
Deep Gaussian Mixture Ensembles
(Supplementary Material)

Yousef El-Laham1 Niccolò Dalmasso1 Elizabeth Fons1 Svitlana Vyetrenko1

1J.P. Morgan AI Research, New York, USA

A THEORETICAL PROOFS

This section includes the proofs of the propositions presented in Section 4.3. We have also included the proposition
statements for readability purposes.

Proposition A.1. Under the assumption that πi = 1/K − 1 for i = 1, ..,K, maximizing the Gaussian mixture data
likelihood directly achieves better or equal joint likelihood than maximizing each ensemble member’s likelihood separately.

Proof. The EM algorithm minimizes the joint data log-likelihood as defined in equation (??), which can be lower-bounded
in the following way by using Jensen’s inequality:

argmax
θ

EX,Y

[
log

(
K∑

k=1

πkpk(y|x, θk)

)]
≥ argmax

θ
EX,Y

[
K∑

k=1

log (πk) + log (pk(y|x, θk))

]
=

= argmax
θ

K∑
k=1

EX,Y [log(πk)] + EX,Y [ℓθk(x, y))] .

By assumption, the first term constant (of value − log(K)), hence:

argmax
θ

EX,Y

[
log

(
K∑

k=1

πkpk(y|x, θk)

)]
≥ argmax

θ

K∑
k=1

EX,Y [ℓθk(x, y))] ,

with the lower bound corresponding to maximizing the likelihood of each ensemble member separately, as performed in
DEs [Lakshminarayanan et al., 2017].

Proposition A.2. Under assumptions 4.4 - 4.7, let the mean and variance in each ensemble model being estimated via a
separate 2-layer deep ReLu network from a common feature extraction layer. Then the DGMEs EM algorithm convergences
to a non stationary point that maximizes the data likelihood with high-probability.

Proof. Using Wu [1983, Theorem 4.1], to guarantee convergence of the EM algorithm it is enough to prove that at every
round t:

Accepted for the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023).

∀θ /∈ N : Q(θ(t+1); θ(t))−Q(θ(t); θ(t)) > 0, (1)

where N is the set of stationary points of the function Q. By writing the difference in equation (1) above we have that:

Q(θ(t+1); θ(t))−Q(θ(t); θ(t)) =

N∑
n=1

K∑
k=1

γk,n(log(πk) + ℓθ(t+1)(xn, yn))−
N∑

n=1

K∑
k=1

γk,n(log(πk) + ℓθ(t)(xn, yn))

=

K∑
k=1

[
N∑

n=1

γk,n (ℓθ(t+1)(xn, yn))−
N∑

n=1

γk,n (ℓθ(t)(xn, yn))

]
.

By setting θ(t+1) = θ∗k and using Assumption 4.4:

Q(θ∗k; θ
(t))−Q(θ(t); θ(t)) ≥

K∑
k=1

ϵt,k
K

> ϵ

The result follows if every ensemble network can learn the maximum likelihood θ∗ at every round. We will show that the
above happens in high probability. Without loss of generality, set the round t and the ensemble member k if the mean and
variance functions follow assumptions 4.5 and 4.6. Let ℓ∗ = ℓθ∗

k
and ℓ̂θ be the estimated likelihood. As the likelihood is

Gaussian, the estimation problem is equivalent to estimating the true mean function µ∗(x) and variance function σ∗(x).
Assume the mean and variance functions are learnt independently by using a pre-trained feature extraction layer, we can
break down the estimation problem into:

∥ℓ(µ∗, σ∗)− ℓ(µ̂, σ̂)∥2 = ∥ℓ(µ∗, σ∗)± ℓ(µ∗, σ̂)− ℓ(µ̂, σ̂)∥2
≤ ∥ℓ(µ∗, σ̂)− ℓ(µ̂, σ̂)∥2︸ ︷︷ ︸

(A)

+ ∥ℓ(µ∗, σ∗)− ℓ(µ∗, σ̂)∥2︸ ︷︷ ︸
(B)

.

Provided n > O(log(1/δ)/ϵ2) and using Assumption 4.7 to guarantee non-degenerate weights, the proposition follows
since:

(A) For the mean function estimation, the likelihood reduces to a weighted least square loss, which satisfies the assumptions
in Farrell et al. [2021, 2.1]. Hence, one would need at least n > O(log(1/δ)/ϵ) samples to estimate the mean function
within ϵ/2 radius and with probability 1− δ;

(B) For the variance function estimation, the assumption correspond to the requirement in Arora et al. [2019, Section 5];
hence, one would need at least n > O(log(1/δ)/ϵ2) samples to estimate the mean function within an ϵ/2 radius and
with probability 1− δ.

Proposition A.3. If the weights of each ensemble members are initialized to 0 with fixed bias terms, a single EM step for
DGMEs is equivalent to perform DEs.

Proof. If any ensemble members fk has all weights initialized to 0, then it follows that pk(yn|xn, θk) = a for some constant
δ ∈ R. In addition, µθk(xn) = µ and σ2

θk
(xn) for any xn. Hence, in the expectation steps all posterior probabilities are

equal to:

γk,n =
pk(yn|xn, θk)Pθ(zn = k)∑K
j=1 pj(yn|xn, θj)Pθ(zn = j)

=
δN (yn;µ, σ

2)∑K
j=1 δN (yn;µ, σ2)

=
1

K
.

Figure 1: Results on a toy regression task with Gaussian noise for different numbers of EM rounds, as described in Section
??. As J increases, the predictive mean improves.

(E = 1, J = 50) (E = 2, J = 25) (E = 5, J = 10) (E = 10, J = 5) (E = 25, J = 2) (E = 50, J = 1)

Normal - Unimodal 2.71± 0.06 2.63± 0.06 2.58± 0.03 2.54± 0.01 2.54± 0.01 2.56± 0.03
Heavy-Tailed - Unimodal 2.98± 0.03 2.95± 0.02 2.88± 0.02 2.87± 0.01 2.91± 0.01 2.96± 0.02

Normal - Bimodal 3.15± 0.05 3.09± 0.07 3.02± 0.04 3.13± 0.08 3.42± 0.06 3.53± 0.04

Table 1: Training NLL obtained for the toy regression dataset using DGMEs under different configurations of the number of
epochs per EM round E and the total number of EM rounds J for a fixed computational budget E × J = 50.

Hence, the maximization in the M-step is equal to:

θ⋆k = argmax
θk∈Θk

N∑
n=1

γk,nℓθk(xn, yn) = argmax
θk∈Θk

N∑
n=1

ℓθk(xn, yn),

which corresponds to maximizing the likelihood of each ensemble member separately, as performed in DE Lakshminarayanan
et al. [2017].

B ADDITIONAL EXPERIMENTAL RESULTS AND ABLATION STUDIES

B.1 TOY REGRESSION

In this subsection, we provide additional experimental results and ablation studies on the toy regression dataset that provide
valuable insights on the role of each of the DGME hyperparameters.

B.1.1 Ablation: Number of EM Rounds

To study the effect that the number of EM rounds has on training of DGMEs, Figure 1 shows DGMEs trained with 1, 2
and 5 rounds on the toy regression task with Gaussian noise (Case 1), where the number of epochs per round is fixed to
E = 80. We can see in this figure that after J = 5 EM rounds, the algorithm has converged to a conditional distribution that
represents the ground truth quite well.

Additionally, we can assess the joint impact of the number of epochs E used in the M-Step per EM round and the total
number of EM rounds J , while keeping the total computational budget constant (e.g., E × J = 50 total epochs). We test the
following values of E ∈ {1, 2, 5, 10, 25, 50} and report the average NLL over the training set and its corresponding standard
error (computed over a total of 10 runs) in Table 1.

We can see empirically that for a fixed computational budget, there is tradeoff between the performance and the effective
number of EM rounds. The tradeoff is more apparent when considering the more difficult examples (i.e., heavy-tailed
unimodal noise and normal bimodal noise). If the number of epochs in the M-step is E = 1 and we train for J = 50

Standard Dropout AT Dropout + AT

Figure 2: Results on a toy regression task with Gaussian noise. Left most plot corresponds to standard set up of DGMEs
trained with K = 5 networks. Second plot corresponds to incorporating Dropout in the training. Third plot shows the effect
of using adversarial training, and final plot shows the effect of using both dropout and adversarial training.

pd = 0.0 pd = 0.05 pd = 0.1 pd = 0.15 pd = 0.2

Train NLL Test NLL Train NLL Test NLL Train NLL Test NLL Train NLL Test NLL Train NLL Test NLL

Normal - Unimodal 2.55± 0.01 7.50± 0.88 2.59± 0.01 4.86± 0.28 2.63± 0.01 4.30± 0.12 2.66± 0.01 4.17± 0.08 2.70± 0.02 4.10± 0.06
Heavy-Tailed - Unimodal 2.87± 0.01 6.31± 0.49 2.90± 0.01 4.83± 0.17 2.93± 0.01 4.44± 0.15 2.97± 0.02 4.23± 0.08 2.99± 0.02 4.19± 0.06

Normal - Bimodal 3.16± 0.09 6.81± 1.08 3.18± 0.08 5.80± 0.37 3.29± 0.06 5.44± 0.24 3.31± 0.07 5.32± 0.20 3.36± 0.05 5.34± 0.09

Table 2: Train and test NLL of DGMEs for each toy regression dataset under different dropout probability values.

rounds, not enough information is being propagated between the E- and M-Step in each round of training, making learning
inefficient. In the other extreme, if the number of epochs per M-step is E = 50 and we train for J = 1 rounds, even if the
optimization problem in the M-step is more accurately resolved, we do not run enough EM rounds to accurately learn the
underlying conditional density function. If we balance the number of epochs per rounds and the total number of EM rounds
(i.e., (E = 5, J = 10) or (E = 10, J = 5)), we get much better performance in terms of training NLL.

B.1.2 Ablation: Dropout and Adversarial Training

In this ablation, our goal is to understand the effect of epistemic uncertainty estimation techniques in DGMEs. As a rough
analysis, Figure 2 shows the effect of training with dropout, adversarial training and their combination. Here, the dropout
probability is set to pd = 0.05. We can see that without dropout or adversarial training, the uncertainty estimates are
well-calibrated for the training data (features taking value between -4 and 4), but are underestimated for the test data (features
taking absolute value between 4 and 5). By incorporating dropout and adversarial training, we can see that the uncertainty
estimates become larger for the test examples.

To get a better understanding of the effect of dropout probability pd on the quantified uncertainty, we can evaluate the train
and test NLL for different values of pd for each of the toy datasets. Results are shown in Table 2. From this table, we observe
that dropout creates a trade-off between performance on in-sample data and out-of-sample data in terms of NLL. Increasing
the dropout probability in this case causes the average NLL to be worse for the training set, but improves it (up to a certain
point) on the test set. In practice, we can choose the dropout probability to minimize the NLL on a validation set.

B.1.3 Ablation: Number of Mixture Components

The number of components in the assumed Gaussian mixture impacts how well the model can estimate more complex
noise distributions (e.g., heavy-tailed or bimodal distributions). Gaussian mixtures (with infinite components) are universal
approximators to smooth continuous density functions, so the more components assumed, the more flexible the model is.
When choosing the number of mixture components, one should take into consideration the complexity of the data generating
process and the amount of data in the training set. If the data generating process is known to be Gaussian, then choosing a
large number of components is not beneficial. On the other hand, if the data generating process is thought to be multimodal,
then using more components is the better choice. We can see this in the following two ablation studies.

Figure 3 shows the effect of the number of mixtures components K on the kurtosis of the learned predictive distribution.
We observe that with more mixture components, the the model learns a fatter-tailed distribution. This makes sense since a
Student-t distribution can be viewed as a Gaussian mixture with an infinite number of components with different variances.

D
en

si
ty

Figure 3: Effect of the number of mixtures on the learned kurtosis of the predictive distribution under heavy-tailed noise.

D
en

si
ty

Figure 4: Effect of the number of mixture components on the learned predictive distribution under bimodal noise.

Figure 4 shows the effect of the number of mixture components on the learned predictive distribution in the case of the
bimodal Gaussian. We can see that when DGMEs assumes only K = 1 mixture component, DGMEs have a similar predictive
distribution as DEs, since the model will attempt to explain the bimodal data with a single Gaussian by overestimating the
aleatoric noise. An interesting insight is that when DGMEs assume too many components (i.e., K > 2), the model is still
able to accurately learn that the underlying predictive distribution is still bimodal.

B.1.4 Ablation: Weight Initialization Schemes and Data Standardization

To test the impact of weight initialization of the neural network on the performance of DGME, we perform the following
ablation study: we train a DGME for 5 rounds, where 10 epochs are used to resolve the M-Step in each round. We use the
same architecture as in our toy experiments. We evaluate the NLL on the training set under five different initializations:
PyTorch default initialization, initialization with uniform distribution with bounds -0.01 to 0.01, initialization with normal
distribution with mean 0 and standard deviation 10−6, Xavier uniform initialization Glorot and Bengio [2010], and Xavier
normal initialization. As a note, the PyTorch default initialization for a linear layer is done via a uniform distribution
U(− 1√

a
, 1√

a
), where a denotes the number of input features to the linear layer. Please refer to Glorot and Bengio [2010] for

more information on these weight initialization schemes.

PyTorch Default Uniform Normal Xavier Uniform Xavier Uniform

Normal - Unimodal 2.86± 0.07 3.08± 0.04 3.02± 0.04 2.88± 0.05 2.90± 0.05
Heavy-Tailed - Unimodal 3.16± 0.05 3.42± 0.06 3.36± 0.05 3.18± 0.05 3.20± 0.05

Normal - Bimodal 3.36± 0.17 3.56± 0.06 3.61± 0.06 3.46± 0.20 3.47± 0.20

Table 3: Impact of different of weight initialization schemes on the train NLL when the data is not standardized.

PyTorch Default Uniform Normal Xavier Uniform Xavier Uniform

Normal - Unimodal 2.55± 0.02 2.55± 0.01 2.56± 0.01 2.54± 0.01 2.53± 0.01
Heavy-Tailed - Unimodal 2.87± 0.02 2.88± 0.01 2.88± 0.01 2.86± 0.01 2.87± 0.01

Normal - Bimodal 3.13± 0.07 3.63± 0.01 3.60± 0.04 3.27± 0.09 3.24± 0.09

Table 4: Impact of different of weight initialization schemes on the train NLL when the data is standardized.

We train the model for each toy dataset over 20 total runs and report the average training NLL and its corresponding standard
error. We run this ablation twice: once for training with non-standardized data and once for training with standardized data.
The results are shown in Table 3 and Table 4. We can see from the results that although weight initialization has some impact
on the results, if the data is standardized, it becomes less important. We also see that across all datasets, the default PyTorch
initialization gives the most favorable results for both non-standardized and standardized data.

B.1.5 Illustrative Results: Additive Gaussian Noise

We compare DGMEs with the baselines on the toy regression dataset with Gaussian noise. Figure 5 shows the performance
of DGMEs compared to MDNs, MCD and DEs. DGMEs has comparable performance to MCD and DEs and outperforms
MDNs.

MDN MCD DE DGME

Figure 5: Performance on a toy regression task with Gaussian noise of DGMEs (right) with state-of-the-art methods MDNs,
MCD and DEs.

B.2 REGRESSION ON REAL DATASETS

For real data experiments on a regression task we use the following datasets: (a) Boston Housing dataset1, (b) Concrete
compressive strength dataset2 [Yeh, 1998], (c) Energy efficiency dataset3 [Tsanas and Xifara, 2012], (d) Kinematics of
an 8 link robot arm dataset 4, (e) Combined cycle power plant dataset5 [Tüfekci, 2014], (f) Wine dataset6 and (g) Yacht

1https://www.kaggle.com/datasets/schirmerchad/bostonhoustingmlnd
2https://archive.ics.uci.edu/ml/datasets/concrete+compressive+strength
3https://archive.ics.uci.edu/ml/datasets/energy+efficiency
4https://www.openml.org/search?type=data&sort=runs&id=189&status=active
5https://archive.ics.uci.edu/ml/datasets/combined+cycle+power+plant
6https://archive.ics.uci.edu/ml/datasets/wine

https://www.kaggle.com/datasets/schirmerchad/bostonhoustingmlnd
https://archive.ics.uci.edu/ml/datasets/concrete+compressive+strength
https://archive.ics.uci.edu/ml/datasets/energy+efficiency
https://www.openml.org/search?type=data&sort=runs&id=189&status=active
https://archive.ics.uci.edu/ml/datasets/combined+cycle+power+plant
https://archive.ics.uci.edu/ml/datasets/wine

Table 5: Test NLL for the regression experiments in the mixture of Gaussians case.

TEST NLL (MIXTURE OF GAUSSIANS)

Dataset MDNs MCD DEs DGMEs (J=1) DGMEs (J=2) DGMEs (J=5) DGMEs (J=10)

Boston housing 2.71 ± 0.45 2.46 ± 0.25 2.41 ± 0.25 2.33 ± 0.18 2.33 ± 0.23 2.51 ± 0.33 2.74 ± 0.53
Concrete 3.04 ± 0.22 3.04 ± 0.09 3.06 ± 0.18 3.03 ± 0.10 2.99 ± 0.14 2.97 ± 0.24 2.94 ± 0.22
Energy 0.70 ± 0.17 1.99 ± 0.09 1.38 ± 0.22 1.56 ± 0.14 1.31 ± 0.12 0.96 ± 0.20 0.92 ± 0.48
Kin8nm -1.17 ± 0.04 -0.95 ± 0.03 -1.20 ± 0.02 -1.20 ± 0.02 -1.23 ± 0.03 -1.24 ± 0.02 -1.24 ± 0.02
Power plant 2.74 ± 0.04 2.80 ± 0.05 2.79 ± 0.04 2.81 ± 0.03 2.79 ± 0.03 2.77 ± 0.02 2.75 ± 0.02
Wine 0.43 ± 0.86 0.93 ± 0.06 0.94 ± 0.12 0.93 ± 0.12 0.90 ± 0.09 0.81 ± 0.11 0.18 ± 0.39
Yacht 0.51 ± 0.37 1.55 ± 0.12 1.18 ± 0.21 0.94 ± 0.19 0.66 ± 0.18 0.51 ± 0.23 0.42 ± 0.22

hydrodynamics dataset7.

In the main text, to provide a fair comparison with techniques that assume the conditional distribution of the data is Gaussian,
we summarize the mixture distribution output in both MDNs and DGMEs into a single Gaussian and then evaluate the
NLL. This is analagous to the way DEs compute the NLL. We also provide additional results for the test NLL under the
assumption of a mixture of Gaussians in Table 5 below.

B.3 HYPERPARAMETER TUNING FOR FINANCIAL FORECASTING

We tuned the hyperparameters of the architecture (number of LSTM layers, number of fully-connected layers, number of
LSTM hidden units, number of hidden units in fully-connected layers), optimization procedure (weight decay and learning
rate), and the uncertainty quantification associated parameters (dropout probability, and homoscedastic variance value for
MCD and MultiSWAG) for each of the approaches using cross validation . We note that all methods use the same feature
extractor (LSTM and fully-connected network), which is obtained by hyperparameter tuning each dataset to a single network.
To hyperparameter tune, we took the full training period and split it into an ordered sequence of a 90% training period and a
10% validation period. We select the hyperparameters based on the combination that maximizes the NLL on the validation
period for each dataset.

C POSSIBLE EXTENSION TO CLASSIFICATION TASKS

Techniques like MDNs and DGMEs are not suited for dealing with classification tasks, since the output of both models is a
mixture of Gaussian distributions. For classification tasks, we instead can consider a mixture of categorical distributions,
rather than a mixture of Gaussian distributions. In particular, the conditional distribution pθ(y|x) is given by

pθ(y|x) =
K∑

k=1

πk

dy∏
i=1

piθk(x)
I(y=i),

where piθk(x) denotes the probability that y belongs to the i-th class according to the k-th mixture. In this case, we assume
MDNs and DGMEs output these probabilities rather than the mean and variance parameterizing a Gaussian distribution.

C.1 ENTROPY CALCULATION

To evaluate uncertainty in classification tasks, we consider the average predictive entropy as the metric. To compute the
average predictive entropy for a sample x, we use the following estimate:

Ênt(x) = − 1

M

M∑
m=1

∑
i∈C

p̃i(m)(x) log p̃
i
(m)(x),

7https://archive.ics.uci.edu/ml/datasets/Yacht+Hydrodynamics

https://archive.ics.uci.edu/ml/datasets/Yacht+Hydrodynamics

AVERAGE PREDICTIVE ENTROPY
Dataset MDNs MCD DEs DGMEs
MNIST (Known) 0.019± 0.005 0.012± 0.003 0.012± 0.002 0.015± 0.002
MNIST (Unknown) 0.192± 0.032 0.180± 0.020 0.180± 0.020 0.193± 0.016
Fashion-MNIST 0.663± 0.110 0.714± 0.140 0.706± 0.067 0.698± 0.057

Table 6: Average predictive entropy for classification datasets. DGMEs are able to appropriately reason about the underlying
uncertainty of OOD samples (MNIST with unknown classes and Fashion-MNIST) and is competitive with respect to
state-of-the-art approaches.

where p̃i(m)(x) denotes the probability of class i according to the m-th sample from the predictive distribution and C denotes
the set of classes. For both MDNs and DGMEs, these samples are obtained by the following procedure:

k(m) ∼ Categorical(π1, . . . , πK),

p̃i(m) = piθ
k(m)

.

Note that we incorporate dropout in the training procedure of MDNs and DGMEs for this experiment by applying a
stochastic forward pass to the sampled network k(m).

C.2 EXAMPLE: UNCERTAINTY EVALUATION ON MNIST

As an example, we compare DGMEs ability to reason about the underlying uncertainty of new samples with the baseline
approaches with regards to the MNIST handwritten digits dataset. Specifically, for each method, we train a MLP network
with 3 hidden layers and 200 hidden units per layer with ReLU activations on the MNIST dataset, including only digits 0-3
and 5-9. After the models are trained, we evaluate the average predictive entropy over three different datasets: the training
dataset (known classes), a dataset containing only the digit 4 (unknown classes), and the Fashion-MNIST dataset (unrelated
data). We use M = 100 samples from the predictive distribution to form an estimate of the predictive entropy for each
method.We describe in more detail how the average predictive entropy is computed for each method in the Supplementary
Material, Section B.3. The results for this experiment are shown in Table 6, which are averaged over 10 independent runs
of each method. The results indicate that DGMEs are able to appropriately reason about the uncertainty in each of the
datasets and is competitive with the baseline approaches in each case. DGMEs appropriately obtain that lowest entropy on
the training dataset (i.e., the digits it was trained on), obtains a slightly higher entropy on the MNIST dataset containing
unknown classes, and the highest entropy on the Fashion-MNIST dataset, which contains examples unrelated to the original
classification task.

D COMPARISON OF UNCERTAINTY QUANTIFICATION APPROACHES

Here, we provide an overall comparison of the benchmarks used in the experiments of this work as compared to the proposed
approach along different qualities: the likelihood assumption, whether or not mixture weights are learned, how aleatoric
uncertainty is quantified, and how epistemic uncertainty is quantified. This comparison is provided in Table 7

E SAMPLING FROM THE PREDICTIVE DISTRIBUTION

To understand how sampling from the predictive distribution works in DGMEs, we begin with standard formula for
determining the predictive distributions in Bayesian models:

p(y|x,D) =

∫
Θ

pθ(y|x)p(θ|D)dθ.

In the case of DGMEs, pθ(y|x) is a mixture of Gaussian distributions and p(θ|D) is approximated via dropout. An important
property of the predictive distribution in the case of mixture distributions is that it can be expressed as a mixture of predictive

Method Likelihood Mixture Weights Aleatoric Uncertainty Epistemic Uncertainty Other Notes

MDNs Mixture of Gaus-
sians

Learned and input
dependent

Heteroscedastic None in original imple-
mentation, but dropout is
applied for fair compar-
ison in this implementa-
tion

Off-the-shelf can be ap-
plied to account for epis-
temic uncertainty (e.g.,
dropout, Laplace approx-
imation, SWAG, varia-
tional Bayes, etc.)

MCD Gaussian Each predic-
tion made via a
stochastic forward
pass at test time is
equally weighted.

Homoscedastic Dropout

DEs Gaussian Assumed uniform Heteroscedastic Adversarial training and
weight initialization.
Dropout is also applied
in this implementation
using hyperparameter
optimization.

MultiSWAG Gaussian Assumed uniform Homoscedastic Stochastic weight aver-
aging Gaussian (SWAG)

One can also account for
heteroscedasticity by ap-
plying SWAG training to
a deep ensemble that out-
puts a mean and variance

DGMEs Mixture of Gaus-
sians

Learned and inde-
pendent of input

Heteroscedastic Dropout in this imple-
mentation

Other methods to ac-
count for epistemic
can be used off-the-
shelf (e.g., Laplace
approximation, SWAG,
variational Bayes, etc.)

Table 7: Summary of benchmarks as compared to DGMEs.

distributions. This property can be derived as follows:

p(y|x,D) =

∫
Θ

pθ(y|x)p(θ|D)dθ

=

∫
Θ

(
K∑

k=1

πkpk(y|x, θk)

)
p(θ|D)dθ

=

∫
Θ

K∑
k=1

πkpk(y|x, θk)p(θ|D)dθ

=

K∑
k=1

πk

∫
Θ

pk(y|x, θk)p(θ|D)dθ

=

K∑
k=1

πk

∫
Θk

pk(y|x, θk)dθk
∫
Θ−k

p(θ|D)dθ−k︸ ︷︷ ︸
p(θk|D)

=

K∑
k=1

πk

∫
Θk

pk(y|x, θk)p(θk|D)dθk.

Since pk(y|x,D) =
∫
Θk

pk(y|x, θk)p(θk|D)dθk, we obtain the following expression for the predictive distribution:

p(y|x,D) =

K∑
k=1

πkpk(y|x, θk).

This form implies that we can draw samples from the predictive distribution in DGMEs using the following procedure:

1. Sample the mixture component:
k ∼ Categorical(π1, . . . , πK)

2. Sample the posterior parameters of the given mixture component. In this work, dropout was used to approximate each
posterior p(θk|D):

ak,i ∼ Bernoulli(pd), i = 1, . . . , dθ,

θk = ak ⊙ θ⋆k

3. Draw the sample of y from the appropriate predictive distribution:

y ∼ pk(y|x, θk)

Disclaimer This paper was prepared for informational purposes by the Artificial Intelligence Research group of JPMorgan
Chase & Co. and its affiliates (“JP Morgan”), and is not a product of the Research Department of JP Morgan. JP Morgan
makes no representation and warranty whatsoever and disclaims all liability, for the completeness, accuracy or reliability
of the information contained herein. This document is not intended as investment research or investment advice, or a
recommendation, offer or solicitation for the purchase or sale of any security, financial instrument, financial product or
service, or to be used in any way for evaluating the merits of participating in any transaction, and shall not constitute a
solicitation under any jurisdiction or to any person, if such solicitation under such jurisdiction or to such person would be
unlawful.

References

Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of optimization and generalization
for overparameterized two-layer neural networks. In International Conference on Machine Learning, pages 322–332.
PMLR, 2019.

Max H Farrell, Tengyuan Liang, and Sanjog Misra. Deep neural networks for estimation and inference. Econometrica, 89
(1):181–213, 2021.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural networks. In Proceedings
of the thirteenth international conference on artificial intelligence and statistics, pages 249–256. JMLR Workshop and
Conference Proceedings, 2010.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive uncertainty estimation
using deep ensembles. Advances in neural information processing systems, 30, 2017.

Athanasios Tsanas and Angeliki Xifara. Accurate quantitative estimation of energy performance of residential buildings
using statistical machine learning tools. Energy and buildings, 49:560–567, 2012.

Pınar Tüfekci. Prediction of full load electrical power output of a base load operated combined cycle power plant using
machine learning methods. International Journal of Electrical Power & Energy Systems, 60:126–140, 2014.

CF Jeff Wu. On the convergence properties of the em algorithm. The Annals of statistics, pages 95–103, 1983.

I-C Yeh. Modeling of strength of high-performance concrete using artificial neural networks. Cement and Concrete research,
28(12):1797–1808, 1998.

	Theoretical Proofs
	Additional Experimental Results and Ablation Studies
	Toy Regression
	Ablation: Number of EM Rounds
	Ablation: Dropout and Adversarial Training
	Ablation: Number of Mixture Components
	Ablation: Weight Initialization Schemes and Data Standardization
	Illustrative Results: Additive Gaussian Noise

	Regression on Real Datasets
	Hyperparameter Tuning for Financial Forecasting

	Possible Extension to Classification Tasks
	Entropy Calculation
	Example: Uncertainty Evaluation on MNIST

	Comparison of Uncertainty Quantification Approaches
	Sampling from the Predictive Distribution

