
On the Role of Model Uncertainties in Bayesian Optimization
(Supplementary Material)

Jonathan Foldager1,* Mikkel Jordahn1,* Lars Kai Hansen1 Michael Riis Andersen1

1Department of Applied Mathematics and Computer Science, Technical University of Denmark
*Shared first authorship.

1 HYPERPARAMETER TUNING DATASETS

When collecting our hyperparameter tuning datasets, the combinations of models and datasets are as follows:

Table 1: Model and Data Combinations for Hyperparameter Tuning

MNIST FashionMNIST AG News Classification Wine Classification
FFNN ✓ ✓ ✓
CNN ✓ ✓
SVM ✓

For each of the models we then select a number of hyperparameters which we want to tune, create a grid for these
hyperparameters and train a model for each of these hyperparameter sets (the BO input is thus hyperparameters and the
output is validation performance). The FFNN simply has a single hidden layer with a ReLU activation function and a single
dropout layer, except in the case of the AG News Classification where the "hidden layer" is an embedding layer using the
nn.EmbeddingBag from torch [Paszke et al., 2019]. The CNN is a network with two convolution layers with kernel size
(5, 5) of output channels 16 and 32 respectively, and a single hidden and dropout layer. Max pooling is also used with
a kernel size of (2, 2) at every convolution layer. The SVM used is the SVC from sklearn [Pedregosa et al., 2011]. The
hyperparameters and their grid specification can be seen here:

Table 2: Grid Specifications for Hyperparameter Tuning

Training Epochs Dropout Rate Learning Rate (log space) Batch Size Train Hidden Size C (log space) γ (log space)
FFNN np.linspace(1, 10, 10) np.linspace(0, 0.8, 10) np.linspace(-11.51, -2.23, 10) np.arange(8, 256, 32) np.linspace(1, 271, 10)
CNN np.linspace(1, 10, 10) np.linspace(0, 0.8, 10) np.linspace(-11.51, -2.23, 10) np.arange(8, 256, 32) np.linspace(1, 271, 10)
SVM np.linspace(-6.9, 4.6, 100) np.linspace(-11.51, -2.23, 100)

2 EXPERIMENTAL DETAILS

Model details are as following. The GPs are built using GPytorch [Gardner et al., 2018] and BoTorch [Balandat et al.,
2020] (BoTorch’s SingleTaskGP class) and use a scale kernel and RBF kernel. The priors can be seen in Table 3. The
hyperparameters of the kernel are tuned at every BO iteration using the marginal likelihood using the scipy L-BFGS-B
optimizer (default settings in BoTorch). The Deep Ensembles consist of 10 neural networks with two hidden layers of size
30 and 10 respectively and use the ReLU activation function. We use an Adam optimiser with learning rate 4e−3. We train
them for 200 epochs. They are implemented using torch. The BNN Small has a single hidden layer of size 10 whilst the
larger BNN model has two hidden layers of size 30 and 10 respectively and are implemented using the BayesLinear layers
from torchbnn [Lee et al., 2022]. We use a KL weight of 1, and use an Adam optimiser with a learning rate of 0.1. They are

Accepted for the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023).

mailto:<jonf@dtu.dk>?Subject=Your UAI 2023 paper


trained for 500 epochs. The priors of these layers can be seen in Table 4. The RFs are implemented using sklearn and the
hyperparameter grids we tune over are: n_estimators= [4, 10, 20], max_depth=[5, 10, 20] and max_features=[1.0, "sqrt"].

Table 3: GP Priors

Lengthscale Prior Outputscale Prior
Synthetic Problems LogNormalPrior(0.1, 1.0) NormalPrior(1.0, 2.0)
Real Data Problems LogNormalPrior(0.1, 5.0) NormalPrior(1.0, 5.0)

Table 4: BNN Priors

Prior Mean Prior Sigma
Input Layer 0.0 1.0

Hidden Layer 0.0 1/900
Output Layer 0.0 1/100

We use BoTorch to perform our Bayesian Optimisation. We use their UpperConfidenceBound and ExpectedImprovement
classes for UCB (with beta=1. We experimented briefly with other beta values. These results can be seen in table 5) and EI
AFs respectively, and have adapted their MaxPosteriorSampling class for use as a TS AF. Due to computational reasons, we
perform BO by sampling a candidate pool set of size (Npool = 5000) at the beginning of each BO iteration that the surrogate
and acquisition function can choose to sample from, rather than allowing the surrogates to sample from anywhere in the
input space. Please note that Dtest ∩Dpool = ∅ in the real data experiment setting where the input space is not continous,
whilst this is not necesarily the case in the synthetic data experiments as the input space is continous here, and thus we allow
random sampling for both Dtest and Dpool. The full experimental procedure is written in pseudocode in Algorithm 1. FS

here denotes acquisition function evaluated based on surrogate model S. Please note that we invert the ys for the real data
problems to make it a minimization problem (we want to optimize model accuracy).

Table 5: Experimental results when tuning beta of UCB

Surrogate Beta Inst. Regret Total Regret
BNN Small 0.2 0.006 1.95
BNN Small 0.5 0.017 3.59
BNN Small 1 0.018 4.03
BNN Small 2 0.040 4.76
DE 0.2 0.003 1.05
DE 0.5 0.001 0.91
DE 1 0.000 0.84
DE 2 0.001 1.01
GP 0.2 0.003 1.75
GP 0.5 0.002 1.47
GP 1 0.000 1.33
GP 2 0.001 1.38
RF 0.2 0.003 0.97
RF 0.5 0.003 0.94
RF 1 0.002 0.78
RF 2 0.004 0.97



Algorithm 1 Bayesian Optimisation Experiments

Require: Surrogate Model: S, Acquisition Function: F , BO Problem: P , Ntest = 5000, Npool = 5000, Ninit = 10,
i = 90
if P is synthetic then

Dtest ← Ntestrandom points fromP
Dpool ← Npool random points from P
Standardize data s.t. mean=0, var=1 using Dpool metrics.
xopt, yopt ← minDpool

Dtrain ← Ninit random points from Dpool

Dpool ← Dpool - Dtrain

else if P is real data then
Dproblem ← all points from P
Dtest ← Ntest random points from Dproblem

Dproblem ← Dproblem - Dtest

Dpool ← Npool random points from Dproblem

Standardize data s.t. mean=0, var=1 using Dpool metrics.
xopt, yopt ← minDpool

Dtrain ← Ninit random points from Dpool

Dpool ← Dpool - Dtrain

end if
while i > 0 do

Fit S to Dtrain

Dnext ← maxFS(Dpool)
Dtrain ← Dtrain +Dnext

Dpool ← Dpool −Dnext

Fit S to Dtrain

ybest = minDtrain

Calculate regret: yopt − ybest
Calculate ECE of model based on Dtest

i← i− 1
end while

3 MULTIPLE REGRESSION ANALYSIS

In Table 6 and Table 7 the multiple regression analysis can be seen for the real and synthetic data respectively. The regression
was done using Statsmodels for Python [Seabold and Perktold, 2010].



Table 6: Multiple regression analysis for hyperparameter tuning experiments. GP is the baseline model and MNIST is the
baseline dataset. The other slopes and intercepts are contrasts to these two baselines.

coef std err t P> |t| [0.025 0.975]

calibration_mse 8.9899 88.549 0.102 0.919 -167.409 185.389
BNN -56.6270 89.992 -0.629 0.531 -235.899 122.646
DE -48.5141 92.738 -0.523 0.602 -233.257 136.229
RF -95.7785 113.183 -0.846 0.400 -321.251 129.694
BNN Small -59.3964 89.109 -0.667 0.507 -236.911 118.118
intercept 1.7675 1.282 1.379 0.172 -0.787 4.322
DE_intercept 0.9198 1.676 0.549 0.585 -2.419 4.259
BNN_intercept 6.6811 2.856 2.339 0.022 0.992 12.370
RF_intercept 0.8637 1.615 0.535 0.594 -2.353 4.081
BNN_Small_Intercept 7.2043 2.353 3.062 0.003 2.518 11.891
fashionmnist 1.4489 0.364 3.981 0.000 0.724 2.174
mnist_cnn -1.2256 0.460 -2.665 0.009 -2.142 -0.310
fashionmnist_cnn 0.9344 0.413 2.261 0.027 0.111 1.758
news -0.2718 0.406 -0.669 0.505 -1.081 0.537
svm_wine -2.6434 0.390 -6.775 0.000 -3.421 -1.866



Table 7: Multiple regression analysis for synthetic optimisation experiments. GP is the baseline model and Problem18 is the
baseline dataset. The other slopes and intercepts are contrasts to these two baselines.

coef std err t P> |t| [0.025 0.975]

calibration_mse -2477.1182 596.466 -4.153 0.000 -3649.745 -1304.492
BNN 2049.7326 576.865 3.553 0.000 915.640 3183.825
DE 2343.7352 582.393 4.024 0.000 1198.776 3488.695
RF 1124.1523 726.204 1.548 0.122 -303.534 2551.839
BNN Small 2155.4162 578.996 3.723 0.000 1017.134 3293.698
intercept 24.4450 11.213 2.180 0.030 2.400 46.490
DE_intercept -22.5397 8.992 -2.507 0.013 -40.217 -4.862
BNN_intercept 59.5739 17.698 3.366 0.001 24.781 94.367
RF_intercept 11.6801 11.736 0.995 0.320 -11.393 34.754
BNN Small_intercept 50.0913 13.164 3.805 0.000 24.211 75.972
MegaDomain02 -8.3801 11.598 -0.723 0.470 -31.181 14.420
Ackley 238.4477 11.751 20.292 0.000 215.346 261.549
Schwefel22 15.1786 12.368 1.227 0.220 -9.137 39.494
Problem15 -9.0384 11.668 -0.775 0.439 -31.978 13.901
Sargan 5.3031 11.621 0.456 0.648 -17.544 28.150
Quadratic 0.2745 11.537 0.024 0.981 -22.407 22.956
BartelsConn -3.1293 11.573 -0.270 0.787 -25.881 19.622
McCourt27 68.7446 11.672 5.890 0.000 45.799 91.691
Sphere 11.3725 11.622 0.978 0.328 -11.477 34.222
Ursem04 51.9448 11.613 4.473 0.000 29.115 74.775
Plateau 36.7332 11.642 3.155 0.002 13.846 59.620
MegaDomain04 3.3478 11.668 0.287 0.774 -19.591 26.286
Problem13 -3.7408 11.551 -0.324 0.746 -26.449 18.967
SumPowers 4.3195 11.583 0.373 0.709 -18.452 27.091
MegaDomain03 -6.3915 11.623 -0.550 0.583 -29.242 16.459
Brown 24.5035 13.673 1.792 0.074 -2.378 51.385
Cigar 26.1229 11.576 2.257 0.025 3.366 48.880
Schwefel06 4.3806 11.667 0.375 0.708 -18.556 27.318
McCourt28 -0.2202 11.688 -0.019 0.985 -23.197 22.757
Step 38.1989 11.571 3.301 0.001 15.450 60.948
HimmelBlau 2.2361 11.524 0.194 0.846 -20.419 24.892
Problem18 -3.1796 11.658 -0.273 0.785 -26.098 19.739
Giunta 13.5342 11.684 1.158 0.247 -9.436 36.504
Csendes 1.7708 11.689 0.151 0.880 -21.209 24.750
Exponential 14.8954 11.656 1.278 0.202 -8.020 37.811
Problem04 -5.2547 11.595 -0.453 0.651 -28.050 17.541
Schwefel20 52.3473 11.663 4.488 0.000 29.419 75.276
Schwefel01 -1.1381 11.568 -0.098 0.922 -23.880 21.604



4 MATHEMATICAL PROOFS

Proposition 1: Let Fi be the CDF of the predictive distribution for the i’th observation and let {yi}ni=1 be i.i.d. samples
yi ∼ py . For Cy(p) = 1

n
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i=1 I
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i (p)
]
, then the variance of Cy(p) is bounded by 1/n, i.e. V [C] = O(n−1).
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This completes the proof of the first statement.

Lemma 1: Given a perfectly calibrated model, it holds that V [Cy(p)] = p(1−p)
n for all p.

Proof: In this setting, we have

zi = I
[
yi ≤ F−1

i (p)
]
= I [Fi(yi) ≤ p] = I [ui] ≤ p] , (4)

where ui ∼ U [0, 1] are uniformly distributed on the unit interval due to the probability integral transform. Since {ui}ni=1

are also independent, it follows that
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This completes the proof.



Proposition 2: Let Ec =
∑m

j=1 wj(pj − Cy(pj))2 be the weighted mean square calibration error. Assume wi ∈ [0, 1]
and 0 < p1 < p2 < ... < pm < 1 are fixed, and assume the CDF of the predictive distribution is equal to the true data
distribution (almost everywhere), then it holds that E [Ec] =

1
n

∑m
j=1 wjpj(1− pj) = O(n−1) if yi ∼ py are i.i.d. samples.

The calibration error EC is defined as follows
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where each wi ∈ [0, 1] is a weight and 0 ≤ p1 < p2 < ... < pm < 1 is predefined set of points.
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Rearranging the terms yields
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This completes the proof.

IF py AND pt ARE NORMAL DISTRIBUTIONS

For non-perfect models we have that Fy(F
−1
t (p)) = g(p) where in general g(p) ̸= p. If both py and pt are normal

distributions, the CDF and inverse CDF of a normal are, respectively, given by
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which also evaluates to p for a perfect model:
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5 VARIANCE OF CALIBRATION CURVES AS FUNCTION OF VALIDATION SET SIZE

We first illustrate empirically how accurately we can asses the calibration curve as a function of the size of the validation set
N . This can be seen in Figure 1, where the true data generating distribution py(y|x) = N (y|0, 1) is approximated by six
different model distributions pt(y|x) (one for each row). The first column shows the PDF and CDF of the true distribution
and the model distribution in blue and black, respectively. Each of the subsequent columns shows the estimated calibration
curves as a function of the number validation samples N . We repeat this experiment one hundred times and display the
mean and confidence intervals corresponding to ±2 standard deviations.
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Figure 1: Examples of calibration curves computed on various number of test examples N , when the true data comes from a
standard Gaussian and the model (left plots) varies (each row). Even in the best case scenario when samples are i.i.d., a
large sample-to-sample variance can be expected in the ranges of N for which BO normally operates. Calibration curve
distributions are made from 100 random seeds, and the intervals corresponds to two times the standard deviation.



6 EMPIRICAL CONFIRMATION OF PROPOSITION 1

To validate proposition 1, we now expand the experiment from Figure 1. In Figure 2, we have conducted a numerical
experiment, where we sample 100 models of the form pt(y|x) = N (y|µ, σ), where µ ∼ N (0, 1) and σ ∼ LogNormal(1, 1).
For each model, we compute 100 calibration curves for each sample size N ∈ [5, 1000] and subsequently estimate the
variance of those curves. Figure 2 shows the maximum standard deviation as a function of the sample size N .
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Figure 2: Maximum uncertainty across p for calibration distribution Cp(y) when N samples of y is given for computing the
individual calibration curves. We sample 100 models (normal distributions) each with arguments µi ∼ Normal(0, 1) and
σi ∼ LogNormal(1, 1) each modelling data coming from a standard normal. For each experiment 100 calibration curves,
that is 100 independent samples of size N from the true model, constitutes the mean and std. We also plot the function
f(N) = a/

√
N for a ≈ 1.05.
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