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Abstract

Efficiently and reliably estimating uncertainty
is an important objective in deep learning. It is
especially pertinent to autoregressive sequence
tasks, where training and inference costs are
typically very high. However, existing research
has predominantly focused on tasks with static
data such as image classification. In this work,
we investigate Ensemble Distribution Distillation
(EDD) applied to large-scale natural language
sequence-to-sequence data. EDD aims to compress
the superior uncertainty performance of an expens-
ive (teacher) ensemble into a cheaper (student)
single model. Importantly, the ability to separate
knowledge (epistemic) and data (aleatoric)
uncertainty is retained. Existing probability-space
approaches to EDD, however, are difficult to
scale to large vocabularies. We show, for modern
transformer architectures on large-scale translation
tasks, that modelling the ensemble logits, instead
of softmax probabilities, leads to significantly
better students. Moreover, the students surprisingly
even outperform Deep Ensembles by up to ∼10%
AUROC on out-of-distribution detection, whilst
matching them at in-distribution translation.

1 INTRODUCTION

The ability to produce reliable estimates of uncertainty is
important to many tasks in deep learning. When it is costly
to make mistakes, a model should know when to discard
a prediction or defer it to a human expert. Although there
is a significant body of research in this area [Ovadia et al.,
2019, Hullermeier and Waegeman, 2021, Yang et al., 2021],
it tends to focus on static data, where outputs are of a fixed
dimension, with approaches most commonly evaluated
on image classification [Geifman and El-Yaniv, 2019, Liu

et al., 2020, Yang et al., 2022, Moon et al., 2020, Xia and
Bouganis, 2022b]. In contrast, in this work, we aim to
investigate uncertainty estimation for sequence prediction
tasks, such as machine translation, which is a relatively
under-explored domain [Malinin and Gales, 2021].

Large attention-based autoregressive neural networks have
recently emerged as the most competitive approach to
many structured sequence-prediction tasks, especially in
translation [Bahdanau et al., 2015, Vaswani et al., 2017, Ott
et al., 2018], and are increasingly being used in practice.
However, as the computational and memory costs of these
modern approaches are typically very large, it is particularly
important that approaches for improving the quality of
uncertainties should be efficient. We will focus on one
such efficient approach to better uncertainties, Ensemble
Distribution Distillation (EDD) [Malinin et al., 2020].

Ensembling multiple neural networks trained using different
random seeds is a well-established approach for boosting
uncertainty performance [Lakshminarayanan et al., 2017].
Deep Ensembles have been shown to be effective over a
wide range of data, tasks, and evaluation metrics [Ovadia
et al., 2019, Malinin and Gales, 2021, Kim et al., 2021,
Gustafsson et al., 2020]. Moreover, they are naturally able to
decompose total uncertainty into knowledge (epistemic) and
data (aleatoric) uncertainty [Hullermeier and Waegeman,
2021], which can be useful for different tasks such as
active learning [Gal et al., 2017, Radmard et al., 2021],
reinforcement learning [Depeweg et al., 2018], and out-of-
distribution detection [Malinin and Gales, 2021]. However,
Deep Ensembles suffer from costs that scale linearly with
the number of members. EDD aims to tackle this by using
Knowledge Distillation (KD) [Hinton et al., 2014] to com-
press the (teacher) ensemble into a more efficient (student)
single model. Crucially, EDD not only has the student learn
the predictions of the ensemble but also the distribution over
individual ensemble member outputs. By explicitly mod-
elling the diversity over the ensemble, the student is able
to express knowledge and data uncertainty independently
just like the teacher ensemble [Malinin et al., 2020].
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However, EDD is not without its challenges. Prior work
has shown that EDD suffers from optimisation issues,
meaning it can be difficult to scale to confident ensembles
with large label spaces. Thus, EDD requires a number of
practical modifications in order to be applied to large-scale
tasks such as machine translation [Fathullah et al., 2021,
Ryabinin et al., 2021]. Despite these challenges, the concept
behind EDD remains a promising approach for training
single autoregressive models with smaller footprints and
the ability to estimate high-quality, robust uncertainties.

Summary of contributions: In this paper, we focus on an
underexplored area of uncertainty estimation: robust and
efficient autoregressive sequence uncertainties. Specifically,
we address the drawbacks of sequence EDD by using logit-
based ensemble distribution distillation (L-EDD). Instead of
training a student to distribution distil the information from
an ensemble in the probability/softmax space, we teach it to
perform the same task in the pre-softmax logit space. Experi-
ments on the En-De WMT’16 and En-Ru WMT’20 machine
translation tasks show that L-EDD, in particular when using
a Laplace distribution, produces strong estimates of se-
quence uncertainty. L-EDD is able to outperform EDD and
surprisingly even Deep Ensembles on out-of-distribution
(OOD) detection and match them for translation quality.
Furthermore, by using Snapshot Ensembles [Huang et al.,
2017], we are able to greatly reduce the overall training
costs of EDD compared to using a Deep Ensemble teacher.

2 BACKGROUND

In this section, we review ensemble-based uncertainty es-
timation. We follow with a discussion of how the limitations
of ensembles can be addressed using recently developed
distillation techniques for autoregressive sequence tasks
such as machine translation.

2.1 UNCERTAINTY ESTIMATION

We adopt a Bayesian perspective on ensembles as this
offers a flexible framework within which uncertainties
have an information-theoretic justification. The posterior
over model parameters p(θ|D) is derived given some
observed (training) data, D. Unfortunately, the posterior is
often intractable and cannot be derived for large non-linear
networks. Alternatively an approximation q(θ)≈ p(θ|D)
can be used. Samples from this approximate distribution
can then be drawn to generate an ensemble of models.

Take an ensemble {P(y|x,θ(m))}Mm=1 sampled from an ap-
proximate posterior q(θ) where each model maps a variable-
length input x∈X into a variable-length output y∈Y of
discrete units. The predictive distribution is obtained by:

P(y|x,D)=Eq(θ)

[
P(y|x,θ)

]
. (1)

From this predictive distribution, a measure of total
uncertainty can be estimated using the entropy:

H
[
P(y|x,D)

]
=EP(y|x,D)

[
−lnP(y|x,D)

]
. (2)

Furthermore, a measure of disagreement between models,
also referred to as knowledge or epistemic uncertainty, can
be estimated by using mutual information between y and θ:

I
[
y,θ|x,D

]
=Eq(θ)

[
KL
(
P(y|x,θ)

∥∥P(y|x,D))]. (3)

This estimate can also be decomposed into a measure of
total and data (aleatoric) uncertainty, as mentioned in Ma-
linin and Gales [2021]. There are also many other potential
measures of knowledge uncertainty such as expected pair-
wise KL-divergence or reverse mutual information [Malinin
and Gales, 2021], however, for the sake of simplicity we
restrict our focus to the already mentioned eq. (2) and (3)
since these represent uncertainties of differing natures.

Limitations: The discussion has so far assumed one can
enumerate all possible variable-length outputs y∈Y which
is not tractable in autoregressive sequence tasks. Instead,
one can approximate the uncertainties by monte-carlo
methods [Notin et al., 2021] and utilising the autoregressive
structure of predictions [Malinin and Gales, 2021]:

P(y|x,θ)=
L∏

l=1

P(yl|y<l,x,θ). (4)

We refer to Malinin and Gales [2021] for an in-depth discus-
sion and analysis of approximations for predictive entropy
and mutual information for autoregressive prediction.

2.2 KNOWLEDGE DISTILLATION

Ensembles {P(y|x, θ(m))}Mm=1 sampled from some
posterior can be computationally demanding. One approach
to efficiently exploit the information of the ensemble is to
use Knowledge Distillation (KD) to yield a single student
model [Hinton et al., 2014, Kim and Rush, 2016].

Given a reference data pair (x,y) ∼ p̃(x,y), a standard
model might be trained using negative log-likelihood (NLL):

LNLL(θ)=−
1

L

L∑
l=1

lnP(yl|y<l,x,θ). (5)

This is referred to as teacher-forcing since during training
the model makes predictions at step l conditioned on the
true output y<l (rather than its own previous predictions).
Similarly, a student model with parameters φ can be
trained to emulate a teacher ensemble by additionally
using average ensemble categorical/softmax outputs
πl,πl,k=P(yl=k|y<l,x,D) as soft labels:

LKL(φ)=
1

L

L∑
l=1

KL
(
πl

∥∥P(yl|y<l,x,φ)
)
. (6)
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However in practice, one optimises a convex com-
bination of the likelihood and KL-divergence losses
LKD(φ)=λLNLL(φ)+(1−λ)LKL(φ),λ∈ [0,1] for added su-
pervision and stability. The probability mass functions in the
KL-divergence can also be temperature scaled to improve
optimisation [Hinton et al., 2014]. Note that this criterion
is only considered for the teacher-forcing case, more
sophisticated distillation approaches exist, by sampling
(x,y) from alternative distributions, but is outside the scope
for this work, see Kim and Rush [2016], Wong et al. [2016],
Lee et al. [2018], Malinin et al. [2017] for details.

2.3 ENSEMBLE DISTRIBUTION DISTILLATION

Whilst KD has been successful in many sequence tasks,
the resulting student is not able to estimate knowledge
uncertainty, since it only models the average ensemble
output. To avoid this issue, Malinin et al. [2020], Ryabinin
et al. [2021] consider the task of distilling the distribution of
sequence ensemble predictions onto a single student. This
allows the student to retain both predictive performance and
information about ensemble diversity.

To explain the mechanics behind Ensemble Distribution
Distillation (EDD), consider modelling a distribution
over autoregressive ensemble predictions, in which all M
ensemble members share the same back-history y<l:

{π(m)
l }Mm=1,π

(m)
l,k =P(yl=ωk|y<l,x,θ

(m)). (7)

Now let an autoregressive student predict the parameters
αl of a Dirichlet distribution Dir(πl|αl)=p(πl|y<l,x,φ).
Since the Dirichlet models a distribution over categorical
distributions it is an ideal candidate for this task. The
distribution distillation loss of such a model is then simply
the result of (negative) log-likelihood:

LDDNLL(φ)=−
1

MLK

∑
m,l

lnDir(π
(m)
l |αl)

≡ 1

LK

∑
l

(
lnB(αl)−

∑
k

αl,klnπ̃l,k

)
,

(8)

where K is the number of classes, B(α) is the beta function
and π̃l,k is the geometric average of the individual ensemble
softmax probabilities in Equation (7).

Whilst this approach was shown to be promising on a
small-scale image classification task in Malinin et al. [2020],
following work [Fathullah et al., 2021, Ryabinin et al., 2021]
found that direct application of Equation (8) encounters
optimisation issues when scaled to larger label spaces. This
arises from the way classwise loss gradients are related to
teacher class probabilities. It turns out that, unlike standard
distillation, the loss in Equation (8) induces small gradients
for (important) high-probability classes and large gradients
for (unimportant) low-probability classes. This negatively

affects convergence as the number of low-probability
classes increases. Ryabinin et al. [2021] proposed an
approach for scaling Dirichlet EDD, where the student aims
to minimise a normalized reverse KL-divergence to a proxy
Dirichlet, which will be used as a baseline in this work.

3 SEQUENCE LOGIT-BASED EDD

In sequence tasks with a large number of classes, which
commonly occurs in speech recognition and machine
translation, the output categorical distributions are often
very sparse and concentrated. Therefore, it often becomes
highly challenging to apply EDD to tasks of this nature. On
the other hand, KD has been shown to work well for larger
tasks [Kim and Rush, 2016, Gaido et al., 2020, Tan et al.,
2019, Jiao et al., 2019], but since it only models the average
teacher predictions, it cannot estimate data and knowledge
uncertainties that are important for many downstream tasks
such as out-of-distribution detection.

In this section, we describe a Logit-based Ensemble Dis-
tribution Distillation (L-EDD) approach for autoregressive
models which addresses the drawbacks of both KD and
EDD in a single consistent framework and is scalable to
sequence problems with a large number of classes. Consider
a set of logits produced by an ensemble:

{z(m)
l }Mm=1,π

(m)
l =Softmax(z

(m)
l ). (9)

Traditional distillation approaches thereafter use the logits
to produce categorical probability distributions by applying
the softmax function. However, instead of operating in
the probability space, we propose training a student, with
model parameters φ, to directly model the logit space
by predicting the mean µl and scale σl parameters of a
diagonal Laplace distribution:

p(z|y<l,x,φ)=Lap(z|µl,σl)

=
∏
k

1

2σl,k
exp

{
−
∣∣zk−µl,k

∣∣
σl,k

}
.

(10)

Because we opt for a diagonal distribution, sampling is paral-
lelisable, highly efficient, and straightforward and allows for
the estimation of uncertainties in exactly the same manner
as in standard ensembles. Additionally, significantly fewer
parameters are required compared to using a fully-specified
covariance matrix. Another benefit of the chosen distribution
is the long tails which make the Laplace robust to outliers,
unlike the Gaussian distribution. This robustness also makes
it a natural choice for handling the early stages of training
when the student model is randomly initialised and its output
distribution substantially differs from the ensemble logits.

Furthermore, given the set of logits produced by an
ensemble, the student model p(z|y<l,x,φ) can be trained
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by straightforward application of log-likelihood training:

LL−EDDNLL (φ)=− 1

MLK

∑
m,l

lnLap(z
(m)
l |µl,σl)

≡ 1

MLK

∑
m,l,k

∣∣∣z(m)
l,k −µl,k

∣∣∣
σl,k

+lnσl,k.

(11)

We also perform experiments with a student (diagonal)
Gaussian distribution on the logits, variations of which
have been explored in static image classification [Fathullah
and Gales, 2022, Lindqvist et al., 2020] but remained
unexplored for autoregressive sequence tasks:

p(z|y<l,x,φ)=N (z|µl,σ
2
l )

=
∏
k

1

(2πσ2
l,k)

1
2

exp

{
− (zk−µl,k)

2

2σ2
l,k

}
.

(12)

Similar to all of the mentioned approaches, this system is
also trained using the log-likelihood objective:

LL−EDDNLL (φ)=− 1

MLK

∑
m,l

lnN (z
(m)
l |µl,σ

2
l ). (13)

The Gaussian distribution, which induces an L2-norm loss
function is much more sensitive to outliers in the ensemble
outputs. This student could potentially be more challenging
to train, but should still be more stable than Dirichlet EDD.

3.1 PRACTICAL CONSIDERATIONS

Since the softmax activation function is shift invariant,

Softmax(z−1b)=Softmax(z) ∀b∈R,

one has to consider this property when performing distribu-
tion distillation. Ensemble members are unconstrained along
1, and so can potentially vary wildly in the logit space, even
if they give consistent softmax predictions. Therefore, logits
are normalised by z̃=z−1LogSumExp(z). This particular
normalisation scheme is not special and any choice of the
normalisation constant such as Max(z) or Mean(z) would be
valid. Next, to ensure that the student can be trained reliably,
we interpolate the knowledge and distribution distillation
losses LKD(φ)+βLL−EDDNLL (φ) (see Eq. 11 and Sec. 2.2).

Furthermore, distributions in logit space often lead
to analytically intractable expectations in probability
space. The standard approach to circumvent this issue
is by sampling from the distribution using monte-carlo
approximations. However, in this paper, we opt for an
approximative deterministic approach when computing the
predictive distribution (e.g. when decoding):

P(yl|y<l,x,φ)=Ep(zl|y<l,x,φ)

[
Softmax(zl)

]
≈Softmax(µl),

in which we approximate the expectation by just using
the mean of the logit distribution. When performing
downstream tasks that require uncertainties we revert to a
stochastic sampling scheme to generate multiple predictions
from the distribution.

4 EXPERIMENTS ON ARTIFICIAL DATA

This section investigates the proposed Laplace logit-based
ensemble distribution distillation (L-EDD) technique on
a static artificial dataset, see Figure 1a. The dataset was
generated by sampling 3000 data points from three isotropic
Gaussian distributions equally. The location and standard
deviation of the Gaussians were chosen such that there
would be regions with significant overlap and regions where
models can be highly confident.

In these exploratory experiments, an ensemble of 10 small
neural networks is first trained by randomly initialising each
member. Thereafter, the ensemble is distilled using KD,
EDD and Laplace L-EDD. We perform a qualitative com-
parison of these methods by displaying both the loss surface
(see Figures 1c-1d) of each approach and the resulting
confidence (maximum softmax probability) contours ((see
Figures 1e-1h)). The loss surface shows how the student
distillation loss varies over the input space, thus providing
useful information about which regions of the data are
successfully optimised. The confidence contours are useful
to understand if the system can separate between each of the
three classes. EDD training had to be terminated early as
it diverged due to large gradients originating from the high-
confidence regions (as discussed in Ryabinin et al. [2021]).

Figure 1e shows the ensemble confidence contours which
clearly trace out class boundaries and partially separate
the three classes. The confidence also increases as one
moves further away from regions of overlap since there
is less uncertainty. This is the behaviour we expect from
a properly trained system and further, expect distilled
students to behave similarly. Next, we knowledge distil the
ensemble onto a single student model, see Figures 1b and
1f. The loss surface shows that the student can optimise the
distillation objective over regions with high overlap well
and generate confidence score contours that are consistent
with the teacher ensemble.

However, Ensemble Distribution Distillation completely
fails on this very simple task. Observing the loss surface in
Figure 1c, one can infer that the Dirichlet student is unable
to optimise regions where there is significant data overlap,
instead displaying extremely small losses in regions for
which the teacher ensemble is already confident. This links
back to a result in Ryabinin et al. [2021] in which they find
that highly confident teachers can induce extremely large
gradients. This also translates into inaccurate confidence
contours which are unable to separate between classes,
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Figure 1: An artificial three-class classification problem with 1000 examples per class. The top row shows the loss
surface contours for various distillation approaches; darker colours imply lower losses. The bottom row shows the
corresponding confidence contours (the confidence scores are reported on the contour). This shows that Dirichlet-based
EDD is unable to learn properly whilst our proposed Laplace L-EDD can imitate an ensemble.

especially in regions of overlap, see Figure 1g.

The Laplace L-EDD approach circumvents these issues by
operating in the logit space. The resulting loss surface is
much more consistent with the knowledge-distilled student,
optimising regions of high overlap, see Figure 1d. Similarly,
the confidence contours trace out boundaries consistent
with the ensemble but with lower overall confidence.
Since the log-likelihood (similar to KL-divergence) is a
mode-covering objective [Minka et al., 2005], the Laplace
student ends up predicting distributions that overestimate
the range of ensemble logits. Couple this with the long tails
of the distributions and the Laplace will often overestimate
the variance in logits and produce lower overall confidence.

5 MACHINE TRANSLATION

This section reports on the performance of base transformers
[Vaswani et al., 2017] trained on the En-De WMT’16 data-
set, consisting of 4.5 million sentence pairs covering topics
such as news & policy. We use newstest-13 for validation
and newstest-14 for predictive evaluation. For the main task
of investigating out-of-distribution (OOD) detection, we
compare the in-distribution (ID) newstest-14 with one of
the publically available Khresmoi-Summary (Khresmoi)
[Dušek et al., 2017], MTNT [Michel and Neubig, 2018]
and Kyoto Free Translation Task (KFTT) [Neubig, 2011]
datasets. These datasets relate to medical articles, Reddit-

based noisy conversational text and specialised Wikipedia
articles, respectively. Furthermore, we apply insights from
training these systems to big transformers [Vaswani et al.,
2017] trained on the larger En-Ru WMT’20 consisting
of 58 million pairs after processing. In this case, we use
newstest-19 for validation and newstest-20 for evaluation.
The OOD detection task uses newstest-20 as ID and the
same OOD datasets as above for the base transformer.

Data is tokenized using Moses, following Ott et al. [2018].
For WMT’16, a shared dictionary is trained using Byte Pair
Encoding (BPE) with 32,000 merge operations [Sennrich
et al., 2016]. For WMT’20 we learn disjoint dictionaries
using BPE with 40,000 merge operations. The predictive
performance (translation quality) will be evaluated using
corpus-level (Sacre)BLEU [Post, 2018], with no post-
processing of outputs before being scored. For the main task
of detection, we use the ubiquitous threshold-independent
AUROC metric [Manning and Schütze, 1999], with baseline
random detection corresponding to a score of 50%.

All standard transformers are trained using an inverse square
root with a linear warmup stage. A stronger Deep Ensemble
baseline is formed by taking M=5 such models. To avoid
the high training cost of Deep Ensembles, we also train
Snapshot Ensembles [Xie et al., 2013, Huang et al., 2017]
with a cyclic learning rate [Smith, 2017] to showcase that
distribution distillation can be achievable with smaller train-
ing budgets. Since building Deep Ensembles is expensive,
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and the performance difference to Snapshot Ensembles was
shown to be small, we opted to perform most distillation
experiments on Snapshot Ensembles. We compare the pro-
posed L-EDD approaches with KD and EDD and repeat
each experiment 5 times, each with a different Snapshot
Ensemble. Finally, similar to a range of prior work on un-
certainty estimation tasks [Malinin et al., 2020, Malinin and
Gales, 2021, Corbière et al., 2019], we do not aim to achieve
state-of-the-art predictive performance but opt for a simpler
setup with a focus on achieving better uncertainty estimation.
All setup details are provided in the supplementary appendix.
Hyperparameters were determined on ID validation sets.

Table 1: Model parameter size, relative training time
and translation performance on newstest-14 ±2std
(BLEU) for base transformer. We include two different
KD baselines, one for each teacher ensemble.

Model Size Train BLEU ↑Time

Standard 60.9M 1.0 25.85 ± 0.17

Deep Ensemble 304.5M 5.0 26.72
KD (Categorical) 60.9M 5.9 26.70 ± 0.26

Snapshot Ensemble 304.5M 1.5 26.54 ± 0.16

KD (Categorical) 60.9M 1.9 27.02 ± 0.19

EDD (Dirichlet) 60.9M 2.0 26.96 ± 0.06

L-EDD (Gaussian) 77.8M 1.9 26.90 ± 0.28

L-EDD (Laplace) 77.8M 1.9 27.08 ± 0.20

5.1 BASE TRANSFORMER RESULTS

Table 1 shows both the efficiency and performance of a
wide range of systems on newstest-14. As expected the
performance of the Deep Ensemble trumps both the Snap-
shot Ensemble and a standard trained system. Surprisingly,
Snapshot Ensemble distilled students achieve better per-
formance, a pattern also observed in self-distilled systems
and is explored in more detail in Allen-Zhu and Li [2021].

Next, we compare the threshold-independent out-of-
distribution detection performance of baseline systems with
L-EDD models. From Table 2, we observe that Snapshot En-
sembles are able to compete with the Deep equivalent whilst
being more than 3 times cheaper to train. Furthermore, the
knowledge-distilled students are able to match the detection
performance of their Deep and Snapshot ensemble teachers
using total uncertainty (TU). This is a natural result since
they were specifically designed to capture the predictive
distribution of their teacher ensemble. However, since KD
students are unable to estimate knowledge uncertainty (KU),
they fail to reach ensemble-level detection performance in
all but the MTNT dataset. Similarly, the modified Dirichlet
baseline as described by Ryabinin et al. [2021] is able to
achieve similar detection performance using TU but with
the added ability to estimate KU. And whilst the Dirichlet
KU are often better than its TU estimates, they often fall
short when compared to ensembles.

On the other hand, the Laplace & Gaussian L-EDD models
are (surprisingly) able to outperform both ensembles
in all three detection splits, producing either similar or
significantly better TU and KU estimates. This may partially
be due to the fact that diagonal Laplace and Gaussian
distributions have more parameters and are more flexible
than the Dirichlet, and also because they do not suffer from
the same optimisation issues. Nonetheless, neither reason
explains why L-EDD models can outperform ensembles
in detection. We explore this pattern in Section 6.

Additionally, many models are worse than a random
detector, especially for the KFTT and partially for the
Khresmoi dataset. A partial explanation could be that these
datasets contain longer sequences. When decoding, the
transformer models produce more and more confident
predictions further along in the output sequence, causing
lower uncertainty scores. Section 6 investigates this effect
and isolates a possible reason behind Laplace’s success in
outperforming ensembles.

Table 2: OOD detection performance (%AUROC ↑ ± 2 std) for base transformer with ID dataset newtest-14 and OOD
datasets Khresmoi, MTNT and KFTT. Bold indicates best in a column, underline second best. Laplace L-EDD with
knowledge uncertainty (KU), shows superior performance for all OOD datasets even compared to the Deep Ensemble.

Model Khresmoi MTNT KFTT
TU KU TU KU TU KU

Standard 47.5 ± 0.8 7 63.5 ± 1.3 7 30.6 ± 1.2 7

Deep Ensemble 48.0 61.9 64.5 63.7 30.1 44.0
KD (Categorical) 47.9 ± 1.1 7 64.5 ± 1.3 7 29.8 ± 0.7 7

Snapshot Ensemble 49.0 ± 0.6 62.6 ± 1.1 63.8 ± 1.2 63.1 ± 0.7 31.7 ± 0.9 47.4 ± 2.5

KD (Categorical) 48.0 ± 1.4 7 64.6 ± 0.9 7 31.3 ± 0.5 7

EDD (Dirichlet) 49.6 ± 1.3 57.1 ± 1.4 65.1 ± 1.7 65.6 ± 2.0 31.0 ± 0.9 36.2 ± 1.4

L-EDD (Gaussian) 59.5 ± 1.1 71.7 ± 1.9 66.3 ± 1.6 64.0 ± 2.1 35.8 ± 1.2 44.0 ± 0.2

L-EDD (Laplace) 65.1 ± 1.8 73.1 ± 1.7 65.1 ± 1.5 66.8 ± 1.8 37.8 ± 0.2 48.8 ± 1.4
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As an aside, we observe that estimates of knowledge uncer-
tainty are clearly important for OOD detection for autore-
gressive sequence tasks (and this is corroborated in prior
work Malinin and Gales [2021], Ryabinin et al. [2021]).
This is in contrast to recent empirical results on image
classification data, which show the opposite, that measures
of knowledge uncertainty are not useful for indicating distri-
butional shifts [Xia and Bouganis, 2022a, Abe et al., 2022].

Table 3: Model parameter size, relative training time
and translation performance on newstest-20 ±2std
(BLEU) for the big transformer.

Model Size Train BLEU ↑Time

Standard 271M 1.0 26.28 ± 0.34

Deep Ensemble 1.35B 5.0 26.81

Snapshot Ensemble 1.35B 1.5 26.42 ± 0.23

KD (Categorical) 271M 2.1 26.73 ± 0.16

EDD (Dirichlet) 271M 2.2 26.66 ± 0.19

L-EDD (Laplace) 320M 2.2 26.71 ± 0.18

5.2 BIG TRANSFORMER RESULTS

In this section, we take the best-performing systems from
the previous section and apply them to the ‘big transformer’
on the larger En-Ru WMT’20 dataset. Table 3 shows the
efficiency and predictive performance on newstest-20.
Again, we observe that the Deep Ensemble outperforms
its Snapshot equivalent. Furthermore, the KD and L-EDD
students, distilled from the Snapshot Ensemble were able to
outperform their teacher. However, unlike the smaller-scale
experiments, these students were only able to reach Deep
Ensemble performance within a standard deviation, but
were able to do so with a single forward pass.

From Table 4 we observe a similar pattern in which Deep
and Snapshot ensembles perform equivalently whilst
L-EDD (Laplace) is able to significantly outperform both
ensembles in all but the MTNT dataset. Interestingly, unlike
in Table 2 where no model was able to beat a random

detector on the KFTT detection, the larger En-Ru WMT’20
based models are able to differentiate between newstest-20
and KFTT; switching the ID dataset to newstest-14 does
not affect the results notably.

6 ANALYSIS: ENSEMBLE VS LAPLACE

6.1 AUGMENTED ENSEMBLE UNCERTAINTIES

Both Sections 5.1 and 5.2 found that L-EDD models overall
significantly outperformed their teacher Snapshot Ensemble
and a Deep Ensemble. Therefore, we propose an alternative
experiment to understand the source of L-EDD’s superior
performance. We fit an auxiliary Laplace distribution to a
Deep Ensemble during inference and use the samples from
this proxy to perform the detection task.

Consider a Deep Ensemble which produces a set of
normalised logits {z̃(m)

l }Mm=1 as in Equation (9). In
traditional uncertainty estimation, these logits would be
transformed into categorical distributions. However, in this
experiment, we estimate an auxiliary Laplace distribution
using maximum likelihood (which is the loss-minimising
distribution for a Laplace L-EDD student):

µ̃l,σ̃l=argmax
µ,σ

∑
m

lnLap(z̃
(m)
l |µ,σ). (14)

By sampling new points from this auxiliary distribution, we
can estimate total and knowledge uncertainty:

π̃=Softmax(z),z∼Lap(µ̃l,σ̃l). (15)

The aim of this modified approach to ensemble-based
uncertainty estimation is to investigate whether or not
approximating the logits with a Laplace distribution is the
reason behind L-EDD performing better.

Table 5 shows the detection performance of the Laplace-
modified Deep Ensemble, following the detection setup
in Section 5.1. Clearly, the augmented ensemble bridges
the OOD detection performance gap between standard
Deep Ensemble and L-EDD. This suggests that measures
of uncertainty based on directly fit, logit-space models

Table 4: OOD detection performance (%AUROC ↑ ± 2 std) for big transformer with ID dataset newtest-20 and OOD
datasets Khresmoi, MTNT and KFTT. Bold indicates best in a column, underline second best. Similar to Table 4,
L-EDD (Laplace) with KU shows superior performance over all OOD datasets.

Model Khresmoi MTNT KFTT
TU KU TU KU TU KU

Deep Ensemble 39.3 53.2 70.8 69.0 51.0 60.3

Snapshot Ensemble 40.8 ± 0.5 55.0 ± 0.8 70.1 ± 0.5 69.3 ± 0.9 51.1 ± 0.6 60.9 ± 1.4

KD (Categorical) 40.4 ± 0.8 7 70.9 ± 1.0 7 50.9 ± 0.6 7

EDD (Dirichlet) 41.0 ± 0.8 52.9 ± 1.3 71.3 ± 0.7 69.4 ± 0.7 51.0 ± 0.8 60.0 ± 1.3

L-EDD (Laplace) 51.0 ± 0.9 63.4 ± 1.2 72.6 ± 0.8 70.2 ± 0.6 63.2 ± 1.0 70.2 ± 1.1

588



Table 5: OOD detection performance (%AUROC ↑ ± 2 std) following the same setup as in Table 2. The Laplace
augmented ensemble demonstrates much better performance in most cases compared to its standard counterpart.

Model Khresmoi MTNT KFTT
TU KU TU KU TU KU

Deep Ensemble 48.0 61.9 64.5 63.7 30.1 44.0
Deep Ensemble (Laplace) 62.5 72.1 63.8 56.1 34.8 55.4

L-EDD (Laplace) 65.1 ± 1.8 73.1 ± 1.7 65.1 ± 1.5 66.8 ± 1.8 37.8 ± 0.2 48.8 ± 1.4

of an ensemble are better at indicating distributional shift
than directly using the ensemble logits, for autoregressive
sequence prediction. We remark that fully understanding
why this is the case would be an interesting direction of
future research, as it may enable further advancement in
autoregressive out-of-distribution detection.

6.2 MODEL
CONFIDENCE FOR LONGER SEQUENCES

Another reason for Laplace L-EDD’s superior performance
could be found in analysing behaviour with increasing
sequence lengths. Figure 2 shows how Deep Ensemble and
L-EDD total uncertainties scale with output sequence length
for both ID (newstest-14) and OOD (Khresmoi) datasets.
Under each figure is also the associated Pearson correlation.

Three observations can be made from this data. The first
is that the L-EDD system consistently outputs much higher
total uncertainties. The second is that the Deep Ensemble
displays a negative correlation between total uncertainty
and sequence length. This implies that the ensemble is
more confident in translating longer sequences, but this is
also why it fails in detecting OOD datasets which contain
longer sequences. The third and possibly most significant
observation is that the Laplace system shows almost no
correlation between total uncertainty and sequence length
for both ID and OOD datasets, effectively eliminating the

length bias, and allowing it to better differentiate between
ID and OOD datasets even when the OOD inputs differ in
length from what the detection system was trained on.

7 CONCLUSION

In this work, we investigate the efficient estimation of uncer-
tainties for large-scale autoregressive sequence prediction.
To this end, we examine Ensemble Distribution Distillation
(EDD) in the logit-space, in order to bypass optimisation is-
sues found in softmax-space EDD. We perform experiments
using modern transformer models trained to perform large-
scale machine translation. They show that a student model
trained to parameterise a Laplace distribution over logits is
able to significantly outperform Deep Ensembles for OOD
detection at a fraction of the inference cost, whilst matching
the ensemble for translation quality. Moreover, we show
that the use of Snapshot Ensembling can greatly reduce
the training costs of EDD, without sacrificing translation
performance. We hope that our work can encourage further
investigation into the comparatively less well-explored
domain of uncertainty estimation for structured sequence
prediction, on tasks such as machine translation, image
captioning, and automatic speech recognition.
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Figure 2: Length vs uncertainty density plots for ID (newstest-14) and OOD (Khresmoi) datasets. The left half
corresponds to the Deep Ensemble and the right half to Laplace L-EDD. Each figure caption also shows the Pearson
Correlation Coefficient (PCC) between sequence length and total uncertainty. Total uncertainty and length are negatively
correlated for the ensemble, i.e. it is more confident on longer sequences, but they are uncorrelated for L-EDD.
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