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Abstract

Bayesian Optimization (BO) is a popular method
for black-box optimization, which relies on uncer-
tainty as part of its decision-making process when
deciding which experiment to perform next. How-
ever, not much work has addressed the effect of
uncertainty on the performance of the BO algo-
rithm and to what extent calibrated uncertainties
improve the ability to find the global optimum. In
this work, we provide an extensive study of the
relationship between the BO performance (regret)
and uncertainty calibration for popular surrogate
models and acquisition functions, and compare
them across both synthetic and real-world experi-
ments. Our results show that Gaussian Processes,
and more surprisingly, Deep Ensembles are strong
surrogate models. Our results further show a pos-
itive association between calibration error and re-
gret, but interestingly, this association disappears
when we control for the type of surrogate model in
the analysis. We also study the effect of recalibra-
tion and demonstrate that it generally does not lead
to improved regret. Finally, we provide theoretical
justification for why uncertainty calibration might
be difficult to combine with BO due to the small
sample sizes commonly used.

1 INTRODUCTION

Probabilistic machine learning provides a framework in
which it is possible to reason about uncertainty for both
models and predictions [Ghahramani, 2015]. It is often ar-
gued that especially in high-stakes applications (healthcare,
robotics, etc.), uncertainty estimates for decisions/predic-
tions should be a central component and that they should
be well-calibrated [Kuleshov and Deshpande, 2022]. The
intuition behind calibration is that the uncertainty estimates

should accurately reflect reality; for example, if a classifica-
tion model predicts an 80% probability of belonging to class
A on 10 datapoints, then (on average) we would expect 8
of those 10 samples actually belong to class A. Likewise
– but less intuitively – in regression, if a calibrated model
generates a prediction µ and standard deviation σ, we would
expect to see p percent of the data lying inside a p percentile
confidence interval of µ [Busk et al., 2021].

Uncertainty also plays a central role in Bayesian Optimiza-
tion (BO) [Snoek et al., 2012], which will be the focus of
this paper. As a sequential design strategy for global opti-
mization, BO has several applications with perhaps the most
popular ones being general experimental design [Shahri-
ari et al., 2015] and model selection for machine learning
models [Bergstra et al., 2011].

BO is most often used when the objective function is ex-
pensive (e.g. monetary, or time-consuming) or unethical to
evaluate, gradients between in- and outputs are not avail-
able, noisy, and/or data acquisition is limited to few training
samples [Agnihotri and Batra, 2020]. A BO protocol works
by iteratively fitting a probabilistic surrogate model to ob-
served values of an objective function, and using a so-called
acquisition function (AF) based on the surrogate model, to
select where to query the objective function next. In AFs,
there is an inherent trade-off between exploring input areas
in which the surrogate model is uncertain of the underlying
objective function, and exploiting areas where the surrogate
model already knows that the objective value is close to
optimal. As such, it seems obvious that in order for this
exploration-exploitation trade-off to be good, the probabilis-
tic model must be well-calibrated. It is, however, still not
well-described how much calibration actually affects BO
procedures. One could imagine that if calibration leads to a
better model representation of the underlying objective func-
tion, as would be the general intuition, it would be natural
to expect that improving calibration via so-called recalibra-
tion [Kuleshov et al., 2018] will aid in finding the global
optimum of that same function.
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1.1 OUR CONTRIBUTION

In this paper, we set out to investigate how the model uncer-
tainties affect BO performance by means of both numerical
and theoretical perspectives. Our work is highly motivated
by the general intuition and understanding in the community
that BO surrogate models with better / well-calibrated un-
certainty estimates will perform better (i.e. reach better final
and/or total regret). In particular, our paper is concerned
with studying statements such as "BO crucially relying on
calibrated uncertainty estimates" [Springenberg et al., 2016]
and that methods performing worse "due to their frequen-
tist uncertainty estimates" [Deshwal et al., 2021]. But how
well-calibrated do we need to be in order to achieve good
BO performance? In order to investigate these questions, we
provide four major contributions:

• An extensive study of commonly used surrogate mod-
els and acquisition functions, where we study the re-
sulting calibration errors and regrets to assess the rela-
tionship between calibration and regret. This includes
an intervention study, where we manipulate model cal-
ibration and study the effect on regret.

• We show that Deep Ensembles is superior for hyperpa-
rameter tuning using BO.

• An investigation of whether recalibration during the
BO protocol leads to better BO performance.

• Numerical and theoretical results to substantiate a dis-
cussion on the role of calibration in BO. Especially on
the relationship between the number of recalibration
samples and the variance of the calibration curve.

1.2 RELATED WORK

A great deal of work has been carried out for uncertainty
calibration for regression models [Kuleshov et al., 2018,
Song et al., 2019, Ovadia et al., 2019, Busk et al., 2021,
Nado et al., 2021] and the useful uncertainty toolbox [Chung
et al., 2021] makes it easy to assess the calibration level
of various models. In the very recent work by Deshpande
and Kuleshov [2021], a procedure for calibrating Gaussian
processes (GPs) during BO was proposed. Given the small
sample sizes available in BO, the idea is to use leave-one-
out cross-validation and utilize the calibration algorithm
proposed in earlier work by Kuleshov et al. [2018]. We
note that potential issues might arise from this procedure as
the earlier work by Kuleshov et al. [2018] states multiple
times their approach produces calibrated forecasts "given
enough i.i.d. data". However, the data available during BO
is rarely large nor independent and identically distributed
(i.i.d.), and the goal of our work is to dive deeper into this.
Other research on the role of uncertainty calibration includes
examples such as the work by Bliznyuk et al. [2008], where
the authors propose a way of using Markov Chain Monte

Carlo (MCMC) to get calibrated predictions for GPs. In
Belakaria et al. [2020], the authors investigate uncertainty-
aware multi-objective (multidimensional output) BO and
argue that due to the uncertainty incorporating strategy, their
model outperforms state-of-the-art procedures.

2 BACKGROUND

Bayesian Optimization (BO) is concerned with the op-
timization task of finding the global minimum x∗ =
[x∗1, x

∗
2, ..., x

∗
D]> of some objective function f(x), where x

is a D-dimensional vector, i.e.

x∗ = argmin f(x). (1)

We assume that the optimization objective f(x) ∈ R is con-
taminated with noise, i.e. we observe y(x) = f(x) + ε,
where ε is additive noise often assumed to follow an
isotropic normal distribution. In many scenarios such as
hyperparameter tuning of neural networks, the set of input
variables x are rarely all real-valued, and often no closed-
form expression for f exists. Hence, BO is well-suited when
f is a so-called "black-box" function [Turner et al., 2021].
At least two crucial decisions are to be made when using
BO in practice: 1) the choice of surrogate model, which
is to learn the underlying objective function f , and 2) the
acquisition function (AF), which controls the strategy for
deciding which input x to sequentially pick by maximizing
the AF. Popular choices for surrogate models include Gaus-
sian Processes (GPs) [Rasmussen, 2003, Snoek et al., 2012]
and Random Forests (RFs) [Bergstra et al., 2011], but any
model with a probabilistic interpretation, e.g. Deep Ensem-
bles (DEs) [Lakshminarayanan et al., 2017] or mean-field
Bayesian Neural Networks (BNNs) [Springenberg et al.,
2016], can be used.

Acquisition Functions For the choice of AF, Expected
Improvement (EI) as proposed by Jones et al. [1998] is often
used and is defined as follows:

EI(x) = (µ(x)− f(x+))Φ(Z) + σ(x)φ(Z), (2)

if σ(x) > 0 otherwise EI(x) = 0, and with Z(x) =
µ(x)−f(x+)

σ(x) , where µ(x) and σ(x) denote the mean and
standard deviation, respectively, of the surrogate function
at x, f(x+) denotes the best function value observed so far,
and Φ and φ denote the cumulative distribution function
(CDF) and probability density function (PDF) of a standard
normal distribution, respectively. Another popular AF is the
Upper Confidence Bound (UCB), proposed in Srinivas et al.
[2012] which is defined as:

UCB(x) = −µ(x) + β1/2σ(x), (3)

for minimization problems, where µ(x) and σ(x) once
again denote the mean and standard deviation of the surro-
gate function at x and β is a hyperparameter controlling the
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Table 1: BO results for experiments with synthetic data. For each of the surrogate and acquisition pairs here, we ran a total
of 128 optimization problems, where each problem is repeated with 20 different seeds. For each pair, we report the mean
of all 128 · 20 = 2560 runs and the standard error of the mean for all metrics. The instantaneous and total regret metrics
are computed using eq. (8) and (9), respectively. ECE is the expected calibration error and is computed using eq. (7) and
sharpness denotes the negatige entropy of the predictive distributions. Rows with Acquisition=Average (AVG) correspond
to an average over all three acquisition strategies (EI, UCB, TS), but excluding random sampling (RS). Best performing
configurations in each of the three sections (i.e. RS, EI+UCB+TS, AVG) are reported in bold font.

Surrogate Acquisition Inst. Regret Total Regret ECE Sharpness

GP RS 0.496 ± 0.018 67.117 ± 2.155 0.005 ± 0.000 -0.183 ± 0.012
DE RS 0.508 ± 0.019 67.345 ± 2.194 0.011 ± 0.000 0.030 ± 0.007
RF RS 0.511 ± 0.018 67.920 ± 2.205 0.006 ± 0.000 -0.478 ± 0.016
BNN Small RS 0.519 ± 0.019 67.990 ± 2.199 0.088 ± 0.001 1.253 ± 0.008
BNN RS 0.509 ± 0.018 67.489 ± 2.165 0.105 ± 0.001 3.241 ± 0.000

GP EI 0.036 ± 0.001 13.214 ± 0.325 0.016 ± 0.000 -0.224 ± 0.012
DE EI 0.043 ± 0.002 21.714 ± 0.524 0.029 ± 0.001 -0.353 ± 0.009
RF EI 0.099 ± 0.004 33.511 ± 0.994 0.025 ± 0.000 -0.386 ± 0.016
BNN Small EI 0.848 ± 0.026 91.221 ± 2.719 0.113 ± 0.001 0.602 ± 0.008
BNN EI 0.755 ± 0.024 87.944 ± 2.620 0.110 ± 0.001 3.221 ± 0.000

GP UCB 0.027 ± 0.001 12.829 ± 0.328 0.017 ± 0.000 -0.322 ± 0.012
DE UCB 0.046 ± 0.002 21.148 ± 0.508 0.028 ± 0.001 -0.375 ± 0.009
RF UCB 0.081 ± 0.003 31.173 ± 0.945 0.025 ± 0.000 -0.404 ± 0.016
BNN Small UCB 0.480 ± 0.016 64.604 ± 1.830 0.097 ± 0.001 0.861 ± 0.007
BNN UCB 0.734 ± 0.023 86.777 ± 2.595 0.110 ± 0.001 3.221 ± 0.000

GP TS 0.041 ± 0.003 28.729 ± 1.044 0.010 ± 0.000 -0.436 ± 0.011
DE TS 0.042 ± 0.002 22.116 ± 0.508 0.027 ± 0.001 -0.333 ± 0.009
RF TS 0.279 ± 0.013 51.166 ± 1.783 0.013 ± 0.000 -0.451 ± 0.015
BNN Small TS 0.628 ± 0.021 76.086 ± 2.330 0.091 ± 0.001 0.997 ± 0.007
BNN TS 0.519 ± 0.019 68.111 ± 2.225 0.105 ± 0.001 3.242 ± 0.000

GP AVG 0.035 ± 0.001 18.257 ± 0.390 0.015 ± 0.000 -0.327 ± 0.007
DE AVG 0.044 ± 0.001 21.659 ± 0.296 0.028 ± 0.000 -0.354 ± 0.005
RF AVG 0.153 ± 0.005 38.616 ± 0.757 0.021 ± 0.000 -0.414 ± 0.009
BNN Small AVG 0.652 ± 0.013 77.303 ± 1.346 0.100 ± 0.001 0.820 ± 0.005
BNN AVG 0.669 ± 0.013 80.944 ± 1.439 0.108 ± 0.000 3.228 ± 0.000

trade-off between exploitation and exploration. Finally, the
acquisition strategy coined Thompson Sampling [Thomp-
son, 1933] works by generating a random sample from the
posterior of f and then locating the optimal value for the
specific sample, i.e. for some sample f(x) ∼ p(f |Data)

TS(x) = −f(x). (4)

For GPs and BNNs this is done by sampling a function from
the posterior, whilst for DEs and RFs we sample a neural
network or tree, respectively (Elmachtoub et al. [2017]).

Calibration Following the work by Kuleshov et al. [2018],
a regression model is well-calibrated if approximately q
percent of the time test samples fall inside a q percent confi-
dence interval of the predictive distribution. For regression

tasks, the model calibration can be assessed using the ex-
pected calibration error

ECE =
∑
p

wp(Cy(p)− p)2, (5)

where Cy(p) is defined as

Cy(p) =
1

NT

NT∑
t=1

I[yt ≤ F−1t (p)], (6)

where F−1t is the quantile function, i.e. F−1t (p) ≡
inf
y
{y | p ≤ Ft(y)}, for the t’th datapoint evaluated at per-

centile p, I is an indicator function and wp can be chosen to
adjust the importance of percentiles with fewer datapoints.
Throughout this paper, we assume wp = 1 ∀ p. The closer
the ECE is to zero, the better calibrated the model is.
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Table 2: BO results for hyperparameter tuning experiments. For each of the surrogate and acquisition pairs here, we ran
a total of 6 optimization problems, where each problem is repeated with 100 different seeds. For each pair, we report the
mean of all 6 · 100 = 600 runs and the standard error of the mean for all metrics. The instantaneous and total regret metrics
are computed using eq. (8) and (9), respectively. ECE is the expected calibration error and is computed using eq. (7) and
sharpness denotes the negative entropy of the predictive distributions. Rows with Acquisition=Average (AVG) correspond
to an average over all three acquisition strategies (EI, UCB, TS), but excluding random sampling (RS). Best performing
configurations in each of the three sections (i.e. RS, EI+UCB+TS, AVG) are reported in bold font.

Surrogate Acquisition Inst. Regret Total Regret ECE Sharpness

GP RS 0.0151 ± 0.0006 2.7021 ± 0.0995 0.0055 ± 0.0001 -0.7762 ± 0.0138
DE RS 0.0161 ± 0.0007 2.7822 ± 0.1033 0.0093 ± 0.0001 -0.2574 ± 0.0134
RF RS 0.0152 ± 0.0007 2.6977 ± 0.1018 0.0072 ± 0.0002 1.0302 ± 0.1017
BNN Small RS 0.0150 ± 0.0007 2.5948 ± 0.0942 0.1015 ± 0.0005 1.3499 ± 0.0102
BNN RS 0.0154 ± 0.0007 2.7820 ± 0.1009 0.1075 ± 0.0005 3.2391 ± 0.0003

GP EI 0.0031 ± 0.0002 1.5375 ± 0.0565 0.0153 ± 0.0004 -0.5433 ± 0.0155
DE EI 0.0011 ± 0.0001 0.9031 ± 0.0436 0.0363 ± 0.0010 -0.2927 ± 0.0096
RF EI 0.0043 ± 0.0003 1.0925 ± 0.0459 0.0146 ± 0.0004 0.8718 ± 0.0761
BNN Small EI 0.0332 ± 0.0018 4.8430 ± 0.2239 0.1052 ± 0.0007 0.7928 ± 0.0136
BNN EI 0.0170 ± 0.0009 3.1505 ± 0.1328 0.1092 ± 0.0005 3.2247 ± 0.0004

GP UCB 0.0026 ± 0.0002 1.5156 ± 0.0560 0.0149 ± 0.0004 -0.5297 ± 0.0154
DE UCB 0.0012 ± 0.0001 0.9159 ± 0.0437 0.0369 ± 0.0009 -0.2862 ± 0.0098
RF UCB 0.0043 ± 0.0002 1.0979 ± 0.0455 0.0157 ± 0.0004 0.9205 ± 0.0779
BNN Small UCB 0.0104 ± 0.0007 2.6292 ± 0.1176 0.1013 ± 0.0006 1.0458 ± 0.0088
BNN UCB 0.0152 ± 0.0008 3.1068 ± 0.1300 0.1093 ± 0.0005 3.2244 ± 0.0004

GP TS 0.0046 ± 0.0003 1.7544 ± 0.0643 0.0125 ± 0.0003 -0.5814 ± 0.0173
DE TS 0.0016 ± 0.0002 1.0321 ± 0.0489 0.0364 ± 0.0009 -0.2522 ± 0.0100
RF TS 0.0017 ± 0.0002 1.3192 ± 0.0497 0.0101 ± 0.0002 0.8893 ± 0.0859
BNN Small TS 0.0176 ± 0.0009 2.9900 ± 0.1231 0.1025 ± 0.0005 1.0644 ± 0.0091
BNN TS 0.0150 ± 0.0007 2.6796 ± 0.0988 0.1075 ± 0.0005 3.2405 ± 0.0003

GP AVG 0.0034 ± 0.0001 1.6025 ± 0.0342 0.0142 ± 0.0002 -0.5515 ± 0.0093
DE AVG 0.0013 ± 0.0001 0.9504 ± 0.0263 0.0365 ± 0.0005 -0.2770 ± 0.0057
RF AVG 0.0034 ± 0.0001 1.1699 ± 0.0273 0.0135 ± 0.0002 0.8939 ± 0.0462
BNN Small AVG 0.0204 ± 0.0007 3.4874 ± 0.0965 0.1030 ± 0.0003 0.9676 ± 0.0069
BNN AVG 0.0157 ± 0.0005 2.9790 ± 0.0703 0.1087 ± 0.0003 3.2299 ± 0.0003

GP (recal.) AVG 0.0060 ± 0.0002 1.8416 ± 0.0400 0.0149 ± 0.0002 -0.6552 ± 0.0058
DE (recal.) AVG 0.0019 ± 0.0001 1.1468 ± 0.0320 0.0418 ± 0.0005 -0.3123 ± 0.0042
RF (recal.) AVG 0.0029 ± 0.0001 1.1907 ± 0.0292 0.0112 ± 0.0001 -0.5700 ± 0.0047
BNN Small (recal.) AVG 0.0383 ± 0.0013 4.9472 ± 0.1458 0.0937 ± 0.0003 0.7728 ± 0.0136
BNN (recal.) AVG 0.0157 ± 0.0005 3.0210 ± 0.0721 0.1071 ± 0.0003 3.1546 ± 0.0165

Recalibration Kuleshov et al. [2018] also propose a gen-
eral procedure for recalibrating any surrogate model. A
so-called recalibrator model C is constructed using an in-
dependent and identically distributed (i.i.d.) validation set
and subsequently, applied to adjust the CDF of the model’s
predictive distribution Ft for some observation yt, i.e. the
recalibrated predictive distribution is C ◦ Ft. This is done
via learning an isotonic mapping: C : [0, 1] → [0, 1] from
the predicted probabilities of events of the form (−∞, yt] to
the corresponding empirical probabilities. In Deshpande and

Kuleshov [2021], a recalibration method for BO specifically
is proposed, in which the recalibrator model is learnt via
leave-one-out CV on the samples gathered during BO. Af-
ter training the recalibrator model C, the relevant summary
statistics (e.g. moments and intervals) of the recalibrated
distributions can be computed numerically from C ◦Ft. See
Alg. 1 in Kuleshov et al. [2018] for more details.
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3 EXPERIMENTS

In this section, we describe a collection of numerical exper-
iments designed to study and investigate the relationship
between calibration and regret. We focus our study on four
popular models, namely GPs, RFs, DEs, and BNNs. For
GPs, DEs, and BNNs, we assume an isotropic Gaussian
likelihood and for RFs, we impose a Gaussian predictive
distribution, where the mean and variance are estimated
as the sample mean and variance of the tree predictions.
Our experiments are based on both synthetic and real-world
data: for experiments with synthetic data, we use a number
of problems from the common benchmark suites for opti-
mization called Sigopt [Jamil and Yang, 2013, Dewancker
et al., 2016], and for the real-world data, we apply BO to
hyperparameter tuning of various machine learning mod-
els including feed-forward Neural Networks, Convolutional
Neural Networks and SVMs used on on or more datasets
such as MNIST [Lecun et al., 1998], Fashion-MNIST [Xiao
et al., 2017], AG News classification [Zhang et al., 2015]
and Wine classification [Dua and Graff, 2017]. For all ex-
perimental details, see Supplementary Material.

Experimental Setup In the synthetic setting, we perform
BO experiments on a total of 128 optimisation problems
spanning input dimensions (D ∈ {1, 2, .., 10}) from the
Sigopt benchmark. For each optimisation problem, we re-
peat the experiment 20 times using different random initial-
ization of both the BO routines and seeds. We do this for
all combinations of surrogates and AFs, of which we use
the previously mentioned EI, UCB and TS. We consistently
use ten initial i.i.d. random samples followed by 90 BO
iterations for all experiments. We add Gaussian distributed
noise giving a SNR of 100 to all Sigopt objective functions.
For reference, we also include a random sampling (RS) ac-
quisition function. In the hyperparameter tuning setting, we
perform BO experiments on a total of 6 different hyperpa-
rameter tuning problems. The surrogate models and AFs are
the same as in the synthetic setting, and we similarly sample
10 i.i.d. points to initiate the BO session, and then run 90
BO iterations. Here we run each experiment 100 times.

Our key performance metrics are regret, calibration error
and sharpness as defined in the following. We report the
calibration error, ECE, as being the mean squared calibration
error evaluated on a large i.i.d. test set (Ntest = 5000) as

ECE =
1

P

P∑
j=1

(Cy(pj)− pj)2, (7)

where Cy(pj) is defined in eq. (6) and for 0 ≤ p1 ≤ p2... ≤
pP ≤ 1 as suggested by Kuleshov et al. [2018]. We use P =
20 with equidistant pj values. The ECE values are reported
as averages across all BO iterations. We quantify the BO
performance using the regret metric, where we define the

instantaneous regret for the last iteration T as follows

RI = ymin − y(x∗T ), (8)

where y(x) is the objective function value (with added noise
in the synthetic case, i.e. y(x) = f(x)+σ) obtained at point
x, ymin ≡ min

x
y(x) is function value at the global minimum,

and x∗T ≡ arg minxt{y(xt)}Tt=1 is the input value for the
best observation after T iterations. Similarly, the total regret
is the sum of the instantaneous regret across all iterations

RT =

T∑
i=1

[ymin − y(x∗i )] . (9)

All regret values are reported after standardizing objective
function values. Finally, we report the sharpness as the av-
erage negative entropy of the predictive distributions as
evaluated on the test-set across all BO iterations. For the
choices of surrogate models, we use a GP with an RBF ker-
nel, and optimize hyperparameters of the kernel at every BO
iteration using the exact marginal likelihood [Rasmussen,
2003]. We use two different mean-field BNN architectures,
a smaller (BNN Small) with a single hidden layer with 10
hidden neurons and a larger (BNN) with two hidden layers
with 30 and 10 hiddens nodes respectively. Both are trained
using the ELBO loss [Blei et al., 2018]. The DEs consists of
10 neural networks with two hidden layers and are all trained
using the MSE loss and Adam optimiser [Kingma and Ba,
2014]. Finally, the RFs have their hyperparameters tuned
via CV on a grid of hyperparameters at each BO iteration.
With regards to the AFs, we use EI as defined in Eq. 2, UCB
with β = 1, and only sample one posterior function at each
BO step when using TS. See detailed experimental details
and descriptions in the Supplementary Material. Code is
available at https://github.com/jfold/unibo.

Experiment results The results for the synthetic and real
data experiments are summarized in Tables 1 and 2, re-
spectively. We observe that in the synthetic setting, GPs
outperform all other models both in terms of instantaneous
regret and more importantly, total regret, although closely
followed by DEs. RFs perform relatively well (at all times
better than random sampling), whilst the BNNs exhibit poor
performance and are often outperformed by random sam-
pling. Finally, we see that the GP is best calibrated overall,
and that all surrogate models have their lowest ECE when
random sampling is used. This is overall not surprising as the
ECE is evaluated on a large i.i.d. test set, which is more well-
represented by i.i.d. training samples compared to strongly
dependent samples acquired iteratively through BO. For the
real-data experiments in Table 2, we see that DEs outper-
form all other models in terms of both regret types, and
are closely followed by both GPs and RFs which perform
comparatively. Once again, GPs are the best calibrated when
random sampling is employed.
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(a) Test calibration vs regret of synthetic data experiments.
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(b) Test calibration vs regret of real data experiments

Figure 1: Total Regret vs. ECE for synthetic data experiments and hyperparameter tuning experiments. The colors in the
scatter plot indicate the type of surrogate model, and the marker indicates the AF used. OBS: Each point in the scatter
plots corresponds to an average of 20 seeds in the synthetic data experiments and 100 seeds in the hyperparameter tuning
experiments for each specific configuration.

Relationship between calibration and regret In order
to investigate the relationship between BO performance
(regret) and calibration (ECE), we first compute the Pear-
son correlation coefficient between the total regret values
and the ECE values, which yield moderate and statistically
significant coefficients of 0.28 and 0.42 for synthetic and hy-
perparameter tuning experiments, respectively (see Table 3).
The moderate positive association is also visually confirmed
by the scatter plots in Figures 1. It is also evident from
these plots that the type of surrogate model is important
for both ECE and total regret. Therefore, we also compute
the partial correlation coefficient controlling for the model
type yielding −0.06 and −0.24 for synthetic and real data,
respectively. Interestingly, both correlations become weaker
and one statistically insignificant (at level α = 0.05) leading
to an instance of Simpson’s paradox [Wagner, 1982]. To
further investigate this, we conducted a multiple linear re-
gression analysis for total regret vs ECE controlling for both
the type of model and the specific problem instance. The re-
sults for the hyperparameter tuning experiments showed that
both the common slope and model-specific slopes for ECE
were generally weak and statistically insignificant (see all
details in the Supplementary Material). In summary, these
results show that models with high ECE are generally associ-
ated with high regrets, however, this association diminishes
when we control for the type of surrogate model. To further
scrutinize these observations, we conduct two additional
experiments: an intervention study and a recalibration study.

Table 3: Correlation values between regret and ECE.

Synth. Data Real Data
Correlation 0.28 (p < 10−8) 0.42 (p < 10−4)
Partial Correlation | Model −0.06 (p = 0.19) −0.24 (p = 0.026)

Intervention study: Perturbing Predictive Uncertainties
In the intervention study, we explicitly manipulate calibra-
tion by perturbing the predictive uncertainty of each model
during the BO protocol. Specifically, we multiply the stan-
dard deviation of the posterior distribution for all models by
a constant c ∈

[
10−4, 102

]
and observe the resulting effect

on ECE and total regret. We conduct this experiment for
the 6 different hyperparameter tuning problems using the
EI acquisition function and repeat the experiment with 40
different seeds. In Figure 2 we show the calibration error (a)
and total regret (b) as a function of the multiplicative con-
stant c. Several interesting observations can be made from
Figure 2. First, all models exhibit the smallest calibration
error at c > 1, which indicates some degree of overconfi-
dence, and thus, increasing the predictive variance slightly
generally improves calibration. Interestingly, DEs and GPs
are somewhat robust to these perturbations in their predic-
tive uncertainties with regard to regret, while RFs even seem
to benefit from having the uncertainties reduced. Finally, in
panel (c) we plot regret vs calibration error for each value of
c, where each marker is scaled with the size of c and c = 1 is
marked with black. We have connected the dots for each sur-
rogate function, going from smallest to largest c. From this
plot, we observe that perturbing by c > 1 rapidly increase
both regret and ECE, but perturbations with c < 1 are less
harmful and may actually lead to improved performance. In
other words, the results from this experiment suggest that
miscalibration caused by models being generally undercon-
fident, i.e. c > 1, is more detrimental to BO performance
compared to models being overconfident, i.e. c < 1.

Recalibration study: Recalibration during BO In the
recalibration study, we investigate whether recalibrating
the models during the BO protocol improves BO perfor-
mance following the recalibration procedure proposed by
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Deshpande and Kuleshov [2021]. We do this by re-running
our BO experiments on real data, where we use leave-one
out CV on the training data obtained during BO to learn a
recalibration model and adjust the resulting predictive dis-
tributions accordingly. The results can be seen in the last
section in the bottom of Table 2. Except for RFs, it is seen
that both regret and ECE are generally worse after recalbra-
tion. This may seem counter-intuitive, but then recall that
we compute the recalibration model using leave-one-out on
the training set, but we measure the expected calibration on
an independent test set. The recalibration procedure may
have improved the calibration metric on the training dataset,
but in our experiments, it does not generalize to an indepen-
dent test set. We note that RFs do benefit from recalibration,
but this might be explained by the fact that sharpness is
substantially reduced after recalibration. We will shed more
light on these observations in the next section.

4 DISCUSSION AND SUMMARY

In the previous section, we described and performed a num-
ber of numerical experiments to analyze the relationship
between calibration and regret for BO. In this section, we
will summarize and discuss some of the key take-aways as
well as expand the analysis with a theoretical perspective.

Take-away 1: Gaussian Processes and Deep En-
sembles work well for BO. Our results for synthetic data is
consistent with the apparent consensus that GPs are strong
surrogates for BO and that they outperform the competing
methods in terms of regret (both total and instant) (see
Table 1), with DEs being close followers. Surprisingly,
in the hyperparameter tuning experiments, DEs perform
exceedingly well, with RFs and GPs performing equally
well. One should however note the practical concern that
DEs is computationally more expensive to train during
the BO procedure, but that this could be rationalized
if such compute time is cheap relative to querying the
objective function. In both experiments, the mean-field
BNNs perform significantly worse than all other methods,
including random search. Similar behavior has also been
observed in other experimental design settings, e.g. active
learning [Foong et al., 2020]. In terms of ECE, the GPs
performed slightly better than the RFs and DEs in the
synthetic setting, whilst RFs and GPs perform comparably
in the hyperparameter tuning setting. Again, we notice that
the mean-field BNNs are inferior to the other methods in
both experiments.

Take-away 2: Correlation between BO performance and
calibration diminishes when controlling for the type of
surrogate model. For the synthetic and hyperparameter
experiments, our analysis showed moderate positive corre-
lations of 0.28 and 0.42, respectively, between total regret
and ECE, when computed across all problems, seeds, ac-
quisition functions, and surrogate models. However, when

we control for the type of surrogate model, the correlation
becomes much weaker and one becomes statistically in-
significant (see Table 3). That is, within each model family,
BO trials with lower calibration errors are generally not
linearly associated with lower regret and in turn better BO
performance.

Take-away 3: Under-confidence might be more harmful
to BO compared to overconfidence. In our intervention
study, we manipulated all surrogate models to be either
under- or overconfident during the BO protocol by multiply-
ing their predictive uncertainties by a constant c > 0, where
0 < c < 1 implies more confident predictions, and c > 1
implies less confident predictions. The results showed that
all models exhibited some degree of overconfidence, which
may not be surprising. However, the results also showed that
BO performance decreased (i.e. regret increased) rapidly for
all models except for the larger BNN for c > 1, whereas
BO performance was much more robust to perturbations
with c < 1, which actually caused an increase in BO per-
formance in some cases. Only for the GP, we observed a
slight temporary improvement in regret for c > 1. It is also
worth emphasizing that the value of c leading to optimal cal-
ibration did not coincide with the values for optimal regret.
Finally, it is evident from eq. (2) that changing c also af-
fects the effective exploitation-exploration trade-off which,
in turn, may also impact the regret (the optimal trade-off is
also likely to be intrinsic to the optimisation problem). This
can be observed in Figure 2, where both very small and very
large values of c caused the methods to behave more like
random search.

Take-away 4: Recalibration does generally not improve
BO performance. We further investigated the potential ben-
efit of recalibrating the surrogate models during the BO pro-
cess using a leave-one-out procedure. However, in our recal-
ibration experiments on the hyperparameter tuning datasets,
the recalibration procedure only lead to improved ECE (mea-
sured on a proper independent test set) for two surrogate
models, namely the small BNNs and the RFs. In the other
cases, it actually worsened the ECE. Moreover, we also
noticed that all models got worse total regret performance
after employing the recalibration procedure.

Hypothesis: Calibration curves are not reliable for small
sample sizes. Recent work by Deshpande and Kuleshov
[2021] observed that re-calibration might aid BO by yield-
ing smaller total regret in some trials and smaller instant
regret for the BO last iteration in fewer trials. However, our
experiments suggest that recalibration might actually de-
grade BO performance. Kuleshov et al. [2018] state that a
sufficiently large i.i.d. validation set is a required condition
for successful recalibration, which is in stark contrast to the
sample collection during BO which is not i.i.d. due to the
inherent sequential nature of BO algorithms and is often
characterized by small sample sizes.
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(c) Regret vs. ECE for various perturbations.

Figure 2: The effect on test calibration and regret when disturbing the posterior predictive uncertainty by c · σ(x) during the
BO protocol. (a) Shows the overall ECE of each model when a perturbation of c · σ(x) is done in each iteration, (b) shows
the corresponding total regret, and (c) depicts how regret and calibration varies together for the same experiments. The size
of the markers here indicate how large c is, and the plot lines go from smallest to largest c. Black points are when c = 1.

To investigate this hypothesis, our starting point will be a
simple regression setting, where py(y|x) denotes the true
data generating distribution of y given an input x. We further
assume a trained model with predictive distribution pt(y|x)
aiming to mimic py via training samples. Consider now the
task of assessing the calibration of model using a set of
i.i.d. validation samples {y1, y2, ..., yN}. Given the small
sample sizes typically used in BO, a natural question to ask
is how accurately can we assess the calibration curve as a
function of the size of the validation set N? To investigate
this question, we consider the variance of the estimator in
eq. (6) and analyze its decay rate as a function of the sample
size N . The result is summarized in the following statement:

Proposition 1. Let Fi be the CDF of the predictive distribu-
tion for the i’th observation and let {yi}Ni=1 be i.i.d. samples
yi ∼ py. For Cy(p) = 1

N

∑N
i=1 I

[
yi ≤ F−1i (p)

]
, then the

variance of Cy(p) decays as V [Cy(p)] = O(N−1).

Proof. Let Cy(p) = 1
N

∑N
i=1 zi for zi ≡ I

[
yi ≤ F−1i (p)

]
.

The variance of Cy(p) is then given by

V [Cy(p)] = V

[
1

N

N∑
i=1

zi

]
and by independence each of zi,

V [Cy(p)] ≤ 1

N2

N∑
i=1

sup
i

V [zi] =
1

N2

N∑
i=1

1

22
=

1

N

1

22
.

Hence, it follows the variance of Cy(p) is bounded by

V [Cy(p)] ≤ O
(
N−1

)
. (10)

See Supplementary Material for detailed proof.

We also confirmed this result empirically and observe re-
sults perfectly consistent with the predictions from Propo-
sition 1 (see in the Supplementary Material), i.e. the max-
imum standard deviation of the estimator for Cy(p) de-
cays as 1√

N
. Next, we assume our model is perfect, i.e.

pt(y|x) = py(y|x), and ask what is the contribution to ECE
caused by a small sample size alone. The results are sum-
marized in the next two statements:

Proposition 2. Let Fi be the CDF of the predictive distribu-
tion perfect model, i.e. pt(y|x) = py(y|x). If Fi is strictly
monotonic, it holds that V [Cy(p)] = p(1−p)

N for all p.

Proof. In this setting, we have

zi = I
[
yi ≤ F−1i (p)

]
= I [Fi(yi) ≤ p] = I [ui ≤ p] ,

where ui ∼ U [0, 1] are uniformly distributed on the
unit interval due to the probability integral transform.
Since {ui}Ni=1 are also independent, it follows that Sn =∑N
i=1 zi ∼ Binomial(N, p). Therefore, we have

V [Cy(p)] = V
[
N−1SN

]
= N−2V [SN ] = N−1p(1− p).

This completes the proof.

Proposition 3. Let ECE =
∑P
j=1 wj(pj − Cy(pj))

2 be the
weighted mean square calibration error. Assume wi ∈ [0, 1]
and 0 < p1 < p2 < ... < pP < 1 are fixed, and assume
the CDF of the predictive distribution is equal to the true
data distribution (almost everywhere), then it holds that
E [ECE] = 1

n

∑P
j=1 wjpj(1− pj) ∝ n−1.

Proof. See Supplementary Material.

Take-away 5: Calibration curves may not be reliable for
small sample sizes Proposition 1 and Proposition 2 state
that the variance of the estimator of the empirical calibra-
tion decreases with O

(
N−1

)
. This suggests that empirical

calibration curves may not be reliable for small sample sizes
and in the worst case, to improve the accuracy of the esti-
mates by one decimal point, one needs to increase the size
of the validation set by a factor of 100, which will often be
infeasible in practical BO settings. Furthermore, Proposi-
tion 3 states that even for a perfect model, the expected ECE
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is proportional to N−1. Therefore, for small sample sizes,
one should be careful when concluding that a model is mis-
calibrated, since the observed ECE might as well be caused
by the sample size. Even worse, when performing recalibra-
tion in this scenario, one might risk adjusting the model in
the "wrong direction" causing the model to be more mis-
calibrated than the original model. In the Supplementary
Material, we show several examples of this phenomenon.
Although our empirical and theoretical analysis are focused
on the i.i.d. setting, we expect the effect to be even more
severe in the non-i.i.d. case since the effective sample size
is typically smaller for correlated samples [Thiébaux and
Zwiers, 1984]. Therefore, we claim that these effects may
have profound impact on recalibration in BO protocols.

Concluding Remarks In our experiments, we confirm the
common knowledge that GPs generally work well in the BO
setting, but interestingly, we also find that Deep Ensembles
outperform GPs in some cases. There is the computational
downside of Deep Ensembles compared to GPs, however,
this overhead may be justified if the cost of evaluating the
BO objective function is sufficiently expensive. Moreover,
we observe that models with high ECEs are generally associ-
ated with worse performance in BO, but that this association
disappears when we control for the type of surrogate model.
However, we still argue that calibration is important for BO
because 1) models with lower ECEs are associated with
better regrets and 2) when we explicitly intervened on cal-
ibration (by manipulating the predictive uncertainty), we
observed that the BO performance for all models decrease
significantly. Furthermore, our experiments suggest that re-
calibration during the BO protocol can hurt BO performance.
Based on both theoretical and empirical evidence, we at-
tribute this to the fact that it is really difficult to reliably
assess calibration using the small (and non-i.i.d.) datasets
typically used in BO. Therefore, we advocate cautiousness
when using these recalibration methods for small sample
sizes in practice.

Future work Our study indicates that the common way
to diagnose calibration (on a large test set) might not be
sensible for BO and that future studies about calibration
metrics more relevant to BO are needed.

It will also be of great interest to explore the relationship
between calibration and regret from a causal perspective.
Lastly, it would be interesting to dig deeper into the effects
of under- vs. over-confidence on BO performance.

References

A. Agnihotri and N. Batra. Exploring bayesian optimization.
Distill, 5(5):e26, 2020.

S. Belakaria, A. Deshwal, N. K. Jayakodi, and J. R. Doppa.
Uncertainty-aware search framework for multi-objective
bayesian optimization. In Proceedings of the AAAI

Conference on Artificial Intelligence, volume 34, pages
10044–10052, 2020.

J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms
for hyper-parameter optimization. Advances in neural
information processing systems, 24, 2011.

D. M. Blei, A. Kucukelbir, and J. D. McAuliffe. Variational
inference: A review for statisticians. 2018.

N. Bliznyuk, D. Ruppert, C. Shoemaker, R. Regis, S. Wild,
and P. Mugunthan. Bayesian calibration and uncertainty
analysis for computationally expensive models using op-
timization and radial basis function approximation. Jour-
nal of Computational and Graphical Statistics, 17(2):
270–294, 2008.

J. Busk, P. B. Jørgensen, A. Bhowmik, M. N. Schmidt,
O. Winther, and T. Vegge. Calibrated uncertainty for
molecular property prediction using ensembles of mes-
sage passing neural networks. Machine Learning: Science
and Technology, 3(1):015012, 2021.

Y. Chung, I. Char, H. Guo, J. Schneider, and W. Neiswanger.
Uncertainty toolbox: an open-source library for assess-
ing, visualizing, and improving uncertainty quantification.
arXiv preprint arXiv:2109.10254, 2021.

S. Deshpande and V. Kuleshov. Calibration improves
bayesian optimization. arXiv preprint arXiv:2112.04620,
2021.

A. Deshwal, S. Belakaria, and J. R. Doppa. Bayesian
optimization over hybrid spaces. arXiv preprint
arXiv:2106.04682, 2021.

I. Dewancker, M. McCourt, S. Clark, P. Hayes, A. Johnson,
and G. Ke. A stratified analysis of bayesian optimization
methods. arXiv preprint arXiv:1603.09441, 2016.

D. Dua and C. Graff. UCI machine learning repository,
2017. URL http://archive.ics.uci.edu/ml.

A. N. Elmachtoub, R. McNellis, S. Oh, and M. Petrik. A
practical method for solving contextual bandit problems
using decision trees. CoRR, abs/1706.04687, 2017. URL
http://arxiv.org/abs/1706.04687.

A. Foong, D. Burt, Y. Li, and R. Turner. On the ex-
pressiveness of approximate inference in bayesian
neural networks. In H. Larochelle, M. Ranzato,
R. Hadsell, M. Balcan, and H. Lin, editors, Advances
in Neural Information Processing Systems, vol-
ume 33, pages 15897–15908. Curran Associates,
Inc., 2020. URL https://proceedings.
neurips.cc/paper/2020/file/
b6dfd41875bc090bd31d0b1740eb5b1b-Paper.
pdf.

600

http://archive.ics.uci.edu/ml
http://arxiv.org/abs/1706.04687
https://proceedings.neurips.cc/paper/2020/file/b6dfd41875bc090bd31d0b1740eb5b1b-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/b6dfd41875bc090bd31d0b1740eb5b1b-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/b6dfd41875bc090bd31d0b1740eb5b1b-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/b6dfd41875bc090bd31d0b1740eb5b1b-Paper.pdf


Z. Ghahramani. Probabilistic machine learning and artificial
intelligence. Nature, 521(7553):452–459, 2015.

M. Jamil and X.-S. Yang. A literature survey of bench-
mark functions for global optimization problems. arXiv
preprint arXiv:1308.4008, 2013.

D. R. Jones, M. Schonlau, and W. J. Welch. Efficient global
optimization of expensive Black-Box functions. J. Global
Optimiz., 13(4):455–492, Dec. 1998.

D. P. Kingma and J. Ba. Adam: A method for stochastic
optimization, 2014.

V. Kuleshov and S. Deshpande. Calibrated and sharp un-
certainties in deep learning via density estimation. In
International Conference on Machine Learning, pages
11683–11693. PMLR, 2022.

V. Kuleshov, N. Fenner, and S. Ermon. Accurate uncer-
tainties for deep learning using calibrated regression. In
International Conference on Machine Learning, pages
2796–2804. PMLR, 2018.

B. Lakshminarayanan, A. Pritzel, and C. Blundell. Simple
and scalable predictive uncertainty estimation using deep
ensembles. Advances in neural information processing
systems, 30, 2017.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Pro-
ceedings of the IEEE, 86(11):2278–2324, 1998. doi:
10.1109/5.726791.

Z. Nado, N. Band, M. Collier, J. Djolonga, M. W. Dusen-
berry, S. Farquhar, A. Filos, M. Havasi, R. Jenatton,
G. Jerfel, et al. Uncertainty baselines: Benchmarks for
uncertainty & robustness in deep learning. arXiv preprint
arXiv:2106.04015, 2021.

Y. Ovadia, E. Fertig, J. Ren, Z. Nado, D. Sculley,
S. Nowozin, J. V. Dillon, B. Lakshminarayanan, and
J. Snoek. Can you trust your model’s uncertainty? eval-
uating predictive uncertainty under dataset shift. arXiv
preprint arXiv:1906.02530, 2019.

C. E. Rasmussen. Gaussian processes in machine learning.
In Summer school on machine learning, pages 63–71.
Springer, 2003.

B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and
N. De Freitas. Taking the human out of the loop: A review
of bayesian optimization. Proceedings of the IEEE, 104
(1):148–175, 2015.

J. Snoek, H. Larochelle, and R. P. Adams. Practical bayesian
optimization of machine learning algorithms. Advances
in neural information processing systems, 25, 2012.

H. Song, T. Diethe, M. Kull, and P. Flach. Distribution
calibration for regression. In International Conference
on Machine Learning, pages 5897–5906. PMLR, 2019.

J. T. Springenberg, A. Klein, S. Falkner, and F. Hutter.
Bayesian optimization with robust bayesian neural net-
works. Advances in neural information processing sys-
tems, 29:4134–4142, 2016.

N. Srinivas, A. Krause, S. M. Kakade, and M. W. Seeger.
Information-theoretic regret bounds for gaussian process
optimization in the bandit setting. IEEE Transactions on
Information Theory, 58(5):3250–3265, may 2012. doi:
10.1109/tit.2011.2182033. URL https://doi.org/
10.1109%2Ftit.2011.2182033.

H. J. Thiébaux and F. W. Zwiers. The interpretation and
estimation of effective sample size. Journal of Applied
Meteorology and Climatology, 23(5):800–811, 1984.

W. R. Thompson. On the likelihood that one unknown
probability exceeds another in view of the evidence of
two samples. Biometrika, 25:285–294, 1933.

R. Turner, D. Eriksson, M. McCourt, J. Kiili, E. Laaksonen,
Z. Xu, and I. Guyon. Bayesian optimization is superior
to random search for machine learning hyperparameter
tuning: Analysis of the black-box optimization challenge
2020. In NeurIPS 2020 Competition and Demonstration
Track, pages 3–26. PMLR, 2021.

C. H. Wagner. Simpson’s paradox in real life. The American
Statistician, 36:46–48, 1982.

H. Xiao, K. Rasul, and R. Vollgraf. Fashion-mnist: a novel
image dataset for benchmarking machine learning al-
gorithms, 2017. URL https://arxiv.org/abs/
1708.07747.

X. Zhang, J. J. Zhao, and Y. LeCun. Character-level
convolutional networks for text classification. CoRR,
abs/1509.01626, 2015. URL http://arxiv.org/
abs/1509.01626.

601

https://doi.org/10.1109%2Ftit.2011.2182033
https://doi.org/10.1109%2Ftit.2011.2182033
https://arxiv.org/abs/1708.07747
https://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1509.01626
http://arxiv.org/abs/1509.01626

	Introduction
	Our Contribution
	Related Work

	Background
	Experiments
	Discussion and Summary 

