted using alternative
permutation-invariant aggregators (such as “max” pooling
and an LSTM version of the convolution operator), the au-
thors did not report any significant advantage of these meth-
ods over the simple sum. Similarly, in [Xu et al., 2018], the
authors show that a simple summation is often sufficient to
characterize a multiset. Thus, without loss of (practical) gen-
erality, we restrict our study to sum-based aggregators. In
this setting, two additional variations have appeared over the
recent years: (i) attention-based spatial convolutions [Brody
et al., 2021, Veličković et al., 2017, Xie et al., 2020], which
attempt to learn tailored edge weights; and more broadly, (ii)
weighted spatial convolutions (e.g. using graphon weights,
[Parada-Mayorga et al., 2021, Ruiz et al., 2020], kernels
[Nikolentzos and Vazirgiannis, 2020, Feng et al., 2022]
among others[Zhang et al., 2020]), that refine the adjacency
matrix by endowing it with edge intensities. While efforts
have thus focused on defining “the best edge weights”, little
attention has been put on formally analysing the convo-
lution itself. Yet, attention-based convolutions tend to be
row-normalized, while previous methods (e.g., GCN Kipf
and Welling [2016], GINXu et al. [2018]) usually suggest
weighted symmetrized adjacencies. Our purpose here is to
show that this choice is not trivial, and translates into funda-
mental differences in the geometry of the embedding space.

Prior work: studying the effect of the Convolution op-
erator. The literature focusing on understanding the mech-

anisms behind the success of Graph Neural Networks has
considerably expanded over the past few years. Most no-
tably, an important body of work has focused on understand-
ing the role of this convolution operator in phenomena such
as oversmoothing [Oono and Suzuki, 2019, Cai and Wang,
2020, Chen et al., 2020] and oversquashing[Alon and Ya-
hav, 2020, Topping et al., 2021]. Most of these analyses
are led from a spectral perspective, relating the behavior
of the embeddings to the convolution operator’s eigenval-
ues. However, to the best of our knowledge, none of these
approaches have specifically focused on understanding the
effect of the convolution operator on the organization of the
underlying embedding space, nor has attempted to tie these
properties to any topological features. While methods have
tried to embed nodes in specific manifolds with desirable
geometries (e.g., hyperbolic [Liu et al., 2019, Law, 2021]),
no work seems to have studied the geometry induced by
the convolution itself. We posit that such considerations are
nonetheless fundamental in our understanding of GNNs and
their stability.

Contributions. The objective of this paper is to answer
three questions: (a) how does the choice of a particular con-
volution operator affect the organisation of the embedding
space, (b) how does it relate to the original properties (i.e.
node features, graph distances or topological attributes),
and (c) what is the most appropriate convolution operator
for a given dataset? We will attempt and answer all three
questions by studying two larger families of row-normalized
and symmetrized convolution operators (parametrized by
the variables α ∈ [0, 1] and β ∈ R+), allowing us to show
how the convolution operator itself is in fact tunable. In par-
ticular, we will show different values of α and β impact the
organization of the latent space (Section 3) and the inherent
geometry of the embeddings (Section 4). Finally, we will
characterize regimes in which certain choices of operators
might be more relevant than others.

2 DEFINING A FAMILY OF
CONVOLUTION OPERATORS

To analyse the impact of the convolution operator on the
embedding geometry, we define two main families of spatial
convolutions:
a. Symmetrized Convolutions Operators, defined as the

family of operators of the form:

F =
{
Mα,β = D−αβ (A+ βI)D−αβ

∣∣α ∈ [0, 1],

β ∈ R+, Dβ = diag
(
(A+ βI)1)

)}
. (2)

Here, Dβ is the degree matrix associated with the β-
augmented adjacency matrix A+ βI . Note that this fam-
ily is a generalization of the traditional GCN convolution
SGCN = D̂−1/2ÂD̂−1/2, which corresponds here to a
choice of α = 0.5 and β = 1. The choice α = 0.5 and

540

β = 2 also feature amongst the default implementations
in PyTorch Geometric [Fey and Lenssen, 2019]. Similarly,
the convolution operator indexed by α = 0, β = 1 cor-
responds to a version of the GIN convolution [Xu et al.,
2018], and more generally, to the sum-based message-
passing versions of GNNs [Battaglia et al., 2018].

b. Row-normalized Convolution operators, which we
define as the general family of the form:

M =
{
D−1

(α,β)Mα,β

∣∣D(α,β) = diag
(
Mα,β1)

)
,

Mα,β ∈ F
}
. (3)

This family encompasses a number of operators, such
as the sum-based convolution deployed in Graph-
Sage[Hamilton et al., 2017] — and, to some extent, that
of GAT [Veličković et al., 2017], which considers row-
normalized convolutions of a “learned”, modified version
of the adjacency matrix.

For both families of convolution operators, the parameter α
impacts the weights assigned to nodes as a function of their
degree: as α increases, high-degree nodes are increasingly
penalised, so that their contribution to neighboring node
embeddings decreases (relative to lower-degree nodes). On
the other hand, β can be interpreted as capturing the amount
of “innovation” or relevant information that the source node
brings to the embedding with respect to its neighborhood. In
particular, for high values of β, the source node’s contribu-
tion to the node outweighs that of the neighborhood, so that
the embedding becomes essentially identical to its source.
Consequently, β allows us to interpolate between the tradi-
tional GNN regime (β = 1) and the MLP setting. Table 1
in Appendix A lists a number of popular GNN convolu-
tions, along with their associated families and parameters —
thereby highlighting the ubiquity of this framework.

Empirical consequences of a choice of operator. While
seemingly specious, the distinction between these two fam-
ilies corresponds in fact to different assumptions on the
nature of the data. Consider the (potentially weighted) ad-
jacency matrix with self-loops as a similarity matrix. GNN
row-normalized convolutions bear a striking resemblance
with the diffusion maps suggested by Coifman and Lafon
[2006] for embedding nodes in the “featureless” case where
X = I . Diffusion maps are embeddings provided by the
eigenvectors of the matrix: M = D−1

α,βMα,β , Mα,β ∈ F
for an appropriate choice of β. Coifman and Lafon [2006]
show indeed more generally that the eigenvectors of the
matrix M t, t ∈ R+ allow to recover the structure of man-
ifold underlying the graph at larger and larger scales. The
stacking of the different GNN convolutions without non-
linearities (e.g. Wu et al. [2019]) can be compared to a
variation of the diffusion process proposed by Coifman and
Lafon [2006]: in the case of GNNs, t ∈ N is discrete and
corresponds to the depth of the network. This connection is
interesting. Coifman and Lafon [2006] emphasized indeed
the importance of the choice of the α: if the data density is

assumed to be uniform, then a choice of α = 0 ensures that
the operator is an unbiased estimate of the Laplace-Beltrami
operator. Conversely, α = 1 is better suited for manifold es-
timation with non-uniform sampling densities. While GNNs
consider embeddings of both the graph and its node fea-
tures, we posit that α might have a similar effect on the
estimation procedure. This comparison implicitly assumes
that the data lives on some smooth Riemannian manifold,
where the degree or centrality of a node corresponds to an
assumption on the sampling distribution over M: nodes
with high degree correspond to “well-sampled” areas of the
manifold. Therefore, in this setting, it is intuitively possible
to get an accurate representation of the local information
by averaging neighbourhood features: the higher the degree,
the higher the amount of certainty around the node’s value.
By contrast, symmetrized embeddings are weighted sums
— but not convex combinations — of neighbours. Here, the
sum simply plays the role of a permutation-invariant aggre-
gation operator[Hamilton, 2020], and as we will see, is able
to encode topological features (e.g. structural roles [Donnat
et al., 2018]).

Experiments. Finally, to motivate our study before diving
into more theoretical considerations, we propose to highlight
the impact of the choice using standard benchmarks in the
literature (we refer the reader to Appendix E for an overview
of the properties of these datasets)1. Figure 1b highlights the
impact of the value of α and β on the classification accuracy
for Cora. Note here that we are not suggesting the use of any
particular tuple (α, β) for Cora, but simply highlighting its
influence on the performance of the algorithm. In particular,
for the symmetric operator, the value of α is the main driver
of the difference in performance. By contrast, the choice of
β affects less the performance of the GNN— unless β be-
comes too big and outweighs the rest of the neighbors. This
effect might be due to the significant level of homophily
in Cora: in this setting, the source node’s feature vector is
fairly redundant with that of its neighbours. However, we
show in Appendix E additional examples where the impact
of β is much more substantial. Most strikingly, the choice of
α seems to have a significant effect on the performance of
the symmetrized GNN, with a phase transition at α = 0.5:
for values of α greater than this threshold, the performance
drops quite substantially. Noticeably, in the “poor” perfor-
mance region, the interaction between α and β is more
marked: choosing the low value of β (i.e., β = 0) seems to
mitigate the decrease in performance.

We emphasize here that the scope of this paper is not to sug-
gest another convolution operator that would achieve state-
of-the-art results. Rather, through this series of experiments,
we hope to have convinced the reader that, empirically, the
choice of convolution is important and can help gain up to
almost 7% accuracy on traditional GNN approaches, with
no modifications to the architecture of the network whatso-

1The code for the experiments can be found here

541

https://github.com/sowonjeong/gnn-geometry-uai

(a) Accuracy as a function of α (β = 1). (b) Cora dataset: test accuracy as a function of α and β

Figure 1. Results for Cora for our family of convolutions defined in Eq.2 and Eq.3 (50 independent experiments, selecting a
random training set and test set). Note the strong dependency of the results on both α and β for the normalized convolution.

Alpha
Dataset Convolution Type 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Symmetric 77.02±2.13 77.85±1.7 78.91±1.78 79.37±1.78 79.23±2 77.63±2.53 72.71±3.43 60.67±4.09 41.59±5.71 31.19±2.59Cora Row-Normalized 78.12±2.27 78.08±2.01 77.97±2.16 77.83±2.1 77.81±2.07 77.73±1.91 77.3±2.24 77.33±2.21 77.24±2.01 77.1±2.2
Symmetric 75.41±2.51 76.09±2.38 76.63±2.51 76.79±2.48 75.4±3.81 68.27±6.82 54.62±8.52 44.11±5.36 40.57±2.13 39.9±2.09pubMed Row-Normalized 74.42±3.82 74.62±3.76 74.74±3.65 74.75±3.44 74.68±3.45 74.48±3.44 74.28±3.38 73.92±3.36 73.73±3.36 73.42±3.44
Symmetric 65.06±2.74 65.5±2.57 66.51±2.49 67.59±2.59 67.45±2.56 67.32±3.04 65.53±3.58 60.77±4.17 51.41±4.86 38.2±5.07Citeseer Row-Normalized 66.69±2.87 66.75±2.99 66.79±2.69 66.99±3.07 66.74±2.71 66.91±2.84 67.02±3.03 66.98±2.92 66.93±2.92 66.96±2.97
Symmetric 93.02±0.27 92.93±0.25 92.9±0.21 92.32±0.26 88.66±0.39 77.88±0.89 52.34±1.93 24.91±0.48 22.63±0.29 22.63±0.29Coauthor CS Row-Normalized 88.97±0.4 89.4±0.43 89.74±0.41 90.01±0.45 90.13±0.51 90.21±0.5 90.29±0.5 90.26±0.47 90.3±0.44 90.24±0.42
Symmetric 58.77±18.34 88.67±1.62 90.09±1.02 89.18±1.07 83.23±1.64 37.12±1.4 33.17±0.93 32±0.91 29.05±0.94 27.47±0.86Amazon Photos Row-Normalized 82.09±1.34 83.75±1.13 84.97±1.34 86.15±1.26 86.75±1.44 87.33±1.18 88.01±1.11 87.9±1.2 88.05±0.99 87.46±1.3
Symmetric 27.06±0.61 27.43±0.64 27.74±0.61 28.27±0.54 28.58±0.57 28.75±0.52 28.9±0.56 28.83±0.6 28.51±0.67 28.33±0.64Actor Row-Normalized 29.42±0.73 29.97±0.54 30.33±0.65 30.71±0.71 31±0.83 31.26±0.71 31.37±0.72 31.53±0.6 31.58±0.6 31.63±0.6
Symmetric 51.04±4.08 51.01±3.25 51.04±2.91 51.28±3.08 51.25±3.12 52.29±3.06 53.65±3.21 54.38±4.17 54.55±3.97 54.55±4.65Cornell Row-Normalized 63.78±4.39 64.13±4.8 63.96±4.53 64.65±4.51 64.83±4.74 65.52±4.65 65.87±4.72 65.94±4.6 66.46±4.5 66.39±4.61
Symmetric 48.03±3.69 49.39±3.5 50.29±3.04 51.09±3.15 51.79±3.1 51.6±3.65 50.8±4.59 49.92±5.04 49.07±5.16 48.21±4.75Wisconsin Row-Normalized 50.24±4.88 51.04±5.38 51.28±5.77 52.03±6.07 52.91±6.32 53.6±5.82 54.4±6.01 55.28±6.06 55.76±6.01 56.19±5.84
Symmetric 77.88±11.43 79.85±7.07 79.55±9.32 81.67±6.49 83.48±4.19 84.39±3.03 84.09±2.88 84.09±2.88 84.09±2.88 84.09±2.88PATTERN Row-Normalized 79.7±7.77 81.36±5.44 81.67±5.37 83.03±3.56 83.48±2.98 83.79±3.28 84.24±2.78 83.33±4.04 82.58±3.13 83.48±2.62
Symmetric 36.14±15.88 34.29±10.24 39.86±12.84 32.71±11.16 37.29±14.56 38.14±12.09 38.29±14.69 42.43±6.43 31.57±8.87 23.71±4CLUSTER Row-Normalized 45.29±11.74 37.71±11.39 41.43±9.52 37.71±9.69 38.14±11.19 37.86±10.91 32.43±10.01 33.29±9.92 33.29±12.25 28.14±11.61
Symmetric 26.38±3.18 30.83±3.21 51.85±5.45 64.36±3.96 66.02±3.87 59.54±2.37 51.9±4.56 39.53±2.61 33.64±3.56 31.89±1.76WikiCS Row-Normalized 52.14±4.28 58.89±2.14 60.69±2.51 62.56±5 64.33±2.81 66.68±3.59 68.91±2.15 69.01±2.19 68.08±3.37 69.23±3.98
Symmetric 16.12±0.05 16.4±0.39 17.14±1.03 16.85±1.7 16.14±0.03 16.44±0.2 16.95±0.08 17.18±0.11 17.19±0.08 16.81±0.19OGBN-arxiv Row-Normalized 17.35±0.2 17.07±0.33 16.9±0.08 16.69±0.12 16.57±0.12 16.36±0.27 16.18±0.1 16.14±0.03 16.14±0.03 16.14±0.03

Table 1. Results(accuracy) of node classification task for 12 benchmark datasets. The number of experiments differs by each
dataset. Batch normalization has been applied to PATTERN, CLUSTER, WikiCS. Details for the experiments are provided in
Table 3 in Appendix E.

ever. Motivated by these observations, the rest of this paper
focuses on analysing these convolution operators, and their
impact on the organization of the embedding space.

3 GEOMETRY OF GNN EMBEDDINGS
IN LATENT SPACE

In this section, we analyse the effect of the convolution op-
erator on the global organization of the latent space. Our
objective is to (a) characterize the implicit constraints that
these operators put on the geometry (in particular, that em-
beddings concentrate differently according to their degree
and choice of the operator), and (b) identify the downstream
consequences in terms of performance. This discussion is
driven by considerations on nodes’ topological characteris-
tics — rather than spectral arguments.

3.1 SYMMETRIC CONVOLUTIONS

We begin our study of the “absolute” latent geometry of
our embeddings with the family of symmetric convolution
Mα,β (see Equation 2). For each layer K, the embedding
is defined as:

H(K) = Sσ(H(K−1)W + b) =
∑

v∈Ñ (u)

Auv
(du + β)α(dv + β)α

Zv·

where Ñ (u) = N (u) ∪ {u} denotes the neighborhood of
node u, Auv is the (possibly weighted) adjacency matrix,
with diagonal equal to β, and Zv· = σ(H

(K−1)
v· W + b).

As a first step to study of the effect of the choice of convo-
lution operator on the latent embedding space, we propose
the following lemma.

Lemma 3.1. For any node u, the effect of the convolution

542

can be characterized as follows:

||SZ||2 ≤ ||Z||2,∞
(

(du + β)1−2α − α ∆̄u

(du + β)2α

+
α(α+ 1)M

2

∆2
u

(du + β)1+2α

) (4)

where ∆̄u (respectively ∆2
u) are the weighted averages of

the degree differences (respectively, squared degree differ-
ences):

∆̄u =

∑
v∈Ñ (u)Auv(dv − du)

du + β
, ∆2

u =

∑
v∈Ñ (u)Auv(dv − du)2

du + β
.

In this equation, ||Z||2,∞ = maxv ||Zv||2, and M =
dmax+β
β+1)2, where dmax denote the maximal degree of the

nodes in the network.

Proof The proof is simple (see Appendix B), and relies on
the triangle inequality coupled with a MacLaurin expansion
of the function dv → 1

(du+β)α(dv+β)α .

Note that this bound is not necessarily tight. In particular,
the proof relies on an application of the triangular inequality,
along with Hölder’s inequality to separate the convolution
from the embeddings. However, while potentially crude, this
bound already allows us to shed more light on the behaviour
of the embedding as a function of the parameters α, β, and
their topology. In particular, this bound allows to highlight:

(a) The role of α. The leading term in inequality 4 is
d1−2α
u , and offers a first explanation for the change of

phase we have observed in some of our experiments in
the previous section. For values of α < 0.5, this term is
an increasing function of the degree: after even a single
convolution, nodes with a small degree have less lee-
way to spread, and will generally remain close to the
origin; High-degree nodes, on the other hand, will enjoy
greater variance after each convolution and be able to
spread to greater radii. Conversely, if α > 0.5, the upper
bound decreases for nodes with high degree — forcing
them to concentrate around the origin. The parameter α,
therefore, controls the "attraction" of nodes towards the
origin as a function of their degree.

(b) The effect of β. The coefficient β, on the other hand,
acts as added mass to the degree du and can be under-
stood as the "strength" of the attraction: for α > 0.5,
the attraction of high-degree nodes to the origin is an
increasing function of β. Conversely, for α < 0.5, the
repulsion of the nodes from the origin is an increasing
function of β.

(c) The influence of the surrounding topology. As previ-
ously exhibited, the node degree plays a defining role in
the variance of the embedding. The bound also exhibits
a dependency on the neighborhood topology through the
terms ∆̄u and ∆̄2

u. Therefore, the more topologically
homogeneous the neighborhood, the lesser the variance.

Consequences. The previous observations yield two main
conclusions. First, the choice of the convolution vector
drives the density of the embedding space: values of β and
α allow the embedding space to expand or contract around
the origin, depending on the node degree.
The second consequence pertains to the accuracy of the
recovery. Since the last layer of GNN is a linear classifier,
we can use known results from statistical theory about the
influence of the different points on the performance of the
algorithm. In particular, in linear regression, it is known that
high-leverage points (that is, points with “extreme” predictor
values”) are more likely to be highly influential points Weis-
berg [2005] (the same follows for generalized linear models,
with some nuances). As such, by preventing high-degree
nodes (respectively low-degree) from taking on extreme em-
bedding value and concentrating them around the origin, the
convolution operator implicitly limits the amount of trust, or
leverage, that these points may have. We summarize these
observations in the following lemma.

Lemma 3.2 (Effect of symmetric convolutions on node
embeddings). In networks with non-homogeneous degree
distributions, the exponent α constrains the leverage asso-
ciated with each of the embeddings as a function of their
degree and local topology:

• For values of α > 0.5: High-degree nodes are con-
strained to concentrate around the origin, allowing the
performance of the algorithm to be driven by more pe-
ripheral (low-degree) nodes.

• For values of α < 0.5: Low-degree nodes need to lie
closer to the origin than their high-degree counterparts,
thereby allowing high-degree nodes to have higher lever-
age and potentially become more influential.

Experiments. To illustrate these bounds and check their
validity, we perform a set of synthetic experiments. We
generate a set of four cliques on 20 nodes (the “hubs”).
To each node in each clique, we add a link to a sparse
Barabasi-Albert network on 10 nodes (’the periphery’), with
parameter m = 1, so that the average degree of the periph-
ery is low (≈ 1). The peripheries are endowed with the
same class label as their associated hub. Finally, we ensure
that the network is connected by randomly connecting the
hubs together (one new random link per hub). To gener-
ate node features, we take the first k = 4 features to be
the one-hot label vector, to which we concatenate 16 ad-
ditional “dummy features”(random Gaussians). We finally
add Gaussian noise with scale σ2 = 4 entrywise: the result
is a feature vector that is only weakly indicative of the class.
The trained embeddings are presented in Figure 2. Note the
lack of separability of the different classes based on their
raw feature vectors, as captured by the PCA plot in the left
column. As expected from our bounds, we observe an in-
version of the geometry around the origin as α increases:
high-degree nodes shift from the outskirts of the plot to be-
ing concentrated around the origin as α increases. We also

543

refer the reader to Appendix E.3.2, in which we also verify
these phenomena in standard datasets by providing PCA
and UMAP plots of the corresponding node embeddings.

In order to test lemma 3.1, we modify this experiment
slightly, and now let the variance of the noise depend on
the degree du of the node: σ2

u = e3(−1.5+log(du)). This
means that low-degree nodes here have very small variance
σ < 1, while high-degree noise is extremely noisy σ ≈ 9.
Consequently, we expect that the geometries in which the
high-degree nodes are placed on the outskirts (and have
more leverage), and low-degree nodes are constrained to lie
close to the origin will perform poorly. Conversely, we flip
this scenario (we choose σ2

u = e3(−1.5+log(d(n−u)) where, if
du has rank rk(u), d(n−rk(u)) is the degree of the n−rk(u)
largest node), and expect the opposite phenomenon. The
results are shown in Figure3(a), and are well aligned with
our expectations.

3.2 ROW-NORMALIZED CONVOLUTIONS

Let us now turn to the case of row-normalized convolutions.
In this case, the convolutions write as:

SX =

1
(du+β)α

∑
v∈N (u)∪{u}

1
(dv+β)αXv∑

v∈N (u)
1

(du+β)α
1

(dv+β)α

=
1∑

v∈N (u)
1

(dv+β)α

∑
v∈N (u)∪{u}

1

(dv + β)α
Xv

The embedding now lies within the convex hull of its neigh-
bors, whose contributions are inversely proportional to their
degrees. This reduces the sensitivity of variance of the node
embeddings to their degree. The decay of a neighbor’s con-
tribution is fact an increasing function of α. The latter can
be compared to a form of attention that effectively filters
out nodes with high-degree: here the discounting procedure
is not learned but imposed ahead of time. Appendix E and
Figure3(b) show the result of the same experiments as in
the last subsection. As in the previous part, the results are
less dependent on the value of α.

4 INHERENT EMBEDDING GEOMETRY

We now turn to the analysis of the evolution of the rela-
tive distances between embedding points. Graph Neural
Networks can indeed be understood as a data integration
method: the adjacency matrix and the node features provide
two complementary views of the data, and GNNs provide
a convenient way of combining this information to create
informative embeddings. The amount to which these em-
beddings depend on one side of the data (i.e. graph vs node
features) remains to be determined.

Let us try and study the effect of the different distances
(graph and topology) through two toy examples controlling

for feature similarity and node similarity separately.

Toy example 1: Identical Topologies, Different features.
Consider two nodes u and v have structurally similar neigh-
borhoods (i.e., there exists a mapping φ that transforms
each node in the neighborhood of v into its corresponding
one in the neighborhood of u, see Appendix C (Figure 1),
but whose feature vectors are different. Mathematically, we
write:

∀j ∈ N(v), Xj· = Xφ(j)· + ε, εjk
i.i.d∼ N(0, σ2).

Lemma 4.1. For symmetric convolution, with probability
at least 1− δ, with M as in 3.1, we have:

||Hu −Hu′ ||2 ≤ µ+ 2
√

2σ||W ||2(du + β)1−2α

×

√
1 + 2α|∆u|+ α(2α+ 1)

M∆2
u

du
log(1/δ)

where µ = σ2||W ||2(du + β)2−4α
(

1 + 2α|∆u|+ α(2α+

1)M ∆2
u

du

)
.

Conversely, for row-normalized embeddings:

||Hu −Hu′ ||2 ≤µ+ 2
√

2σ||W ||2

+ (
∑

v∈Ñ (u)

1

(dv + β)2α

)1/2
log(1/δ)

where µ = σ2‖W‖2∑
v∈Ñ(u)(dv+β)−α

1
1+β ≤ βσ

2‖W‖2 for β ≥ 1.

The proof is in Appendix C. Symmetric embeddings will
thus shrink distances between nodes depending on their
topology, so that the cluster density is a function of the node
degree. The impact of the topology is expected to be more
marked at the extremities of the spectrum of α. For row-
normalized embeddings however, the degree of the node
does not affect the distance between embeddings as much:
row-normalized embeddings encode attributes, rather than
topological information.

Toy example 2: Identical Features, structurally different
neighbourhoods. Conversely, u and v have radically differ-
ent neighborhoods from a topological perspective, but have
similar features:

∀j ∈ Ñ (u) ∪ Ñ (u′), Xj = X̄ + ε

In this case, for row-normalized embeddings, the difference
will be 0: the embeddings are therefore more sensitive to
the node feature values than the symmetric convolution.
Conversely, for symmetric convolutions, we can also show
(see Appendix C) that the leading term for the difference
is of the order of (du + β)1−2α − (du′ + β)1−2α — and is,
therefore, a decreasing function of α.

544

Figure 2. Symmetric Embeddings, plotted using the first two principal components (left), and the raw latent embeddings (or
‘latent components’ (LC), shown in the right three plots on each row). Note the inversion: the high-degree nodes migrate from
the periphery of the latent space (α = 0.2) to the origin (α = 0.7). See Appendix E for the equivalent plot for row-normalized
Embeddings.

Experiments. We illustrate these results by running a set
of final experiments. We generate a structurally equivalent
networks (see smaller replica in Figure 1a in Appendix C),
and evaluate the distance between untrained embeddings
(using a 2-layer GCN architecture). The mean distance over
100 experiments is presented in Appendix C in Figure 1b,
and a visualization of the latent space for symmetric convo-
lutions is shown in Appendix C, Figure 1c. As expected, the
density of the cluster of structurally equivalent high-degree
nodes (cliques on 40 nodes), in grey varies as a function of
α. In Appendix E.3.3, we also provide visualization of the
interplay between node features and topologies on a subset
of real datasets, using the Gromov Wasserstein distance as
a way of measuring the distance of the embedding space
with the original characteristics of the dataset (features and
adjacency matrix).

Toy Example 3: Degree corrected Stochastic SBM. We
conclude this section by considering a specific family of
graphs: the degree-corrected Stochastic Block Model Karrer
and Newman [2011] on two classes of equal size n. Let each
node have class Zi ∈ {1, 2}, and denote Xi = µ(Zi) + εi
its attributes. According to the DC-SBM model, each edge
in the network is sampled according to a Bernouilli distribu-
tion: Aij ∼ Bernouilli(θiθjωZiZj), where θi is a popularity
parameter such that, for each group g:

∑n
i=1 θi1Zi=g = n,

where ωij is the parameter of the model corresponding to
the probability of connection between group i and j. Note

that, under this model, the expected number of edges from
community (i) to (j) is simply mij = n2ωij . Therefore,
picking ∀i, θi = 1 corresponds to the traditional stochastic
block model.

In this case, it is possible to show (see Appendix D) that the
mean of the symmetric embeddings is directly proportional
to their popularity parameter θ1−α

i . Consequently, for α =
1, the leading term is independent of θi. Reciprocally, for
α = 0, the embedding is directly proportional to θi. This
means that the embeddings will on average have a norm that
is proportional to their popularity: the embedding space thus
capture the "popularity" of the embeddings through their
degree.

To see this, we provide the following example. Consider a
DC-SBM graph on 300 nodes with two classes, with connec-
tivity parameters ω11 = ω22 = 0.1 and ω11 = ω22 = 0.005.
The features here are taken to be multivariate normal with
µ(1) = 2, µ(2) = −2 and standard deviation equal to 4. We
generate the θi for each group from a lognormal distribu-
tion, with mean 0 and standard deviation 1 (see details in
Appendix D). In the results (Fig 4 and Appendix D), we
observe as predicted the high dependency of the embedding
on the "popularity" parameter for low values of α.

545

(a) Results for symmetric convolutions. (b) Results for row-normalized convolutions.

Figure 3. Results for 50 independent trials of our second experiment using symmetric (left) and row-normalized (right)
convolutions. Note that the accuracy of the symmetric convolutions increases α increases when the noise is higher in high-degree
nodes, and decreases in the opposite scenario.

Figure 4. Embeddings after one convolution for two dif-
ferent values of α ∈ {0, 1}, and β = 1. Note how the
value of the popularity parameter θ drives the geometry of
the embedding space when α = 0.

5 DISCUSSION

To summarize, this paper has tried to explicit two main
phenomena: (a) the dependency of the variance of the em-
beddings on the degree, choice of convolution operator and
parameter α; (b) The higher sensitivity of the symmetric
embedding distances to topological features compared to
that of the row-normalized one. We now conclude by dis-
cussing the practical impact of these observations. Consider
the two following use cases:

(a) Learning user embeddings in a social network,
such as for instance in Zitnik et al. [2018]. Here, the
degree can be considered as an additional dimension
of information: users with high degree might be more
popular or sociable, and therefore more alike to one
another. This information should be reflected in the

embedding space. In the first, a symmetric embedding
— which is typically more sensitive to distance between
topological features — might be more suitable to the
task. Moreover, using our results on the degree-corrected
stochastic block model, the lower the α chosen, the
higher the potential emphasis on the degree.

(b) Learning drug embeddings in biological network
(e.g. Zitnik et al. [2018]) In this case, the degree of the
node might not necessarily be as informative: some
drugs may have been on the market for longer, and/or
their mechanisms of actions are better understood. In
that case, the features of a drug’s neighbors might be
informative, but not necessarily their degree. Conversely,
a row-normalized embedding might prove a better
choice. Alternatively, the symmetric convolutions with
α = 1 would mitigate the effect of the sampling density.
We note however that the rapid contraction of the
embeddings towards 0 makes it difficult for the GNN to
learn informative embeddings.

6 CONCLUSION

In conclusion, in this paper, we have shown that the choice
of the convolution operator has fundamental consequences
on the geometry of the embedding space: symmetric con-
volutions are generally more sensitive to the topology, and
encode it in the embedding. In that case, the choice of α
amounts to selecting “who to trust”: high-values of α push
high-degree nodes towards the origin, thereby limiting their
leverage. Conversely, row-normalized are more limited in
the amount of topological information that they carry, and
convolutions are more robust to the choice of α — this is
probably a better choice when the data is assumed to be sam-
pled from a manifold (e.g. point cloud data). Our analysis

546

— which we hope to be insightful — has room for further
improvement. Our reasoning relies on upper bounds which,
while providing intuition, are not extremely tight, and could
be complemented with lower bounds to fully characterize
the behavior of the geometry. All experiments resort to using
GCN types of architectures. However, we believe that the
intuition and guidelines that we derived from this analysis
will nonetheless hold for other types of architectures.

Acknowledgements

The authors are grateful for the support of the University of
Chicago’s Research Computing Center for assistance with
the calculations carried out in this work, as well as for a
generous award from Facebook Research (2021 Proposal
for Statistics for Improving Insights, Models, and Decisions)
that supported this research.

References

Uri Alon and Eran Yahav. On the bottleneck of graph neural
networks and its practical implications. arXiv preprint
arXiv:2006.05205, 2020.

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Al-
varo Sanchez-Gonzalez, Vinicius Zambaldi, Mateusz
Malinowski, Andrea Tacchetti, David Raposo, Adam
Santoro, Ryan Faulkner, et al. Relational inductive bi-
ases, deep learning, and graph networks. arXiv preprint
arXiv:1806.01261, 2018.

Shaked Brody, Uri Alon, and Eran Yahav. How at-
tentive are graph attention networks? arXiv preprint
arXiv:2105.14491, 2021.

Chen Cai and Yusu Wang. A note on over-smoothing for
graph neural networks. arXiv preprint arXiv:2006.13318,
2020.

Sergio Casas, Cole Gulino, Renjie Liao, and Raquel Urta-
sun. Spatially-aware graph neural networks for relational
behavior forecasting from sensor data. arXiv preprint
arXiv:1910.08233, 2019.

Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and
Xu Sun. Measuring and relieving the over-smoothing
problem for graph neural networks from the topological
view. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 3438–3445, 2020.

Ronald R Coifman and Stéphane Lafon. Diffusion maps.
Applied and computational harmonic analysis, 21(1):5–
30, 2006.

Michaël Defferrard, Xavier Bresson, and Pierre Van-
dergheynst. Convolutional neural networks on graphs
with fast localized spectral filtering. arXiv preprint
arXiv:1606.09375, 2016.

Xiaowen Dong, Dorina Thanou, Laura Toni, Michael Bron-
stein, and Pascal Frossard. Graph signal processing for
machine learning: A review and new perspectives. IEEE
Signal processing magazine, 37(6):117–127, 2020.

Claire Donnat, Marinka Zitnik, David Hallac, and Jure
Leskovec. Learning structural node embeddings via diffu-
sion wavelets. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery &
Data Mining, pages 1320–1329, 2018.

Aosong Feng, Chenyu You, Shiqiang Wang, and Leandros
Tassiulas. Kergnns: Interpretable graph neural networks
with graph kernels. arXiv preprint arXiv:2201.00491,
2022.

Matthias Fey and Jan Eric Lenssen. Fast graph represen-
tation learning with pytorch geometric. arXiv preprint
arXiv:1903.02428, 2019.

Fabrizio Frasca, Emanuele Rossi, Davide Eynard, Ben
Chamberlain, Michael Bronstein, and Federico Monti.
Sign: Scalable inception graph neural networks. arXiv
preprint arXiv:2004.11198, 2020.

Fernando Gama, Antonio G Marques, Geert Leus, and Ale-
jandro Ribeiro. Convolutional neural network architec-
tures for signals supported on graphs. IEEE Transactions
on Signal Processing, 67(4):1034–1049, 2018a.

Fernando Gama, Alejandro Ribeiro, and Joan Bruna. Dif-
fusion scattering transforms on graphs. arXiv preprint
arXiv:1806.08829, 2018b.

Thomas Gaudelet, Ben Day, Arian R Jamasb, Jyothish So-
man, Cristian Regep, Gertrude Liu, Jeremy BR Hayter,
Richard Vickers, Charles Roberts, Jian Tang, et al. Uti-
lizing graph machine learning within drug discovery and
development. Briefings in bioinformatics, 22(6):bbab159,
2021.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol
Vinyals, and George E Dahl. Neural message passing
for quantum chemistry. In International Conference on
Machine Learning, pages 1263–1272. PMLR, 2017.

William L Hamilton. Graph representation learning. Synthe-
sis Lectures on Artifical Intelligence and Machine Learn-
ing, 14(3):1–159, 2020.

William L Hamilton, Rex Ying, and Jure Leskovec. In-
ductive representation learning on large graphs. arXiv
preprint arXiv:1706.02216, 2017.

Mikael Henaff, Joan Bruna, and Yann LeCun. Deep convolu-
tional networks on graph-structured data. arXiv preprint
arXiv:1506.05163, 2015.

Brian Karrer and Mark EJ Newman. Stochastic blockmodels
and community structure in networks. Physical review E,
83(1):016107, 2011.

547

Thomas N Kipf and Max Welling. Semi-supervised classifi-
cation with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

Marc Law. Ultrahyperbolic neural networks. Advances
in Neural Information Processing Systems, 34:22058–
22069, 2021.

Michelle M Li, Kexin Huang, and Marinka Zitnik. Represen-
tation learning for networks in biology and medicine: Ad-
vancements, challenges, and opportunities. arXiv preprint
arXiv:2104.04883, 2021.

Qi Liu, Maximilian Nickel, and Douwe Kiela. Hyperbolic
graph neural networks. Advances in Neural Information
Processing Systems, 32, 2019.

Tengfei Ma, Junyuan Shang, Cao Xiao, and Jimeng
Sun. Genn: predicting correlated drug-drug interac-
tions with graph energy neural networks. arXiv preprint
arXiv:1910.02107, 2019.

Giannis Nikolentzos and Michalis Vazirgiannis. Random
walk graph neural networks. Advances in Neural Infor-
mation Processing Systems, 33:16211–16222, 2020.

Kenta Oono and Taiji Suzuki. Graph neural networks ex-
ponentially lose expressive power for node classification.
arXiv preprint arXiv:1905.10947, 2019.

Alejandro Parada-Mayorga, Luana Ruiz, and Alejandro
Ribeiro. Graphon pooling in graph neural networks. In
2020 28th European Signal Processing Conference (EU-
SIPCO), pages 860–864. IEEE, 2021.

Luana Ruiz, Luiz Chamon, and Alejandro Ribeiro. Graphon
neural networks and the transferability of graph neural
networks. Advances in Neural Information Processing
Systems, 33:1702–1712, 2020.

David I Shuman, Pierre Vandergheynst, and Pascal Frossard.
Chebyshev polynomial approximation for distributed sig-
nal processing. In 2011 International Conference on
Distributed Computing in Sensor Systems and Workshops
(DCOSS), pages 1–8. IEEE, 2011.

David I Shuman, Sunil K Narang, Pascal Frossard, Antonio
Ortega, and Pierre Vandergheynst. The emerging field of
signal processing on graphs: Extending high-dimensional
data analysis to networks and other irregular domains.
IEEE signal processing magazine, 30(3):83–98, 2013.

Jake Topping, Francesco Di Giovanni, Benjamin Paul Cham-
berlain, Xiaowen Dong, and Michael M Bronstein. Un-
derstanding over-squashing and bottlenecks on graphs via
curvature. arXiv preprint arXiv:2111.14522, 2021.

Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio. Graph
attention networks. arXiv preprint arXiv:1710.10903,
2017.

Sanford Weisberg. Applied linear regression, volume 528.
John Wiley & Sons, 2005.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty,
Tao Yu, and Kilian Weinberger. Simplifying graph con-
volutional networks. In International conference on ma-
chine learning, pages 6861–6871. PMLR, 2019.

Shiwen Wu, Fei Sun, Wentao Zhang, and Bin Cui. Graph
neural networks in recommender systems: a survey. arXiv
preprint arXiv:2011.02260, 2020a.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long,
Chengqi Zhang, and S Yu Philip. A comprehensive survey
on graph neural networks. IEEE transactions on neural
networks and learning systems, 2020b.

Yu Xie, Yuanqiao Zhang, Maoguo Gong, Zedong Tang, and
Chao Han. Mgat: Multi-view graph attention networks.
Neural Networks, 132:180–189, 2020.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka.
How powerful are graph neural networks? arXiv preprint
arXiv:1810.00826, 2018.

Fengyi Zhang, Zhiyong Liu, Fangzhou Xiong, Jianhua Su,
and Hong Qiao. Wagnn: A weighted aggregation graph
neural network for robot skill learning. Robotics and
Autonomous Systems, 130:103555, 2020.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang,
Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng
Li, and Maosong Sun. Graph neural networks: A review
of methods and applications. AI Open, 1:57–81, 2020a.

K Zhou, Y Dong, K Wang, WS Lee, B Hooi, H Xu, and
J Feng. Understanding and resolving performance degra-
dation in graph convolutional networks. arXiv preprint
arXiv:2006.07107, 2020b.

Marinka Zitnik, Monica Agrawal, and Jure Leskovec. Mod-
eling polypharmacy side effects with graph convolutional
networks. Bioinformatics, 34(13):i457–i466, 2018.

548

	Introduction and Motivation
	Defining a family of convolution operators
	Geometry of GNN embeddings in latent space
	Symmetric Convolutions
	Row-normalized Convolutions

	Inherent embedding geometry
	Discussion
	Conclusion

