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Abstract

Stochastic Heavy Ball (SHB) and Nesterov’s Ac-
celerated Stochastic Gradient (ASG) are popular
momentum methods in optimization. While the
benefits of these acceleration ideas in deterministic
settings are well understood, their advantages in
stochastic optimization are unclear. Several works
have recently claimed that SHB and ASG always
help in stochastic optimization. Our work shows
that i.) these claims are either flawed or one-sided
(e.g., consider only the bias term but not the vari-
ance), and ii.) when both these terms are accounted
for, SHB and ASG do not always help. Specifically,
for any quadratic optimization, we obtain a lower
bound on the sample complexity of SHB and ASG,
accounting for both bias and variance, and show
that the vanilla SGD can achieve the same bound.

1 INTRODUCTION

In deterministic convex optimization (when one has access
to exact gradients), Gradient Descent (GD) is a popular op-
timization algorithm [Cauchy, 1847]. In practice, though,
exact gradients are not available and one has to rely on their
noisy estimates. This brings forth the idea of Stochastic Gra-
dient Descent (SGD). Two classic momentum methods used
to accelerate GD are Heavy Ball (HB) [Polyak, 1964, 1987,
Qian, 1999] and Nesterov’s Accelerated Gradient (NAG)
[Nesterov, 1983, 2014, 2005]. Naturally, these momentum-
based methods and their variants have also gained signifi-
cant interest in stochastic settings [Sutskever et al., 2013,
Nitanda, 2014a, Hu et al., 2009a]. However, our work shows
that the stochastic variants of HB and NAG, i.e., the Stochas-
tic Heavy Ball (SHB) and Nesterov’s Accelerated Stochastic
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Gradient (ASG), are not always better than the vanilla SGD
for any quadratic optimization. Specifically, we provide con-
ditions for which the sample complexities of SHB and ASG
are never better than that of SGD1.

We elaborate on the discussion above. The benefit of using
momentum in (deterministic) quadratic optimization is the
following. Suppose the driving matrix has condition num-
ber κ. Then, for any ϵ > 0, GD with an optimal constant
stepsize2 converges to an ϵ-close solution in O(κ log 1

ϵ ) iter-
ations. In contrast, both HB and NAG with optimal stepsize
and momentum parameters only need O(

√
κ log 1

ϵ ) steps;
see, e.g., [Recht, 2010]. Our main claim here is that mo-
mentum does not lead to similar advantages in stochastic
settings. We use Figure 1 to provide an intuitive justifica-
tion for this claim. The setup is as follows. We consider a
quadratic optimization problem (see Section E for the de-
tails) and ensure that only a noisy estimate of its gradient
is available in each iteration. This problem is solved using
SGD, SHB, and ASG and the three panels show how the
Mean Squared Error (MSE) decays for different stepsize
and momentum parameter choices. Note that these param-
eters, once chosen, are fixed, i.e., they do not change from
one iteration to the other.

In stochastic settings, the MSE error at any time instance for
each of SGD, SHB, and ASG can be broken down into two
components: bias and variance. The bias dictates how fast
the distance of the initial estimate to the solution is forgotten,
while the variance represents a cumulative effect of the
noise seen so far. When constant stepsize and momentum
parameters are used, the bias decays exponentially fast while
the variance converges to some (non-zero) positive constant;
this implies the MSE also converges to this constant. Both
the rate at which the bias decays and the constant to which
the variance converges to are influenced by the stepsize and

1Sample complexity refers to the number of iterations required
to reach an ϵ-ball around the solution. Our statement holds for all
sufficiently small ϵ.

2Throughout, we only consider algorithms with constant step-
sizes, which are widely popular in practice.
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(a) Stepsize SGD, SHB, ASG: 0.0025 (b) Stepsize SGD: 0.02; SHB, ASG: 0.0025 (c) Stepsize - SGD, SHB, ASG: 0.02

Figure 1: Comparison of SGD, SHB, and ASG’s performances for a 2D quadratic optimization problem (see Section E for
details) for the different stepsize choices given above and ϵ-threshold = 5 (denoted by the black horizontal line).

momentum parameter choices.

With the above picture in mind, Figure 1 illustrates how
SHB and ASG’s performance can be matched by SGD. Fig-
ure 1a corresponds to the case where a same stepsize is used
in all the three algorithms. In this case, the MSE for the
momentum based methods (SHB, ASG) decreases faster
initially, but settles at a higher limiting value eventually.
Accordingly, one may conjecture that SHB and ASG would
have a better sample complexity if the ϵ-threshold for the
MSE is set above this limit (one such choice of ϵ in this
example is 5). However, Figure 1b shows that SGD enjoys
a similar performance for a larger stepsize choice. This time
one may conjecture that SHB and ASG’s performance can
be improved if their stepsizes are also increased similarly.
Figure 1c discusses this case when the stepsize for momen-
tum methods is increased to match the new stepsize for
SGD. Unfortunately, while MSE for momentum based does
decrease faster initially, it also settles at a value that is higher
than the threshold that we had set before, i.e., 5.

Related Works: Some recent results [Loizou and Richtárik,
2020, Mou et al., 2020, Assran and Rabbat, 2020, Can et al.,
2019] claim that SHB and ASG methods are better than
SGD in quadratic or least-squares settings. However, Loizou
and Richtárik [2020] needs a strong assumption on noise,
which Kidambi et al. [2018, Section 6] claim is information-
theoretically impossible even in the simple least squares
regression problem. The other results either are based on a
one-sided analysis [Can et al., 2019]3 or have a flaw [Mou
et al., 2020, Assran and Rabbat, 2020]; see Appendix A.

On the other hand, there are also a few recent negative re-
sults on these momentum methods. Devolder et al. [2014]
make a similar conclusion to ours in the context of (deter-
ministic) proximal gradient methods and their accelerated
variants for smooth convex optimization, when the function
can be estimated only up to some (non-random) fixed in-
accuracy. Yuan et al. [2016] show that SHB and ASG are

3This work only considers bias, while ignoring variance

equivalent to SGD with a rescaled stepsize. However, this
result requires that the stepsize be sufficiently small and the
momentum parameter be away from 1. Liu et al. [2021]
obtain an expression for the asymptotic variance for SHB
and show that it can be matched by that of vanilla SGD with
a rescaled stepsize. However, this discussion is only from
an asymptotic sense and compares the final size of the ball
where the iterates with or without momentum settle, but
not the number of iterations needed to reach such a ball. In
fact, the asymptotic variance estimate does not provide any
information about the sample complexity. In [Kidambi et al.,
2018, Liu and Belkin, 2020], for one specific instance of the
least squares regression with vanishing noise, it is shown
that the performance of SHB and ASG cannot be better than
that of SGD. Finally, Zhang et al. [2019] consider SHB for
quadratic objectives in the noisy setting as our work and
provides upper bounds on the rate at which the objective
function decreases. They also argue that rescaled SGD per-
forms as well as SHB and demonstrate it empirically but
fall short of rigorously coming up with a lower bound that
supports their claim.

SHB and ASG have also been studied in the decreasing
stepsize setting. Ghadimi et al. [2014] had given the first
global convergence of SHB for quadratic objectives while
Yang et al. [2016], Promsinchai et al. [2020], Orvieto et al.
[2019] gave a.s. convergence rates for convex objectives. In
[Sebbouh et al., 2021], improved bounds on both SGD and
SHB have been provided, as compared to previously known
bounds. Hu et al. [2009b], Ghadimi and Lan [2012], Xiao
[2009] study Nesterov’s momentum under a decreasing step-
size setting and show that though the momentum scheme
accelerates the convergence of the iterates in the initial part,
the acceleration is lost in the asymptotic regime. Vaswani
et al. [2019] study ASG with a decreasing momentum pa-
rameter and show a linear convergence to the optimal point.
However, the noise at any stationary point vanishes to zero
in their setting. Finally, we also note that other momentum
methods have been studied in [Allen-Zhu, 2018, Nitanda,
2014b, Defazio et al., 2014, Johnson and Zhang, 2013, Roux



et al., 2012] that can provably be shown to have a better
performance than SGD.

The current literature can thus be summarized as follows.

Research Gap: Existing works on SHB and ASG fall into
two groups: i.) positive - where the results claim advantages
of these methods over SGD and ii.) negative - where the
results claim the opposite. Results in the positive group
either have a one-sided or a flawed analysis, while the ones
in the negative apply only in some restricted settings.

Key Contribution: Our work belongs to the negative group:
SHB and ASG do not have an advantage over SGD. Specif-
ically, for all quadratic optimization problems with per-
sistent noise (noise variance is sufficiently bounded away
from zero) and any sufficiently small ϵ > 0, we show that
number of iterations needed by SHB and ASG to find an
ϵ-optimal solution are not better than that of SGD. More
technically, we obtain a lower bound on sample complex-
ities of SHB and ASG (Theorem 2.5) and show that these
are of the same order as the corresponding upper bound for
SGD (Proposition 2.8). Our proof techniques are also signif-
icantly different from those used in existing lower bounds
such as [Kidambi et al., 2018, Liu and Belkin, 2020]. This
is because, under non-vanishing noise, the expected error
contains an additional term that cannot be accounted for
from their analyses (see Remark 2.7).

2 MAIN RESULTS

We state our main results here that provide lower and upper
bounds on the sample complexities of SHB and ASG. We
use these bounds along with those of SGD to show that
all these methods need a similar effort to find an ϵ-optimal
solution.

Throughout, we consider minimizing

f(x) =
1

2
xTAx− bTx+ c, (1)

where A is some symmetric d × d matrix, b ∈ Rd, and
c ∈ R. The update rules for standard algorithms such as
SHB, ASG, and SGD for solving this problem can be jointly
expressed as

xn = xn−1 + α(b−Axn−1 +Mn)

+ η(Id − αβA)(xn − xn−1) (2)
= xn−1 + α(b−A(xn−1 + ηβ(xn−1 − xn−2)) +Mn)

+ η(xn−1 − xn−2) (3)

with x−1 = x0. The notation Id is the d × d identity ma-
trix, and Mn+1 ∈ Rd is noise. Henceforth, we will refer to
the above generic algorithm as Linear Stochastic Approx-
imation with Momentum (LSA-M). Note that LSA-M is
equivalent to SGD (if η = 0 in (2)), to SHB (if β = 0 in
(2)), and to ASG (if β = 1 in (3)).

We make the following assumption on the driving matrix.

Assumption 2.1 (Driving matrix property). A is real
symmetric and all its eigenvalues are positive.

We also denote the the eigenvalues of A by λmax = λ1 ≥
λ2 ≥ . . . ≥ λd = λmin. Under the above assumption, one
would expect the iterates in (2) to go to a neighborhood of
x∗ := A−1b.

We next state two assumptions on the noise sequence (Mn),
the first is used in Theorem 2.5, while the other is used in
Proposition 2.8 and Corollary 2.9. The notation A ⪰ B
means A−B is positive semi-definite.

Assumption 2.2 (Noise attributes for Theorem 2.5). (Mn)
is a martingale difference sequence with respect to the fil-
tration (Fn), where Fn = σ(xm,Mm;m ≤ n). Further,
∃K > 0 such that E[Mn+1M

T
n+1|Fn] ⪰ KId a.s. ∀n ≥ 0.

Assumption 2.3 (Noise attributes for Proposition 2.8).
(Mn) is a martingale difference sequence with respect to the
filtration (Fn), where Fn = σ(xm,Mm;m ≤ n). Further,
∃K ≥ 0 such that E[∥Mn+1∥2|Fn] ≤ K(1 + ∥xn − x∗∥2)
a.s. ∀n ≥ 0.

Assumptions 2.2 and 2.3 are standard [Mandt et al., 2017,
Jastrzębski et al., 2018, Cheng et al., 2020, Borkar, 2008].
The first of these holds if and only if all the eigenvalues
of E[Mn+1M

T
n+1|Fn] are bounded from below by K, i.e.,

noise is persistent (or non-vanishing) in all directions. On
the other hand, Assumption 2.3 requires that the trace of
E[Mn+1M

T
n+1|Fn] be bounded from above. This bound

can scale with ∥xn − x∗∥ and need not vanish near x∗.

Next, we define sample complexity to quantify the effort
required by LSA-M to obtain an ϵ-close solution to x∗.

Definition 2.4 (Sample Complexity). The sample complex-
ity of (2) is the minimum number of iterations n0 such that
the expected error E[∥xn − x∗∥2] ≤ ϵ, ∀n ≥ n0.

To enable easy comparison between different algorithms, we
shall look at the order of their sample complexities. Towards
that, we shall use the notation n0 ∈ Θ(t) to imply that
there exist constants c1 and c2 (independent of t) such that
c1t ≤ n0 ≤ c2t. The notation Θ̃(t) has a similar meaning
but hides the dependence on logarithmic terms. Further,
n0 ∈ Ω(t) implies there exists c1 such that n0 ≥ c1t and
n0 ∈ O(t) implies there exists c2 such that n0 ≤ c2t.

Theorem 2.5. (Lower bound on sample complexity). Con-
sider the LSA-M update rule (2), and suppose Assumptions
2.1 and 2.2 hold. Then there exists an ϵ′ > 0 such that, for
any ϵ ∈ (0, ϵ′) and for any choice of α > 0, β ∈ [0, 1],
and η ∈ [0, 1], the expected error E[∥xn0

− x∗∥2] ≥ ϵ

for n0 ∈ Θ̃
(

K
ϵλ2

min

)
. The constant K here is the one from

Assumption 2.2.



Method β η α

SGD - 0 min
(

λmin
3
4λ

2
min+C2K

, ϵλmin

4C2K , 2
λmax+λmin

)
SHB 0

(
1−

√
αλmin

2

)2
min

(
(

λ
3/2
min

3
8λ

2
min+25C2K

)2, ( ϵ(λmin)
3/2

200C2K )2,

( 2√
λmin+

√
λmax

)2
)

ASG 1

(
1−

√
αλmin

2

)2

(1−αλmin)
min

(
(

λ
3/2
min

3
8λ

2
min+25C2K

)2, ( ϵ(λmin)
3/2

200C2K )2, 1
λmax

)

Table 1: Parameter choices for Proposition 2.8. Here C = 1 when the matrix A is symmetric and C =
√
d

σmin(S)σmin(S−1)

when A is not symmetric, where σmin(·) denotes the smallest singular value and S is the matrix that diagonalizes A, i.e.,
S−1AS = D, a diagonal matrix. When A is symmetric, indeed the three parameter choices correspond to SGD, SHB and
ASG. We stick to the same naming convention even when the driving matrix A is not symmetric.

See Section 3 for the proof of the above Theorem.

Remark 2.6. As stated below (3), LSA-M includes SHB
and Nesterov’s ASG method as special cases and, hence,
the above result directly applies to them. In fact, this is the
first lower bound on SHB and ASG’s sample complexities in
quadratic optimization.

Remark 2.7. The lower bounds in Kidambi et al. [2018]
and Liu and Belkin [2020] are obtained by viewing the
expected error in SHB and ASG iterates for least squares
as update rules of the form zn+1 = Pzn for some matrix
P [Kidambi et al., 2018, Appendix A, p 16] and [Liu and
Belkin, 2020, Appendix C, p 12]). In particular, they obtain
bounds on the eigenvalues of P to get the desired claim.
In contrast, the error relations for SHB and ASG methods
in our setup (quadratic optimization with persistent noise)
have the form zn+1 = Pzn + αWn for some matrix P and
vector Wn (cf. 4). This forces us to develop a new proof
technique that jointly looks at both these terms and show
that at least one of them remains larger than ϵ for the choice
of n0 given in Theorem 2.5.

We next state our upper bound on the sample complexity of
(2) in Proposition 2.8 and Corollary 2.9. Similar bounds al-
ready exist in literature when A is assumed to be symmetric
and the noise is assumed to be iid with variance bounded by
a constant ([Can et al., 2019, Zhang et al., 2019]). Here, we
show that a similar upper bound holds under more general
settings: i.) A is not symmetric but is diagonalizable and has
real positive eigenvalues, and ii.) the noise is a martingale
difference sequence satisfying Assumption 2.3.

Proposition 2.8. Consider the LSA-M update rule (2), and
suppose A is a (not necessarily symmetric) real diagonaliz-
able matrix with real positive eigenvalues4. Further suppose

4When A is not symmetric, LSA-M cannot be viewed as a

2.3 holds. Then, ∀ϵ > 0, there exists a choice of α, β and η
(see Table 1 for exact values) such that the expected error
E[∥xn − x∗∥2] ≤ ϵ, ∀n > n0, where

(i) n0 ∈ Θ̃( 1
αλmin

), when η = 0, and

(ii) n0 ∈ Θ̃( 1√
αλmin

), when η > 0.

For the proof see Appendix C.

From Table 1, we see that α is a minimum of three terms in
each case. The first term arises due to the unbounded noise
(Assumption 2.3), the second due to the target neighborhood
ϵ and the third from the optimal choice of stepsize in the
deterministic (no noise scenario) case. Since the bound on
n0 provided in Proposition 2.8 is in terms of α, the minimum
of the three terms dictates the sample complexity. Note that
ϵ only influences the middle term in all the choices of α
given in Table 1.

Let ϵ̄ > 0 be such that, for any ϵ ∈ (0, ϵ̄), the value of α
equals the middle term in each of the three cases in Table 1.
Then the following result is immediate.

Corollary 2.9 (Upper bound on sample complexity).
Consider the LSA-M update rule (2), and suppose A is
as in Proposition 2.8. Further, suppose Assumption 2.3
holds. Then, for choice of parameters in Table 1, and any
ϵ ∈ (0, ϵ̄), ∃n0 ∈ Θ̃

(
K

ϵλ2
min

)
such that E[∥xn − x∗∥2] ≤ ϵ,

∀n ≥ n0. The constant K here is the one from Assump-
tion 2.3.

Remark 2.10. From Corollary 2.9, we see that the up-
per bounds on the sample complexities of SGD, SHB, and

gradient-based algorithm for minimizing (1). However, the update
rule still makes sense, and it can be seen as one that is useful for
solving Ax = b.



ASG match the lower bound given in Theorem 2.5 for small
enough ϵ > 0. In particular, since an upper bound on the
sample complexity of SGD matches a lower bound for SHB
and ASG, these latter methods do not always outperform
SGD from a sample complexity perspective.

Remark 2.11. Consider ϵ small enough such that the mini-
mum in choice of α is achieved by the second term in Table
1. For SGD, the stepsize α ∈ Θ( ϵλmin

K ) is larger than the

choice of stepsize for SHB and ASG, α ∈ Θ(
ϵ2λ3

min

K2 ). Ob-
serve that SGD chooses a larger stepsize than SHB and ASG
to reach the ϵ ball. Therefore, although momentum meth-
ods appear to have a better performance than SGD if the
same stepsize is chosen, SGD can match this performance
by re-scaling its stepsize (see Figure 1).

Remark 2.12. When the noise is assumed to be bounded
by a constant, i.e., E[∥Mn+1∥2|Fn] ≤ K a.s. in Assump-
tion 2.3, the first term in the choice of α in Table 1 does not
appear for all three methods. Under such an assumption, if
ϵ is large enough or K is small enough such that the third
term in the choice of α is the minimum, then the sample
complexity of both SHB and ASG is better than SGD. We
emphasize that such improvements are lost when the noise
variance is large or the neighbourhood under consideration
is small.

3 PROOF OF THE LOWER BOUND
(THEOREM 2.5)

We begin by defining the transformed iterates x̃n = xn−x∗

and rewriting (2) as

X̃n = PX̃n−1 + αWn, (4)

where X̃n ≜

(
x̃n

x̃n−1

)
,Wn ≜

(
Mn

0

)
and

P ≜

(
Id − αA+ η(Id − αβA) −η(Id − αβA)

Id 0

)
.

We derive the bound in Theorem 2.5 by obtained a lower
bound for the error expression E[∥X̃n∥2].

The proof can be summarized by the following key steps.

1. Transform X̃n to obtain Ỹn (see (5)). Decompose the
2d-dimensional update rule for Ỹn (see (6)) into d sep-
arate two-dimensional update rules (see (7)) using a
block diagonalization argument.

2. For each of the two-dimensional components of Ỹn

(denoted Ỹ
(i)
n , i = 1, . . . , d), obtain a lower bound

on the error E∥Ỹ (i)
n ∥2. We do this using the following

three steps.

(a) Decompose the error into two components: one
that captures the impact of the initialization
(bias), and the other that concerns the effect of
the cumulative noise (variance); see Lemma 3.2.

(b) Use the above decomposition to derive a lower
bound on E∥Ỹ (i)

n ∥2 for the special case of β = 0.
The core idea is to show that the bias and the
variance in Ỹ

(i)
n cannot be simultaneously small;

see Lemma 3.3.
(c) Generalize the result to β ∈ [0, 1] case by show-

ing that it can be reduced to the former case.

3. Use the lower bound on E∥Ỹ (i)
n ∥2 from Step 2 to ob-

tain a lower bound on the original error E∥x̃n∥2. This
proves the desired result for SHB with β = 0 and ASG
with β = 1.

Next we describe the technical results involved in each of
the above steps.

1. Reducing the 2d-dimensional updates into d sepa-
rate two-dimensional updates.
We follow a block diagonalization argument as in [Mou
et al., 2020] to transform the update rule (4) below.

Lemma 3.1. There exists a transformation matrix Z
and a block diagonal matrix B = diag(Bi), where
Bi ∈ R2×2, so that

Ỹn = ZX̃n and W̃n = ZWn (5)

satisfy

Ỹn = BỸn−1 + αW̃n. (6)

In particular, if we break Ỹn into d disjoint components
of 2-dimensional vectors, then the i-th component

Ỹ (i)
n =

(
1− αλi + η′ −η′

1 0

)
Ỹ

(i)
n−1+αW̃ (i)

n (7)

where η′ = η(1− αλiβ).

See Section 3.1 for the proof. Notice that the driving
matrix B in the transformed update rule (6) is a block
diagonal matrix unlike the driving matrix P in (4). In
the next step we exploit this structure to lower bound
E∥Ỹ (i)

n ∥2.

2. Bounding the error E∥Ỹ (i)
n ∥2.

We consider the two dimensional decoupled update
given in (7) for a specific i and express the lower bound
on the sample complexity with respect to λi.

(a) Decompose the error E∥Ỹ (i)
n ∥2 as a sum of bias and

variance.
First observe that the update from Lemma 3.1 can be
re-written as

Ỹ (i)
n = Bn

i Ỹ
(i)
0 + α

n−1∑
i=0

B
(n−1−i)
i W̃

(i)
i+1. (8)



Taking the square of the norm on both sides of the
above equation we get

∥Ỹ (i)
n ∥2 = ∥Bn

i Ỹ
(i)
0 ∥2︸ ︷︷ ︸

I

+ 2α
(
Bn

i Ỹ
(i)
0

)T n−1∑
j=0

B
(n−1−i)
i W̃

(i)
j+1


︸ ︷︷ ︸

II

+ α2

n−1∑
j=0

B
(n−1−i)
i W̃

(i)
j+1

T n−1∑
j=0

B
(n−1−i)
i W̃

(i)
j+1


︸ ︷︷ ︸

III

.

(9)

Using the fact that (W̃n) = (ZWn) is a martin-
gale difference sequence, it can be shown that ex-
pectation of term II is 0 and that of term III is
α2E

[∑n−1
j=0 ∥Bn−1−j

i W̃
(i)
j+1∥2

]
(See Section 3.2 for

details). This leads to the following lemma.

Lemma 3.2. For the update in (8) the error can be
decomposed as follows:

E∥Ỹ (i)
n ∥2 = ∥Bn

i Ỹ
(i)
0 ∥2︸ ︷︷ ︸

Bias

+ α2E
[ n−1∑

j=0

∥Bn−1−j
i W̃

(i)
j+1∥

2
]

︸ ︷︷ ︸
V ariance

.

(10)

See Section 3.2 for the proof. The bias and variance
here correspond to that of the i-th block of the trans-
formed iterates in (7).

(b) Bounding the error E∥Ỹ (i)
n ∥2 for β = 0.

Using the fact that η′ = η when β = 0, the update in 7
reduces to

Ỹ (i)
n =

(
1− αλi + η −η

1 0

)
Ỹ

(i)
n−1 + αW̃ (i)

n .

We show that there exists an ϵ > 0 such that for some
n0 ∈ Θ̃

(
K
ϵλ2

i

)
, either the bias or the variance is larger

than ϵ. This is established in the following key lemma.

Lemma 3.3. Let ϵ′i = min

(
K

32λ2
i
,
(x̃

(i)
0 )2

72

)
. Then for

any ϵ ∈ (0, ϵ′i), and any α > 0, β = 0, η ∈ [0, 1],

there exists n0 ∈ Θ̃
(

K
ϵλ2

i

)
, such that at least one of

the following statements hold:

(a) ∥Bn0
i Ỹ

(i)
0 ∥2 > ϵ

(b) α2E
[ n0−1∑

j=0

∥Bn0−1−j
i W̃

(i)
j+1∥

2
]
> ϵ.

See Section 3.3 for the proof. Lemma 3.3 along with
Lemma 3.2 immediately provides a lower bound on
the error, i.e., E∥Ỹ (i)

n0 ∥2 > ϵ for β = 0. Lemma 3.3 is
the core of the lower bound analysis and the proof is
provided in Section 3.3.

(c) Extending (b) to the case β ∈ (0,1].
We complete Step 2 by extending Lemma 3.3 to the
case when β ∈ [0, 1] as formalized below.

Lemma 3.4. Let ϵ′i be defined as in Lemma 3.3. Then
for any ϵ ∈ (0, ϵ′i), and any α > 0, β = [0, 1], η ∈
[0, 1], there exists n0 ∈ Θ̃

(
K
ϵλ2

i

)
, such that at least

one of the following statements hold:

(a) ∥Bn0
i Ỹ

(i)
0 ∥2 > ϵ

(b) α2E
[ n0−1∑

j=0

∥Bn0−1−j
i W̃

(i)
j+1∥

2
]
> ϵ.

See Section 3.4 for the proof. Note that the general
β ∈ [0, 1] update rule in (7) is equivalent to the β = 0
update with η redefined as η′ and therefore we can
re-use Lemma 3.3 if we can ensure η′ ∈ [0, 1]. We
show this holds when αλi ≤ 1. For the case αλi > 1,
we show that the variance term is greater than ϵ thus
implying the conclusion of Lemma 3.3.

3. Bounding the original error E[∥X̃n∥2].
Recall that the original update rule is given by

X̃n = PX̃n−1 + αWn.

To provide a bound on the error E[∥X̃n∥2], we invoke
Lemma 3.3 for i = d and λd = λmin and use the fact
that Z is an orthogonal matrix. We have

E[∥X̃n0
∥2] = E[∥Z−1Ỹn0

∥2]
= E[∥Ỹn0

∥2] ≥ E[∥Ỹ (d)
n0

∥2] ≥ ϵ

for all ϵ ∈ (0, ϵ′d) and for n0 as defined in Lemma 3.3
with λi substituted with λmin.
Now to obtain a bound for E∥x̃n∥2 from E∥X̃n∥2, we
note that

2max (∥x̃n∥2, ∥x̃n−1∥2) ≥ ∥x̃n∥2 + ∥x̃n−1∥2

= ∥X̃n∥2.

Therefore the lower bound on E[∥X̃n∥2] is enough to
prove Theorem 2.5. Choosing ϵ′ = ϵ′d and noting that

n0 ∈ Θ̃
(

K
ϵλ2

min

)
completes the proof of Theorem 2.5.

3.1 PROOF OF LEMMA 3.1

We first discuss how the update rule for Ỹn in (6) can
be obtained using that of X̃n in (4). Towards this, we de-
fine D = diag(λi)

d
i=1. Since A is real symmetric (see As-

sumption 2.1), it has a spectral decomposition of the form



A = SDS−1. We define the transformation matrix Z as

Z = E2d×2d

(
S 0
0 S

)
(11)

where E2d×2d is the permutation matrix that changes the
order (1, 2, . . . , 2d) into (1, d+ 1, 2, d+ 2, . . . , d, 2d).

Since X̃n = PX̃n−1 + αWn, we get

Ỹn = ZX̃n = ZPX̃n−1 + αZWn

= ZPZ−1Ỹn−1 + αZWn = BỸn−1 + αZWn

= BỸn−1 + αW̃n,

as desired. The last but one equality follows because
ZPZ−1 = B, which itself holds since

ZPZ−1 = E2d×2d

(
S 0
0 S

)
P

(
S−1 0
0 S−1

)
E−1

2d×2d

(a)
= E2d×2d

(
Id×d − αD + ηId×d −ηId×d

Id×d 0d×d

)
︸ ︷︷ ︸

Γ

E2d×2d

(b)
= B.

Here (a) follows because E−1
2d×2d = E2d×2d. Further

(b) follows because the left multiplication of E2d×2d

to Γ changes the order of rows from (1, 2, . . . , 2d) to
(1, d+1, 2, d+2, . . . , d, 2d) and the right multiplication of
E2d×2d changes the order of columns from (1, 2, . . . , 2d)
to (1, d+ 1, 2, d+ 2, . . . , d, 2d) which exactly results in B.

To see why (7) holds, let

Ỹn =


Ỹ

(1)
n

Ỹ
(2)
n

...
Ỹ

(d)
n

 and M̃n =


M̃n,1

M̃n,2

...
M̃n,d

 = SMn , where

Ỹn ∈ R2d, Ỹ
(i)
n ∈ R2, M̃n ∈ Rd, M̃n,i ∈ R. Now notice

that

ZWn = E2d×2d

(
S 0
0 S

)(
Mn

0

)
(12)

= E2d×2d

(
M̃n

0

)
=



M̃n,1

0

M̃n,2

0
...

M̃n,d

0


,

where the last equality follows because the left multiplica-
tion of E2d×2d changes the order of rows from (1, 2, . . . , 2d)
to (1, d+ 1, 2, d+ 2, . . . , d, 2d). Therefore, ∀i ∈ [d],

Ỹ (i)
n = BiỸ

(i)
n−1 + αW̃ (i)

n

where W̃
(i)
n =

(
M̃n,i

0

)
.

3.2 PROOF OF LEMMA 3.2

Recall the error expression from (9):

∥Ỹ (i)
n ∥2 = ∥Bn

i Ỹ
(i)
0 ∥2︸ ︷︷ ︸

I

+ 2α
(
Bn

i Ỹ
(i)
0

)T n−1∑
j=0

B
(n−1−i)
i W̃

(i)
j+1


︸ ︷︷ ︸

II

+ α2

n−1∑
j=0

B
(n−1−i)
i W̃

(i)
j+1

T n−1∑
j=0

B
(n−1−i)
i W̃

(i)
j+1


︸ ︷︷ ︸

III

.

Since W̃n = ZWn, it follows that (W̃n) is also a martingale
difference sequence w.r.t. the filtration (Fn), where Fn is
as in Assumption 2.2. In particular, since E[W̃ (i)

n ] = 0 for
each n, we get that the expectation of Term II is 0. With
regards to Term III, we have

α2

n−1∑
j=0

B
(n−1−j)
i W̃

(i)
j+1

T n−1∑
j=0

B
(n−1−j)
i W̃

(i)
j+1


= α2

∑
j,k

(W̃
(i)
j+1)

T (B
(n−1−j)
i )TB

(n−1−k)
i W̃

(k)
k+1

= α2
∑
j ̸=k

(W̃
(i)
j+1)

T (B
(n−1−j)
i )TB

(n−1−k)
i W̃

(k)
k+1︸ ︷︷ ︸

III(a)

+ α2
∑
j

∥B(n−1−j)
i W̃

(i)
j+1∥

2

︸ ︷︷ ︸
III(b)

We now show that the expectation of III(a) is 0. Without
loss of generality, suppose j < k. Then,

E
[
(W̃

(i)
j+1)

T (B
(n−1−j)
i )TB

(n−1−k)
i W̃

(i)
k+1

]
= E

[
E
[
(W̃

(i)
i+1)

T (B
(n−1−i)
i )TB

(n−1−j)
i W̃

(i)
j+1|Fj

]]
= E

[
(W̃

(i)
i+1)

T (B
(n−1−i)
i )TB

(n−1−j)
i E[W̃ (i)

j+1|Fj ]
]
= 0.

Therefore, taking expectation on both sides of (9) gives

E∥Ỹ (i)
n ∥2 = ∥Bn

i X̃0∥2︸ ︷︷ ︸
I

+ E
[
α2

n−1∑
j=0

∥B(n−1−j)
i W̃

(i)
j+1∥

2

︸ ︷︷ ︸
III(b)

]
(13)



3.3 PROOF OF LEMMA 3.3

This is the key result in the lower bound proof. Here we
outline the main steps involved in proving the result. The
detailed proofs of the all auxiliary lemmas are pushed to
Appendix B.

Before we proceed with the main proof, we provide a lower
bound on the variance term in the following lemma.

Lemma 3.5. Under Assumption 2.2 and n0 as in Lemma 3.3,
the variance term in (10) can be lower bounded as follows:

α2E

n0−1∑
j=0

∥Bn0−1−j
i W̃

(i)
j+1∥

2

 ≥ α2K

n0−1∑
j=0

∥Bj
i e1∥

2

where e1 =

(
1
0

)
and K is as in Assumption 2.2.

For convenience we redefine the term in the right hand side
of the above inequality as the variance. If α and η are such
that ∥Bn0

i Ỹ
(i)
0 ∥2 > ϵ, then Lemma 3.3 immediately follows

for this choice of α and η. We now consider the case where
α and η are such that ∥Bn0

i Ỹ
(i)
0 ∥2 ≤ ϵ. Now we show that

for this choice of α and η, the variance is necessarily greater
than ϵ. Let µ(i)

+ and µ
(i)
− be the eigenvalues of Bi. It is easy

to check that

µ
(i)
+ =

1

2

(
(1− αλi + η) + ∆(i)

)
µ
(i)
− =

1

2

(
(1− αλi + η)−∆(i)

) (14)

where ∆(i) =
√
(1− αλi + η)2 − 4η.

Recall that ϵ ∈ (0, ϵ′i) in Lemma 3.3 and therefore
∥Bn0

i Ỹ
(i)
0 ∥2 ≤ ϵ implies ∥Bn0

i Ỹ
(i)
0 ∥2 < ϵ′i. The follow-

ing Lemma provides a lower bound on the variance in terms
of the eigen values of Bi and the momentum parameter η
assuming the bias is less than ϵ′i.

Lemma 3.6. Let α > 0 and η ∈ [0, 1] such that
∥Bn0

i X̃0∥2 < ϵ′i. Then

α2K

n0−1∑
j=0

∥Bj
i e1∥

2 ≥ α2K

2(1− µ2
+)(1− µ2

−)(1− η)
.

It can be shown that (1−µ2
+)(1−µ2

−) = αλi and therefore
the RHS in the above expression reduces to αK

2λi(1−η) . We
define the following function

Q(η;α, λi) ≡
αK

2λi(1− η)

1

(1− ρ(Bi))

where ρ(Bi) = |µ(i)
+ | is the spectral radius of Bi. Note that

ρ(Bi) depends on η (see 14). Now to obtain a further lower

bound on the variance we optimize over the choice of η and
show that

Q(η;α, λi) ≥
K

16λ2
i

Combining this with the definition of Q and Lemma 3.6
gives the following bound:

α2K

n0−1∑
j=0

∥∥∥Bj
i e1

∥∥∥2 ≥ K

16λ2
i

(1− ρ(Bi))

The following lemma proves all these above claims.

Lemma 3.7. Let α > 0 and η ∈ [0, 1] such that
∥Bn0

i X̃0∥2 < ϵ′i. Then we have the following bound
α2K

∑n0−1
j=0 ∥Bj

i e1∥2 ≥ K
16λ2

i
(1− ρ(Bi)).

Lastly, to show that the variance is lower bounded by ϵ ∈
(0, ϵ′), we need to show that (1 − ρ(Bi)) ≥ 16λ2

i

K ϵ. The
choice of n0 and the fact that we assumed ∥Bn0

i Ỹ
(i)
0 ∥ < ϵ

exactly ensures that. The following lemma proves this claim.

Lemma 3.8. For any ϵ ∈ (0, ϵ′i), if ∥Bn0
i Ỹ

(i)
0 ∥ < ϵ, then

1− ρ(Bi) ≥ 16λ2
i

K ϵ.

This completes the proof of Lemma 3.3.

3.4 PROOF OF LEMMA 3.4

We handle the cases αλi ≤ 1 and αλi > 1 separately.

Case 1 (αλi ≤ 1): Observe that the general β update rule
in (7) is equivalent to the β = 0 update with η redefined as
η′. Moreover in this case η′ ∈ [0, 1]. To see this first observe
that

η′ = η(1− αλiβ) ≥ η(1− β) ≥ 0.

Here the first inequality follows because αλi ≤ 1 and the
second inequality follows because β, η ∈ [0, 1].

Therefore in this case Lemma 3.3 holds with η redefined as
η′.

Case 2 (αλi > 1): In this case we show that the variance
term is greater than ϵ. This follows as shown below

α2E

n0−1∑
j=0

∥Bn0−1−j
i W̃

(i)
j+1∥

2

 (A)

≥ α2K

n0−1∑
j=0

∥Bj
i e1∥

2

(B)

≥ α2K
(C)
>

K

λ2
i

(D)
> ϵ.

Here (A) follows from Lemma 3.5, (B) follows from non-
negativity of norm and lower bounding the sum with the
j = 0 term and (C) follows since αλi > 1. Finally (D)
follows for any ϵ < K

λ2
i

which in turn is smaller than ϵ′i as
defined in Lemma 3.3.



4 CONCLUDING REMARKS

In this work, we analyze the sample complexity of SHB and
ASG and provide matching lower and upper bounds up to
constants and logarithmic terms. More importantly, we show
that the same sample complexity bound can be obtained by
standard SGD. Our work also calls into question some of
the recent positive results in favour of SHB and ASG in
the stochastic regime. We show that such improvements
do not take into account all the terms involved in the error
decomposition, or have major flaws. We emphasize that our
results hold specifically for SHB and ASG. Other momen-
tum methods could offer provable improvements over SGD
[Jain et al., 2018, Liu and Belkin, 2020].
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Appendix

A COMPARISON WITH RECENT WORKS

A.1 COMPARISON WITH Mou et al. [2020]

Claim 1 in (p. 20, Mou et al. [2020]) analyzes the asymptotic covariance of the heavy ball momentum algorithm (with
Polyak averaging) and claims a correction term that satisfies:

Tr(Lη) ∈ O

(
η
κ2(U)

λ
3/2
min

)

where Ã =

(
0 Id

−Ā αId + ηĀ

)
= UDU−1 as in the decomposition of Ã in Lemma 1 of Mou et al. [2020] and κ(U) =

∥U∥op∥U−1∥op.

However in the proof of claim 1, we are not sure if the following bound holds, since the matrix Ã is not symmetric:

Tr(Ã−1E(Ξ̃AΛ
∗
η(Ξ̃A)

T )(Ã−1)T ) ≤ (min
i

|λi(Ã)|)−2(1 + η2)v2AEπη∥xt − x∗∥22

Our calculation points towards the following bound:

Tr(Lη) ∈ O

(
η
κ2(U)

λ
5/2
min

)
.

We outline the proof for the uni-variate case, when Ā = λ for some λ > 0. Then,

Ã =

(
0 1
−λ α+ ηλ

)
, and Ã−1 =

1

λ

(
α+ ηλ −1

λ 0

)
.

Observe that Ã−1(Ã−1)T =
1

λ2

(
1 + (α+ ηλ)2 λ(α+ ηλ)
λ(α+ ηλ) λ2

)
and therefore Tr(Ã−1(Ã−1)T ) = O

(
1

λ2

)
. Using this

we have,

Tr(Ã−1E(Ξ̃AΛ
∗
η(Ξ̃A)

T )(Ã−1)T ) ≤ O
(

1

λ2

)
Tr(E(Ξ̃AΛ

∗
η(Ξ̃A)

T ) ∈ O
(
η
κ2(U)

λ5/2

)
(15)

The second inequality follows as in Mou et al. [2020]. Next we analyze the dependence of κ2(U) on λ. Again for simplicity

we consider the uni-variate case where Ā = λ. Let Ã =

(
0 1
−λ α+ ηλ

)
, be diagonalizable. Therefore,

Ã = U

(
µ+ 0
0 µ−

)
U−1,

where µ+ and µ− are the eigenvalues of Ã. Let U =

(
u1 u2

u3 u4

)
. We therefore have,

(
0 1
−λ α+ ηλ

)(
u1 u2

u3 u4

)
=

(
u1 u2

u3 u4

)(
µ+ 0
0 µ−

)
.

Solving the system of equations, we get:

U =

(
1 1
µ+ µ−

)
and U−1 =

1

µ+ − µ−

(
1 1
µ+ µ−

)



Now, µ+ − µ− =
√
(α+ ηλ)− 4λ. Using the choice of α =

√
λ as in Mou et al. [2020], we have:

µ+ − µ− =
√

λ+ η2λ2 + 2αηλ− 4λ

=
√
λ

√
η2λ+ 2η

√
λ− 3

For λ ≪ 1 (which is the case where the momentum algorithm is claimed to improve the mixing time in Mou et al.
[2020]), µ+ − µ− ≥ O(

√
λ). As in proof of Lemma C.2 in Appendix D.3 and using the fact that ∥U∥op∥U−1∥op =

σmax(U)σmax(U
−1), we can show that κ2(U) ≤ O( 1λ ). Combining with (15), we have:

Tr(Lη) ∈ O(ηλ−7/2).

A similar analysis can be carried for the multivariate case to show that

Tr(Lη) ∈ O(ηλmin(Ā)−7/2)

The correction term in SGD is O(ηλmin(Ā)−3) (See Mou et al. [2020], Claim 1). The stationary distribution for the
momentum algorithm is larger than that of SGD when λmin << 1. Indeed if we enforce that the two asymptotic covariances
are of the same size by choosing the stepsize for momentum iterate ηm in terms of the stepsize of SGD, i.e.,

O
(
η

1

λmin(Ā)3

)
= O

(
ηm

1

λmin(Ā)7/2

)
,

then we must choose ηm ∈ O(η
√
λmin(Ā)). In Appendix C.1. of Mou et al. [2020], the mixing time of momentum

iterate is shown to be O

(
1

ηm
√

λmin(Ā)

)
, while the mixing time of SGD is O

(
1

ηλmin(Ā)

)
. When we choose ηm ∈

O(
√
λmin(Ā)η), then the mixing time of momentum algorithm turns out to be the same as SGD. This behaviour is identical

to what we observe in Proposition 2.8, where if we choose the same stepsize then there is improvement by a square root
factor.

A.2 COMPARISON WITH SHB, CAN ET AL. (2019)

For strongly convex quadratic functions of the form:

f(x) =
1

2
xTQx+ aTx+ b,

where x ∈ Rd, Q ∈ Rd×d is p.s.d, a ∈ Rd, b ∈ R and µId ⪯ Q ⪯ LId, Can et al. [2019] shows acceleration in Wasserstein

distance by a factor of
√
κ =

√
L

µ
. The trace of the asymptotic covariance matrix XHB is given by (See Appendix C.2 of

Can et al. [2019]):

Tr(XHB) =

d∑
i=1

2α(1 + β)

(1− β)λi(2 + 2β − αλi)
,

where, α is the stepsize, β is the momentum parameter and λi is the ith eigenvalue of Q. We show that the asymptotic
covariance matrix is worse compared to when no momentum is used, i.e., β = 0 and the optimial stepsize α = 2

µ+L is used.
Substituting these values for β and α we get:

Tr(Xβ=0) =

d∑
i=1

2 2
µ+L

λi(2− 2
µ+Lλi)

=

d∑
i=1

2 2
µ+L

λi
2

µ+L (µ+ L− λi)

=

d∑
i=1

2

λi(µ+ L− λi)



To compute the size of the stationary distribution with the iterates of heavy ball we set the stepsize α =
4

(
√
µ+

√
L)2

and

momentum parameter β =
(√

L−√
µ√

L+
√
µ

)2
and get:

Tr(XHB) =

d∑
i=1

2

(
4

(
√
µ+

√
L)2

)
(1 + β)

(1− β)λi

(
2 + 2

(√
L−√

µ√
L+

√
µ

)2
− 4

(
√
µ+

√
L)2

λi

)

=

d∑
i=1

2

(
4

(
√
µ+

√
L)2

)
(1 + β)

(1− β)λi

(
2(
√
L+

√
µ)2 + 2(

√
L−√

µ)2 − 4λi

(
√
L+

√
µ)2

)

=

d∑
i=1

2

(
4

(
√
µ+

√
L)2

)
(1 + β)

(1− β)λi

(
4

(
√
µ+

√
L)2

)
(µ+ L− λi)

=

d∑
i=1

2(1 + β)

(1− β)λi(µ+ L− λi)

=

d∑
i=1

2

λi(µ+ L− λi)

1 +
(√

L−√
µ√

L+
√
µ

)2
1−

(√
L−√

µ√
L+

√
µ

)2


=

d∑
i=1

2

λi(µ+ L− λi)

L+ µ

4
√
µL

=

d∑
i=1

2

λi(µ+ L− λi)

1

2

(√
κ+

1√
κ

)
≥ Tr(Xβ=0)

√
κ

2

The above calculation shows that the size of the asymptotic covariance matrix of SHB is worse by a factor of Θ(
√
κ).

A.3 COMPARISON WITH ASSRAN AND RABBAT (2020)

Let Q be the condition number of the given quadratic optimization problem’s driving matrix (denoted by A in our work).
The key argument in Assran and Rabbat [2020] to claim “ASG converges at an accelerated rate" is that both its bias and
variance are better than that of SGD (see the discussion below Theorem 2 there). Specifically, Assran and Rabbat [2020]
claims that (under optimal stepsize choices)

1. ASG’s bias decays as (roughly)
(√

Q−1√
Q

)2k
, while SGD’s decays at O

(
Q−1
Q+1

)2k
;

2. also, ASG’s asymptotic variance is O(Q1/2), while that of SGD’s is O(Q).

While the bias computations are correct, there is an order of magnitude error in ASG’s variance estimate. Instead of O(Q3/2),
they incorrectly deduce it to be O(Q1/2).

Based on the incorrect variance estimate, Assran and Rabbat [2020]’s claim essentially is that, compared to SGD, the ASG
iterates converge to a ‘smaller’ ball and also does so at a ‘faster’ rate. However, with the correct variance estimate, one can
only conclude that ASG’s iterates converge faster but settle on a ‘bigger ball,’ as illustrated in our Figure 1a. Instead, our
work shows that, if we look at the number of iterations needed to reach the same-sized ball as that of SGD, then there is



a constraint on the choice of the stepsize and momentum parameters for ASG. Under this constraint, the ASG’s optimal
sample complexity turns out to be of the same order as that of SGD.

We now show that ASG’s variance estimate in Assran and Rabbat [2020] should be O(Q3/2), and not O(Q1/2). In what
follows, the matrix A is the stacked matrix defined in Eq. (15) of Assran and Rabbat [2020], and not the driving matrix A of
our work. In the display below Eq. (29) in Assran and Rabbat [2020], the authors have correctly shown that ∥Ak∥22 ≲ k2ρ2k,

where ρ =
√
Q−1√
Q

and ≲ hides global constants. As can be seen in the proof of their [Appendix B, Cor. 1.1], they plug this

estimate back in Eq. (25) in the proof of their Theorem 1 to obtain a bound on
k∑

j=1

∥Ak−j∥2 =

k−1∑
j=0

∥Aj∥2 ≲
k−1∑
j=0

j2ρ2j . It

is easy to check that
∞∑
j=0

j2ρ2j =
ρ2(1 + ρ2)

(1− ρ2)3
.

Thus, for all sufficiently large k,

k−1∑
j=0

j2ρ2j ≥ ρ2(1 + ρ2)

2(1− ρ2)3
≥ ρ2

2(1− ρ2)3
.

Note that for Q ≥ 4, ρ2 ≥ 1
4 and therefore,

ρ2

2(1− ρ2)3
≳

1(
1−

(√
Q−1√
Q

)2)3 =

(
Q

Q− (
√
Q− 1)2

)3

∈ Ω(Q3/2) (16)

where ≳ hides global constants. However, Assran and Rabbat [2020] deduce
k∑

j=1

∥Ak−j∥2 to be O
(

1
1−ρ2

)
; see the second

display below (29).

This is in contradiction to (16) as shown below

1

1− ρ2
=

1

1−
(√

Q−1√
Q

)2 =
Q

Q− (
√
Q− 1)2

∈ Θ(
√

Q).

B PROOF OF CLAIMS IN SECTION 3.3

Lemma 3.5. Under Assumption 2.2 and n0 as in Lemma 3.3, the variance term in (10) can be lower bounded as follows:

α2E

n0−1∑
j=0

∥Bn0−1−j
i W̃

(i)
j+1∥

2

 ≥ α2K

n0−1∑
j=0

∥Bj
i e1∥

2

where e1 =

(
1
0

)
and K is as in Assumption 2.2.

Proof. Recall that

W̃ (i)
n =

(
M̃

(i)
n

0

)
= M̃ (i)

n e1;where e1 =

(
1
0

)



Therefore the variance can be bounded as follows:

E

n−1∑
j=0

∥Bn−1−j
i W̃

(i)
j+1∥

2

 = E

n−1∑
j=0

∥B(n−1−j)
i M̃

(i)
j+1e1∥

2


= E

n−1∑
j=0

(M̃
(i)
j+1)

2∥B(n−1−j)
i e1∥2


=

n−1∑
j=0

E[(M̃ (i)
j+1)

2]∥B(n−1−j)
i e1∥2

≥ K

n−1∑
j=0

∥Bn−1−j
i e1∥2.

Here the last inequality follows because E[(M̃ (i)
j+1)

2] > K. To see this observe that ∀j, almost surely

E[(M̃ (i)
j )2|Fj−1] ≥ min

∥v∥=1
vTE[M̃jM̃

T
j |Fj−1]v

= min
∥v∥=1

vTSE[MjM
T
j |Fj−1]S

T v

Define ŵ = ST v. Observe that since A is symmetric, S is an orthogonal matrix. Thus, using the fact that for ∥v∥ = 1, we
have ∥ST v∥ = 1 Finally using Assumption 2.2 we have,

E[(M̃ (i)
j )2|Fj−1] ≥ min

∥ŵ∥=1
E[ŵTMjM

T
j ŵ|Fj−1]

≥ K a.s.

and therefore, E[(M̃ (i)
j )2] ≥ K,∀j

Lemma 3.6. Let α > 0 and η ∈ [0, 1] such that ∥Bn0
i X̃0∥2 < ϵ′i. Then

α2K

n0−1∑
j=0

∥Bj
i e1∥

2 ≥ α2K

2(1− µ2
+)(1− µ2

−)(1− η)
.

Proof. We omit superscript/subscript i for ease of exposition.

We first find an expression for Bn0 in terms of the eigenvalues of B. Towards this, first consider the case where η ̸=
(1−

√
αλ)2. Then, B is diagonalizable, since the eigenvalues of B, µ+ and µ−, are distinct.

Thus, there exists U such that B = UDBU
−1, where DB =

(
µ+ 0
0 µ−

)
. With this, we obtain the following expression for

Bn0

Bn0 = UDn0

B U−1

=

µ
n0+1
+ −µ

n0+1
−

µ+−µ−

µ+µ
n0+1
− −µ−µ

n0+1
+

µ+−µ−
µ
n0
+ −µ

n0
−

µ+−µ−

µ+µ
n0
− −µ−µ

n0
+

µ+−µ−

 .

Since x−1 = x0, it can be seen that Ỹ0 =

(
x̃0

x̃0

)
= x̃0

(
1
1

)
. We will denote

(
1
1

)
with 1 henceforth. Using this, we obtain

the following expression for the bias

∥Bn0 Ỹ0∥ = x̃2
0∥Bn01∥2.



It follows that

∥Bn01∥2 =
1

(µ+ − µ−)2
(((µn0+1

+ − µn0+1
− ) + (−µn0+1

+ µ− − µn0+1
− µ+))

2 + ((µn0
+ − µn0

− ) + (−µn0
+ µ− − µn0

− µ+))
2)

and

∥Bn0e1∥2 =
1

(µ+ − µ−)2
((µn0+1

+ − µn0+1
− )2 + (µn0

+ − µn0
− )2).

From the expression for ∥Bn0e1∥2, we can see it can be lower bounded as

∥Bn0e1∥2 ≥
(
µn0
+ − µn0

−
µ+ − µ−

)2

.

Using this bound, we obtain

n0−1∑
j=0

∥∥∥Bje1

∥∥∥2 ≥
n0−1∑
j=0

(
µj
+ − µj

−
µ+ − µ−

)2

=
1

(µ+ − µ−)2

n0−1∑
j=0

(µ2j
+ + µ2j

− − 2(µ+µ−)
j)

=
1

(µ+ − µ−)2

n0−1∑
j=0

µ2j
+ +

n0−1∑
j=0

µ2j
− − 2

n0−1∑
j=0

(µ+µ−)
j


=

1

(µ+ − µ−)2

(
1− µ2n0

+

1− µ2
+

+
1− µ2n0

−
1− µ2

−
− 2

1− (µ+µ−)
n0

1− µ+µ−

)
.

The sum of fractions in the bracket can be expressed as a single fraction with denominator (1− µ2
+)(1− µ2

−)(1− µ+µ−).
The numerator turns out to be:

num = 1 + µ+µ− − 2(µ+µ−)
n0︸ ︷︷ ︸

T1

+µ+µ−

(
µn0
+ − µn0

−
µ+ − µ−

)2

+ (µ+µ−)
2

(
µn0−1
+ − µn0−1

−
µ+ − µ−

)2

− (µ+µ−)
3

(
µn0−1
+ − µn0−1

−
µ+ − µ−

)2

−
(
µn0
+ − µn0

−
µ+ − µ−

)2

︸ ︷︷ ︸
T2

.

Our aim now is to show num ≥ 1
2 , which would then complete the proof of the lemma. We do this by lower bounding terms

T1 and T2 separately.

Note that (µ+µ−)
n0 ≤ ρ(B)2n0 . From (39), ρ(B)2(n0+1)

16 < ϵ
x̃2
0

, and we get 2(µ+µ−)
n0 ≤ 32ϵ

x̃2
0
. Thus,

T1 = 1 + µ+µ− − 2(µ+µ−)
n0 ≥ 1− 32ϵ

x̃2
0

.

Consider term T2. It can be re-written as

T2 = (1− µ+µ−)

(µ+µ−)
2

(
µn0−1
+ − µn0−1

−
µ+ − µ−

)2

−
(
µn0
+ − µn0

−
µ+ − µ−

)2
 (17)

= (1− µ+µ−)

(
µ+µ−

(
µn0−1
+ − µn0−1

−
µ+ − µ−

)
−
(
µn0
+ − µn0

−
µ+ − µ−

))
︸ ︷︷ ︸

T2(i)

(
µ+µ−

(
µn0−1
+ − µn0−1

−
µ+ − µ−

)
+

(
µn0
+ − µn0

−
µ+ − µ−

))
︸ ︷︷ ︸

T2(ii)

.

(18)



We now lower bound T2 by bounding the magnitude of T2(i) and T2(ii). Since ∥BnX̃0∥2 = x̃2
0∥Bn

1∥2 < ϵ, we get

|T2(i)| =

∣∣∣∣∣µ+µ−

(
µn0−1
+ − µn0−1

−
µ+ − µ−

)
−
(
µn0
+ − µn0

−
µ+ − µ−

)∣∣∣∣∣ <
√
ϵ

x̃0
. (19)

We first consider the case η ∈ [0, (1−
√
αλ)2). Here, eigenvalues µ+ and µ− are real. Then,

µ+µ−

(
µn0−1
+ − µn0−1

−
µ+ − µ−

)
= µ−(µ

n0
+ − µn0−1

− µ+)

≥ µ−(µ
n0
+ − µn0

− ).

Consequently,

µ+µ−

(
µn0−1
+ − µn0−1

−
µ+ − µ−

)
= µ−

(
µn0
+ − µ+µ

n0−1
−

µ+ − µ−

)

≥ µ−

(
µn0
+ − µn0

−
µ+ − µ−

)
.

It follows that

(1− µ−)

(
µn0
+ − µn0

−
µ+ − µ−

)
≤

µn0
+ − µn0

−
µ+ − µ−

− µ+µ−

(
µn0−1
+ − µn0−1

−
µ+ − µ−

)
≤ ∥Bn01∥ <

√
ϵ

x̃0
. (20)

We then obtain

µ+µ−

(
µn0−1
+ − µn0−1

−
µ+ − µ−

)
≤

µn0
+ − µn0

−
µ+ − µ−

≤
√
ϵ

x̃0(1− µ−)
. (21)

Thus, |T2(ii)| ≤ 2
√
ϵ

x̃0(1−µ−) and we can bound term T2 as follows

|T2| = (1− µ+µ−)|T2(i)||T2(ii)| (22)

≤ (1− µ+µ−)

√
ϵ

x̃0

2
√
ϵ

x̃0(1− µ−)
(23)

≤ 4ϵ

x̃2
0

. (24)

The last inequality follows since

1− µ+µ− ≤ 1− µ2
− = (1− µ−)(1 + µ−) ≤ 2(1− µ−).

When µ+ and µ− are complex,
(

µ
n0
+ −µ

n0
−

µ+−µ−

)
= sinn0ω

sinω ρ(P )n0−1. The choice of n0 ensures that sinn0ω
sinω , sin(n0+1)ω

sinω ≥ 0 and
sinn0ω
sinω < sin(n0+1)ω

sinω (see Lemma B.1). Using this, we obtain
√
ϵ

x̃0
>

∣∣∣∣ρ(B)n0
sin(n0 + 1)ω

sinω
− ρ(B)n0+1 sinn0ω

sinω

∣∣∣∣
= ρ(B)n0

sin(n0 + 1)ω

sinω
− ρ(B)n0+1 sinn0ω

sinω

≥ ρ(B)n0
sin(n0 + 1)ω

sinω
− ρ(B)n0+1 sin(n0 + 1)ω

sinω

≥ ρ(B)n0(1− ρ(B))
sin(n0 + 1)ω

sinω



It follows that

sinn0ω

sinω
ρ(B)n0+1 <

sin(n0 + 1)ω

sinω
ρ(B)n0 <

√
ϵ

x̃0(1− ρ(B))
(25)

since sinn0ω
sinω < sin(n0+1)ω

sinω and ρ(B) < 1. Thus, |T2(ii)| ≤ 2
√
ϵ

x̃0(1−ρ(B)) and we can bound term T2 as follows

|T2| = (1− µ+µ−)|T2(i)||T2(ii)|

≤ (1− µ+µ−)

√
ϵ

x̃0

2
√
ϵ

(1− ρ(B))x̃0

≤ 4ϵ

x̃2
0

.

The last inequality follows since

1− µ+µ− = 1− ρ(B)2 = (1− ρ(B))(1 + ρ(B)) ≤ 2(1− ρ(B)).

Thus, num ≥ T1 − |T2| ≥ 1 − 36ϵ
x̃2
0

. When ϵ ≤ x̃2
0

72 , it follows that num ≥ 1
2 , and the proof is complete for the case

η ̸= (1−
√
αλ)2.

Finally, consider the case when η = (1−
√
αλ)2. Here, B is not diagonalizable because of it now has repeated eigenvalues.

Instead, we can find matrix Vi such that B = V JBV
−1, where JB is the Jordan block matrix

(
µ+ 1
0 µ+

)
. We find that

V =

(
0 1
1 −√

η

)
is one such solution. Using this, we obtain the following expression for Bn0

Bn0 = V Jn0

B V −1

=

(
(n0 + 1)µn0

+ −n0µ
n0+1
+

n0µ
n0−1
+ −(n0 − 1)µn0

+

)
.

Thus, we find that

∥Bn01∥2 = ((n0 + 1)µn0
+ − n0µ

n0+1
+ )2 + (n0µ

n0−1
+ − (n0 − 1)µn0

+ )2.

when η = (1−
√
αλ)2.

Observe that,

n−1∑
j=0

∥Bje1∥2 =

n−1∑
j=0

(j + 1)2µ2j + j2µ2(j−1) ≥
n−1∑
j=0

(jµj−1)2

= lim
µ+→µ−

n−1∑
j=0

(
µj
+ − µj

−
µ+ − µ−

)2

≥ lim
µ+→µ−

1

2(1− µ2
+)(1− µ2

−)(1− µ+µ−)
,

where the last inequality follows from the bounds for the case η ̸= (1−
√
αλ)2. Therefore,

α2K

n−1∑
j=0

∥∥∥Bje1

∥∥∥2 ≥ α2K

2(1− µ2)(1− µ2)(1− η)
.



Lemma 3.7. Let α > 0 and η ∈ [0, 1] such that ∥Bn0
i X̃0∥2 < ϵ′i. Then we have the following bound

α2K
∑n0−1

j=0 ∥Bj
i e1∥2 ≥ K

16λ2
i
(1− ρ(Bi)).

Proof. We omit superscript/subscript i for ease of exposition. Before proceeding to the proof, we introduce a new function

h(η, αλ) ≜
(1− µ2

+)(1− µ2
−)(1− η)

(αλ)2

to simplify calculations. First we consider the case η ∈ [0, (1−
√
αλ)2] when µ+ and µ− are real. Since µ+ and µ− are

only functions of αλ and η, h is well-defined.

The proof of the Lemma follows by showing h(η, αλ)(1− ρ(B)) ≤ 8. Note that 1−µ2
+ = (1−µ+)(1+µ+) ≤ 2(1−µ+)

since µ+ ≤ 1. Similarly, (1− µ2
−) ≤ 2(1− µ−). Thus, h(η, αλ)(1− µ+) ≤ 4(1−µ+)2(1−µ−)(1−µ+µ−)

(αλ)2 . Since µ+ + µ− =

1− αλ+ η, it follows that (1− µ+)(1− µ−) = 1 + µ+µ− − µ+ − µ− = 1− (1− αλ+ η) + η = αλ. Thus,

h(η, αλ)(1− µ+) ≤
4(1− µ+)(1− η)

αλ

=
4(1− η)

αλ

(
1−

(1 + η − λα) +
√
(λα− 1− η)2 − 4η

2

)
≜ g(η, αλ).

We see that

∂g(η, αλ)

∂η
=

2
(√

(1− αλ+ η)2 − 4η + η − 1
)(√

(1− αλ+ η)2 − 4η + η − αλ− 1
)

αλ
√
(1− αλ+ η)2 − 4η

Observe that the denominator in the above expression is positive. We consider the following two cases: (i) αλ ≥ 1 and (ii)
αλ < 1. When αλ ≥ 1, we can directly bound g(η, αλ) = 4(1−µ+)(1−η)

αλ . Since µ+ ≥ −1 and η ≥ 0, we get g(η, αλ) ≤ 8.

Now consider the case αλ < 1. We have that,√
(1− αλ+ η)2 − 4η + η − 1 =

√
(1− η)2 + (αλ)2 − 2αλ(1 + η)− (1− η)

When αλ < 1, (αλ)2 − 2αλ(1 + η) < 0 for all η ≥ 0, thus
(√

(1− αλ+ η)2 − 4η + η − αλ − 1
)

≤(√
(1− αλ+ η)2 − 4η + η − 1

)
< 0. This implies that the numerator of the partial derivative is also positive and

we have that
∂g(η, αλ)

∂η
> 0. Since the partial derivative is positive g(η, αλ) is an increasing function of η and thus the

maximum is achieved at η = (1−
√
αλ)2 and is given by:

g(η, αλ) ≤ 4(1− µ+)(1− η)

αλ

=
4(1− ρ(B))(1− η)

αλ

=
4(1− (1−

√
αλ))(1− η)

αλ

=
4
√
αλ(2

√
αλ− αλ)

αλ
≤ 8

Next, for η = ((1−
√
αλ)2, 1], the eigen values µ+ and µ− are complex. We have,

h(η, αλ) =
(1− µ2

+)(1− µ2
−)(1− η)

(αλ)2
.



First we show that (1− µ2
+)(1− µ2

−) ≤ 4(1− µ+)(1− µ−). Notice,

(1− µ2
+)(1− µ2

−) = (1− µ+)(1 + µ+)(1− µ−)(1 + µ−)

= (1− µ+)(1− µ)(1 + µ+ + µ− + µ+µ−)

= (1− µ+)(1− µ−)(1 + (1− αλ+ η) + η)

≤ 4(1− µ+)(1− µ−).

It follows that,

h(η, αλ)(1− ρ(B)) ≤ 4(1− ρ(B))(1− η)

αλ

=
4(1−√

η)(1− η)

αλ
≜ l(η, αλ)

Observe that l(η, αλ) is a decreasing function of η and therefore, the infimum is attained for η = (1 −
√
αλ)2. For this

choice of η,

l(η, αλ) =
4(1− (1−

√
αλ))(1− (1−

√
αλ)2)

αλ
≤ 8

Lemma 3.8. For any ϵ ∈ (0, ϵ′i), if ∥Bn0
i Ỹ

(i)
0 ∥ < ϵ, then 1− ρ(Bi) ≥ 16λ2

i

K ϵ.

Proof. We omit superscript/subscript i for ease of exposition.

We first consider the case where µ+ and µ− are complex. Here, we require the following lemma to complete the proof:

Lemma B.1. There exists n0 ∈
[

K
768ϵλ2

i
log
(

x̃2
0

16ϵ

)
− 1, K

64ϵλ2
i
log
(

x̃2
0

16ϵ

)
− 1
]

such that sin(n0+1)ω
sinω , sinn0ω

sinω ≥ 0 and
sin(n0+1)ω

sinω − sinn0ω
sinω > 1

2 .

Using Lemma B.1, we can now obtain the following bound for the bias for this case as follows

∥Bn01∥2 =
1

(µ+ − µ−)2
(((µn0+1

+ − µn0+1
− ) + (−µn0+1

+ µ− − µn0+1
− µ+))

2 + ((µn0
+ − µn0

− ) + (−µn0
+ µ− − µn0

− µ+))
2)

(26)

≥ 1

(µ+ − µ−)2
((µn0+1

+ − µn0+1
− ) + (−µn0+1

+ µ− − µn0+1
− µ+))

2 (27)

=
1

sin2 ω
(ρ(B)n0 sin(n0 + 1)ω − ρ(B)n0+1 sinn0ω)

2 (28)

=

(
ρ(B)n0

sin(n0 + 1)ω

sinω
− ρ(B)n0+1 sinn0ω

sinω

)2

(29)

≥
((

sin(n0 + 1)ω

sinω
− sinn0ω

sinω
+

1

4

)
ρ(B)n0

)2

(30)

≥ ρ(B)2n0

16
. (31)

Now we consider the case where µ+ and µ− are real. We obtain a bound on the bias as follows



∥Bn01∥2 =
1

(µ+ − µ−)2
(((µn0+1

+ − µn0+1
− ) + (−µn0+1

+ µ− − µn0+1
− µ+))

2 + ((µn0
+ − µn0

− ) + (−µn0
+ µ− − µn0

− µ+))
2)

(32)

≥

(
µn0+1
+ − µn0+1

−
µ+ − µ−

+
µ+µ

n0+1
− − µ−µ

n0+1
+

µ+ − µ−

)2

(33)

=

(
µn0+1
+ − µn0+1

−
µ+ − µ−

− µ+µ−
µn0
+ − µn0

−
µ+ − µ−

)2

(34)

=

 n0∑
j=0

µj
+µ

n0−j
− − µ+µ−

n0−1∑
j=0

µj
+µ

n0−j−1
−

2

(35)

=

 n0∑
j=0

µj
+µ

n0−j
− − µ+

 n0∑
j=0

µj
+µ

n0−j
− − µn0

+

2

(36)

=

µn0+1
+ + (1− µ+)

 n0∑
j=0

µj
+µ

n0−j
−

2

(37)

≥ µ
2(n0+1)
+ = ρ(B)2(n0+1). (38)

From the above two bounds, we find that

ϵ > ∥Bn0 Ỹ0∥2 ≥ ρ(B)2(n0+1)x̃2
0

16
. (39)

We can further bound the above expression by using the fact that xm ≥ e−m 1−x
x , for all x ∈ (0, 1] to get

ϵ ≥ x̃2
0

16
e−2(n0+1)

1−ρ(B)
ρ(B)

From the above inequality, we obtain the following bound on n0 + 1

n0 + 1 ≥ ρ(B)

2(1− ρ(B))
log

(
x̃2
0

16ϵ

)
=

1

2

(
1

1− ρ(B)
− 1

)
log

(
x̃2
0

16ϵ

)

Since n0 + 1 ≤ K
64ϵλ2 log(

x̃2
0

16ϵ ), we obtain the following bound on 1
1−ρ(B)

1

1− ρ(B)
≤ K

32ϵλ2
+ 1 ≤ K

16ϵλ2
, (40)

provided that 1 ≤ K
32ϵλ2 .

C PROOF OF PROPOSITION 2.8

We prove the theorem separately for η = 0 (corresponding to SGD), β = 0 (corresponding to SHB) and β = 1 (corresponding
to ASG).



Case-1: η = 0 (SGD)

The LSA-M iterate in (2) with η = 0 corresponds to:

xn+1 − x∗ = xn − x∗ + α(Ax∗ −Axn +Mn+1) (41)
xn+1 − x∗ = xn − x∗ + α(Ax∗ −Axn +Mn+1) + η((xn − x∗)− (xn−1 − x∗)) (42)

Let x̃n = xn − x∗. Then, equation (41) can be rewritten as:

x̃n = x̃n−1 + α(−Ax̃n−1 +Mn) = (I − αA)x̃n−1 + αMn

= (I − αA)nx̃0 + α

n−1∑
i=0

[(I − αA)n−1−iMi+1]

Taking the square of the norm on both sides of the above equation, we obtain

∥x̃n∥2 = ∥(I − αA)nx̃0∥2 + 2α ((I − αA)nx̃0)
T

(
n−1∑
i=0

(I − αA)n−1−iMi+1

)

+ α2
n−1∑
i=0

n−1∑
j=0

((I − αA)n−1−iMi+1)
T ((I − αA)(n−1−j)Mj+1))

Now we take expectation on both sides to obtain

E[∥x̃n∥2] ≤ ∥(I − αA)n∥2∥x̃0∥2 + 2α ((I − αA)nx̃0)
T

(
n∑

i=0

(I − αA)(n−1−i)E[Mi+1]

)

+ α2
n−1∑
i=0

n−1∑
j=0

E((I − αA)(n−1−i)Mi+1)
T ((I − αA)(n−1−j)Mj+1))

Now, from Assumption 2.2, E[Mi+1] = E[E[Mi+1|Fi]] = 0. Therefore the second term becomes 0. Next consider the term
inside the double summation. First consider the case i ̸= j. Without loss of generality, suppose i < j.

E
[
MT

i+1

(
(I − αA)(n−1−i)

)T
(I − αA)(n−1−j)Mj+1

]
= E

[
E
[
MT

i+1

(
(I − αA)(n−1−i)

)T
(I − αA)(n−1−j)Mj+1|Fj

]]
= E

[
MT

i+1

(
(I − αA)(n−1−i)

)T
(I − αA)(n−1−j)E[Mj+1|Fj ]

]
= 0

The last equality follows from Assumption 2.2. When i = j,

E
[
MT

i+1

(
(I − αA)(n−1−i)

)T
(I − αA)(n−1−i)Mi+1

]
≤ E

[
∥(I − αA)(n−1−i)∥2E

[
∥Mi+1∥2|Fi

]]
≤ ∥(I − αA)(n−1−i)∥2K

(
1 + E[∥x̃i∥2]

)
Substituting the above values and using Λ = ||x0 − x∗||2 we get

E[∥x̃n∥2] ≤ ∥(I − αA)n∥2Λ + α2K

n−1∑
i=0

∥(I − αA)(n−1−i)∥2(1 + E[∥x̃i∥2])

We next use the following lemma to bound ∥(I − αA)i∥.

Lemma C.1. Let, M ∈ Rd×d be a matrix and λi(M) denote the ith eigenvalue of M . Then, ∀δ > 0

∥Mn∥ ≤ Cδ(ρ(M) + δ)n

where ρ(M) = maxi |λi(M)| is the spectral radius of M and Cδ is a constant that depends on δ. Furthermore, if M is
diagonalizable, then

∥Mn∥ ≤ C(ρ(M))n



Proof. See Appendix D.2.

We let λmin = mini λi. Using Lemma C.1 and the fact that A is diagonalizable, we have

E[∥x̃n∥2] ≤ C2(1− αλmin)
2nΛ + C2α2K

n−1∑
i=0

(1− αλmin)
2(n−1−i)(1 + E[∥x̃i∥2])

where, C =

√
d

σmin(S)σmin(S−1)
, (43)

S is the matrix in Jordan decomposition of A and σmin(S) is the smallest singular value of S. We define the sequence {Uk}
as below:

Uk = C2(1− αλmin)
2kΛ + C2α2K

k−1∑
i=0

(1− αλmin)
2(k−1−i)(1 + Ui)

Observe that E[∥x̃n∥2] ≤ Un and that the sequence {Uk} satisfies

Uk+1 = (1− αλmin)
2Uk + C2Kα2(1 + Uk); U0 = C2Λ

Therefore, we have
Uk+1 =

(
(1− αλmin)

2 + C2Kα2
)
Uk + α2C2K

To ensure that (1− αλmin)
2 + C2Kα2 ≤ (1− αλmin/2)

2, choose α as follows:

α2λ2
min − 2αλmin + C2Kα2 ≤ α2λ2

min

4
− αλmin

or α ≤ λmin
3
4λ

2
min + C2K

Un ≤
(
1− αλmin

2

)2

Un−1 + α2C2K

≤
(
1− αλmin

2

)2n

U0 + α2C2K

n−1∑
i=0

(
1− αλmin

2

)2i

≤
(
1− αλmin

2

)2n

U0 + α2C2K
1

1−
(
1− αλmin

2

)2
≤
(
1− αλmin

2

)2n

U0 + α2C2K
2

αλmin

We assume that α ≤ 1
λmin

and therefore (1− αλmin

2 )2 ≤ e−αλmin .

Un ≤ e−nαλminC2Λ +
2αC2K

λmin

Choose α as below:
α ≤ ϵλmin

4C2K

Then,
2αC2K

λmin
≤ ϵ

2
⇒ E[∥x̃n∥2] ≤ Un ≤ ϵ

2
+

ϵ

2
= ϵ,

when the sample complexity is:

n =
1

αλmin
log

(
2C2Λ

ϵ

)
Case-2: β = 0 (SHB) LSA-M iterate with β = 0 can be re-written as:

x̃n+1 = (I − αA)x̃n + α(Mn+1) + η(x̃n − x̃n−1)



This can be re-written as: (
x̃n+1

x̃n

)
=

(
I − αA+ ηI −ηI

I 0

)(
x̃n

x̃n−1

)
+ α

(
Mn+1

0

)
Let us define

X̃n ≜

(
x̃n

x̃n−1

)
, P ≜

(
I − αA+ ηI −ηI

I 0

)
and Wn ≜

(
Mn

0

)
.

Note that E[Wn+1|Fn] = 0 and E[∥Wn+1∥2|Fn] = E[∥Mn+1∥2|Fn] ≤ K(1+E[∥x̃n∥2]) ≤ K(1+E[∥X̃n∥2]). It follows
that,

X̃n = PX̃n−1 + αWn = PnX̃0 + α

n−1∑
i=0

P (n−1−i)Wi+1

The norm square of the above equation gives:

∥X̃n∥2 = ∥PnX̃0∥2 + α
(
PnX̃0

)T (n−1∑
i=0

P (n−1−i)Wi+1

)
+ α

(
n−1∑
i=0

P (n−1−i)Wi+1

)T (
PnX̃0

)

+ α2

(
n−1∑
i=0

P (n−1−i)Wi+1

)T (n−1∑
i=0

P (n−1−i)Wi+1

)

Taking expectation on both sides as well as using the fact that E[Wk+1|Fk] = 0 and E[∥Wk+1∥2|Fk] ≤ K(1 + E[∥X̃k∥2]),
we have

E[∥X̃n∥2] ≤ ∥Pn∥2∥X̃0∥2 + α2K

n−1∑
i=0

∥P (n−1−i)∥2(1 + E[∥X̃i∥2])

As before, for a matrix M , let ρ(M) = maxi |λi(M)| denote the spectral radius of M .

Next, we compute ρ(P ). Consider the characteristic equation of P :

det

((
I − αA+ ηI − µI −ηI

I −µI

))
= 0

When A21 and A22 commute, we have the following formula for determinant of a block matrix (Horn and Johnson [1990]):

det

((
A11 A12

A21 A22

))
= det (A11A22 −A12A21)

Using this, the characteristic equation of P simplifies to:

det(−µI + αµA− ηµI + µ2I + ηI) = 0

We note that when µ = 0, the LHS of the above equation becomes det(ηI). Thus, µ = 0 can never be a solution of the
characteristic equation of P whenever η ̸= 0. We now further simplify the characteristic equation of P to a more convienient
form:

det

(
A− I

(
µ+ ηµ− µ2 − η

αµ

))
= 0

The only zeros of the characteristic equation of a matrix are its eigenvalues. Let λi be the eigenvalue of A with λi =
µ+ηµ−µ2−η

αµ so that

µ2 + µ(αλi − 1− η) + η = 0

The above is a quadratic equation in µ and the solution is given by

µ =
−(λiα− 1− η)±

√
(λiα− 1− η)2 − 4η

2



When (λiα− 1− η)2 − 4η ≤ 0, the absolute value of eigenvalues of P are independent of α and

|µ| = 1

2

(√
(λiα− 1− η)2 + |(λiα− 1− η)2 − 4η|

)
=

√
η

To ensure that (λiα− 1− η)2 − 4η ≤ 0, we must have

(αλi + 1)− 2
√
λiα ≤ η ≤ (αλi + 1) + 2

√
λiα(

1−
√
λiα
)2

≤ η ≤
(
1 +

√
λiα
)2

For the spectral radius of P to be
√
η, the above must hold for all i. We choose α as:

α ≤
(

2√
λmin +

√
λmax

)2

and η as:
(1−

√
λminα)

2 ≤ η ≤ (1 +
√
λminα)

2

Observe that if we choose the momentum parameter η =
(
1−

√
λminα

)2
, then P has two repeated roots since√

(λiα− 1− η)2 − 4η = 0. To ensure that P does not have any repeated root we choose the momentum parameter

η =
(
1−

√
λminα
2

)2
. Therefore, ρ(P ) =

(
1−

√
λminα
2

)
. Using Lemma C.1 and the fact that A is diagonalizable, we get

E[∥X̃n∥2] ≤ Ĉ2

(
1−

√
λminα

2

)2n

Λ + α2Ĉ2K

n−1∑
i=0

(
1−

√
λminα

2

)2(n−1−i)

(1 + E[∥X̃i∥2])

However, unlike in Case-1, here the constant Ĉ is not independent of α and λmin. The following lemma specifies an upper
bound on Ĉ.

Lemma C.2. Ĉ ≤ C 5√
αλmin

, where C is as defined in (43).

Proof. See Appendix D.3

We define the sequence {Vn} as follows

Vn = Ĉ2

(
1−

√
λminα

2

)2n

Λ + α2Ĉ2K
n−1∑
i=0

(
1−

√
λminα

2

)2(n−1−i)

(1 + Vi)

Observe that E[∥X̃n∥2] ≤ Vn, and that {Vk} satisfies

Vk+1 =

(
1−

√
λminα

2

)2

Vk + Ĉ2Kα2(1 + Vk); V0 = Ĉ2Λ

Therefore, we have

Vk+1 =

((
1−

√
λminα

2

)2

+ Ĉ2Kα2

)
Vk + Ĉ2Kα2

To ensure that
((

1−
√
λminα
2

)2
+ Ĉ2Kα2

)
≤
(
1−

√
λminα
4

)2
we need to choose α such that

1 +
λminα

4
−
√
λminα+ Ĉ2Kα2 ≤ 1 +

λminα

16
−

√
λminα

2

or
3
√
αλmin

16
+ Ĉ2Kα

3
2 ≤

√
λmin

2



Next, using Lemma C.2, the above can be ensured by choosing α such that

3
√
αλmin

16
+ C2 25

αλmin
Kα

3
2 ≤

√
λmin

2

or α ≤

( √
λmin

3
8λmin + 25CK

λmin

)2

The recursion for the sequence {Vk+1} then follows

Vk+1 ≤
(
1−

√
λminα

4

)2

Vk + Ĉ2Kα2

Unrolling the recursion, we get

Vn ≤
(
1−

√
λminα

4

)2n

V0 + Ĉ2Kα2
n−1∑
i=0

(
1−

√
λminα

4

)2i

≤
(
1−

√
λminα

4

)2n

V0 + Ĉ2Kα2 1

1−
(
1−

√
λmin

4

)2
≤
(
1−

√
λminα

4

)2n

V0 + Ĉ2Kα2 4√
αλmin

Further it follows from α ≤
(

2√
λmin+

√
λmax

)2
that α ≤ 1

λmin
and

(
1−

√
λminα
4

)2
≤ e−

√
λminα

2 .

Vn ≤ e−n

√
λminα

2 Ĉ2Λ +
4α2Ĉ2K√
αλmin

Again using Lemma C.2,

Vn ≤ e−n

√
λminα

2
25C2

λminα
Λ + α2 100C2K

(λminα)
3/2

Observe that
e−n

√
λminα

2

λminα
≤ e−n

√
λminα

4

for n ≥ 4√
αλmin

log

(
1

λminα

)
.

Let n be as above. Then,

Vn ≤ 25C2Λe−
n
4

√
λminα +

√
α
100C2K

(λmin)
3/2

Choose α as below:

α ≤
(
ϵ(λmin)

3/2

200C2K

)2

Then,
√
α
100C2K

(λmin)
3/2

≤ ϵ

2
⇒ E[∥x̃n∥2] ≤ E[∥X̃n∥2] ≤ Vn ≤ ϵ

2
+

ϵ

2
= ϵ,

when n is as follows:

n =
4√

αλmin

log

(
50C2Λ

ϵ

)

n = max

(
4√

αλmin

log

(
50C2Λ

ϵ

)
,

4√
αλmin

log

(
1

λminα

))



Case-3: β = 1 (ASG)

The proof progresses in a similar way as in Case-2. It is easy to see that the following relation holds with a modified
definition of the matrix P .

E[∥X̃n∥2] ≤ ∥Pn∥2∥X̃0∥2 + α2K

n−1∑
i=0

∥P (n−1−i)∥2(1 + E[∥X̃i∥2]),

where,

P ≜

(
I − αA+ η(I − αA) −η(I − αA)

I 0

)
As in the previous case, we compute the eigenvalues of P . The characteristic equation of P is given by:

det

((
I − αA+ η(I − αA)− µI −η(I − αA)

I −µI

))
= 0

As in the previous case, this can be simplified to the following equation:

det(−µI + αµA− µη(I − αA) + µ2I + η(I − αA)) = 0

We now further simplify the characteristic equation of P to a more convenient form:

det

(
A− I

(
µ+ ηµ− µ2 − η

αµ+ αµη − ηα

))
= 0

Progressing as in the previous case, we get that the eigenvalues of P satisfies:

µ =
−(λiα(1 + η)− 1− η)±

√
(λiα(1 + η)− 1− η)2 − 4η(1− αλi)

2

When (λiα(1 + η)− 1− η)2 − 4η(1− αλi) ≤ 0, we have that

|µ| = 1

2

(√
(λiα(1 + η)− 1− η)2 − (λiα(1 + η)− 1− η)2 + 4η(1− αλi)

)
=
√

η(1− αλi)

This implies that,
ρ(P ) =

√
η(1− αλmin) (44)

To ensure that (λiα(1 + η)− 1− η)2 − 4η(1− αλi) ≤ 0, we must have

η2(1− αλi)
2 + 2η(1− α2λ2

i ) + (1− αλi)
2 ≤ 0

We assume α ≤ 1
λmax

and therefore, (1− αλi) ≥ 0 holds for all i. Using this, the above relation simplifies to:

η2(1− αλi) + 2η(1 + αλi) + (1− αλi) ≤ 0

For the above to hold, we must have that

2(1 + αλi)− 4
√
αλi)

2(1− αλi)
≤ η ≤

2(1 + αλi) + 4
√
αλi)

2(1− αλi)

(1−
√
αλi)

2

(1− αλi)
≤ η ≤ (1 +

√
αλi)

2

(1− αλi)

The above must hold ∀i and therefore we choose η as:

(1−
√
αλmin)

2

(1− αλmin)
≤ η ≤ (1 +

√
αλmin)

2

(1− αλmin)



As in Case-2, if we choose the momentum parameter η =
(1−

√
λminα)

2

(1− αλmin)
, then P has two repeated roots. To ensure that P

does not have any repeated root we choose the momentum parameter

η =

(
1−

√
λminα
2

)2
(1− αλmin)

.

Using (44), we get ρ(P ) =
(
1−

√
λminα
2

)
which is same as in Case-2 and therefore we have:

E[∥X̃n∥2] ≤ C̃2

(
1−

√
λminα

2

)2n

Λ + α2C̃2K

n−1∑
i=0

(
1−

√
λminα

2

)2(n−1−i)

(1 + E[∥X̃i∥2]).

The above expression is same as that in Case-2 except the term C̃. Since, the matrix P is different when β = 1, Ĉ in
Case-2 need not be equal to C̃ in Case-3. However, we next show that C̃ follows the exact same upper bound as in Case-2,
Lemma C.2. Towards this, we have the following lemma:

Lemma C.3. C̃ ≤ C 5√
αλmin

, where C is as defined in (43).

Proof. See Appendix D.4

Thereafter, we can proceed exactly as in case-2 to prove the theorem.

D PROOF OF AUXILARY LEMMAS

D.1 PROOF OF LEMMA B.1

We begin the proof by defining ϕ(n) ≜ sin(n+1)ω
sinω − sinnω

sinω . We now state and prove a few intermediate results below.

1. ϕ(n) is periodic with period 2π
ω : This follows by observing that ϕ(n+ 2π

ω ) = sin((n+1)ω+2π)
sinω − sin(nω+2π)

sinω = ϕ(n).

2. If n ∈ [0, π
6ω ], then sin(nω) and sin(n+ 1)ω ≥ 0: If n ∈ [0, π

6ω ], then nω ∈ [0, π
6 ]. This implies sin(nω) ≥ 0. Since

n ≥ 1, we have ω ≤ nω ≤ π
6 . This implies that (n+ 1)ω ∈ [0, π

3 ], and we get that sin(n+ 1)ω ≥ 0.

3. If n ∈ [0, π
6ω ], then ϕ(n) ≥ 1

2 : We have

sin(n+ 1)ω − sinnω

sinω
=

2 cos(n+ 1
2 )ω sin ω

2

sinω
.

Note that

2 sin ω
2

sinω
=

2 sin ω
2

2 sin ω
2 cos ω

2

=
1

cos ω
2

≥ 1.

Moreover, since (n+ 1
2 )ω ≥ 0 and (n+ 1

2 )ω ≤ (n+ n
2 )ω ≤ π

6 + π
12 ≤ π

3 . Thus, cos(n+ 1
2 )ω ≥ cos π

3 = 1
2 .

Before proceeding, we define n̄ ≜ K
64ϵλ2

i
log
(

x̃2
0

16ϵ

)
− 1. We now consider two cases: n̄ ≥ 2π

ω and n̄ < 2π
ω .

In the first case, n̄ ∈ [ 2mπ
ω , 2(m+1)π

ω ], for some integer m ≥ 1. Then, n̄
12 ≤ 2(m+1)π

12ω ≤ 2mπ
ω . Setting n0 = 2mπ

ω , it follows
that

n0 =
2mπ

ω
∈
[ n̄
12

, n̄
]
⊆
[

K

768ϵλ2
i

log

(
x̃2
0

16ϵ

)
− 1,

K

64ϵλ2
i

log

(
x̃2
0

16ϵ

)
− 1

]
and ϕ(n0) = ϕ( 2mπ

ω ) = ϕ(0). Since 0 ∈ [0, π
6ω ], the lemma follows from points 1 and 2.



In the second case, we have n̄ < 2π
ω , and consequently 0 ≤ n̄

12 < π
6ω . Setting n0 = n̄

12 , we see that

n0 ∈
[

K

768ϵλ2
i

log

(
x̃2
0

16ϵ

)
− 1,

K

64ϵλ2
i

log

(
x̃2
0

16ϵ

)
− 1

]
and n0 ∈ [0, π

6ω ]. Thus, the lemma follows from points 1 and 2.

To summarise, we set

n0 =

{
n̄
12 , when n̄ < 2π

ω
2mπ
ω , where m =

⌊
n̄ω
2π

⌋
, otherwise

(45)

where, n̄ =
K

64ϵλ2
i

log

(
x̃2
0

16ϵ

)
− 1.

and showed that it satisfies the lemma.

D.2 PROOF OF LEMMA C.1

As in Foucart [2012], we first construct a matrix norm |||·||| such that |||M ||| = ρ(M) + δ. Consider the Jordan canonical
form of M

M = S


Jn1(λ1(M)) 0 . . . 0

0 Jn2
(λ2(M))

. . .
...

...
. . . . . . 0

0 . . . 0 Jnk
(λk(M))

S−1

We define

D(δ) =


Dn1(δ) 0 . . . 0

0 Dn2
(δ)

. . .
...

...
. . . . . . 0

0 . . . 0 Dnk
(δ)

 ,

where

Dj(δ) =


δ 0 . . . 0

0 δ2
. . .

...
...

. . . . . . 0
0 . . . 0 δj


Therefore,

D(
1

δ
)S−1MSD(δ) =


Bn1(λ1(M), δ) 0 . . . 0

0 Bn2
(λ2(M), δ)

. . .
...

...
. . . . . . 0

0 . . . 0 Bnk
(λk(M), δ)





where,

Bi(λ, δ) = Di(
1

δ
)Ji(λ)Di(δ) =



λ δ 0 . . . 0

0 λ δ
. . .

...

0
. . . . . . . . . 0

...
. . . . . . λ δ

0 . . . 0 0 λ


We define the matrix norm |||·||| as

|||M ||| ≜ ∥D(
1

δ
)S−1MSD(δ)∥1

where ∥ · ∥1 is the matrix norm induced by the vector L1-norm. Using the fact that ∥M∥1 = maxj∈[1:d]

∑d
i=1 |mi,j |, where

mi,j is the i, j-th entry of M , we have

|||M ||| = max
j∈[1:d]

(|λj |+ δ) = ρ(M) + δ.

and |||Mn||| ≤ |||M |||n ≤ (ρ(M) + δ)n

It can be easily seen that ∥M∥1 ≥ 1√
d
∥M∥2. Therefore it follows that

|||M ||| = ∥D
(
1

δ

)
S−1MSD(δ)∥1

≥ 1√
d
∥D
(
1

δ

)
S−1MSD(δ)∥2

≥ 1√
d
σmin

(
D

(
1

δ

))
σmin(S

−1)∥M∥2σmin(S)σmin(D(δ))

where σmin(·) denotes the smallest singular value and we have used the fact that ∥AB∥ ≥ σmin(A)∥B∥ repeatedly. For
δ < 1, and r defined as the size of largest Jordan block of M

σmin

(
D

(
1

δ

))
σmin (D (δ)) = δr

1

δ
= δr−1.

We conclude the first half of the lemma by defining Cδ as
√
d

δr−1σmin(S)σmin(S−1) .

In the case that the matrix is diagonalizable Cδ defined above becomes independent of δ. Moreover, in this case, each Jordan
block is Jni(λi(M)) = [λi(M)] and the second half follows.

D.3 PROOF OF LEMMA C.2

Let S be the matrix in Jordan decomposition of A, i.e., SAS−1 = D, where D is a diagonal matrix with eigenvalues of A
as its diagonal elements. Then,

(
S 0
0 S

)
P

(
S−1 0
0 S−1

)
=

(
I − αSAS−1 + ηI −ηSS−1

SS−1 0

)
=

(
I − αD + ηI −ηI

I 0

)
,

where 0d is the zero matrix of dimension d× d. For ease of exposition, suppose A is a 2× 2 matrix with eigenvalues λ1 and
λ2. Then (

S 0
0 S

)
P

(
S−1 0
0 S−1

)
=


1 + η − αλ1 0 −η 0

0 1 + η − αλ2 0 −η
1 0 0 0
0 1 0 0





Suppose E is the elementary matrix associated with the exchange of row-2 and row-3. It is easy to see that E = ET = E−1

and that,

E

(
S 0
0 S

)
P

(
S−1 0
0 S−1

)
E−1 =


1 + η − αλ1 −η 0 0

1 0 0 0
0 0 1 + η − αλ2 −η
0 0 1 0

 =

(
B1 0
0 B2

)

where,

Bi =

(
1 + η − αλi −η

1 0

)

Suppose, Xi =

(
xi,1 xi,2

xi,3 xi,4

)
and,

X−1
i BiXi =

(
µi,+ 0
0 µi,−

)
.

Here µi,+ = (1−αλi+η)+
√
∆i

2 and µi,− = (1−αλi+η)−
√
∆i

2 , where ∆i = (1 + η − αλi)
2 − 4η. Solving the above equation

we get,

Xi =

(
xi,3µi,+ xi,4µi,−
xi,3 xi,4

)
Setting xi,3 = xi,4 = 1,

Xi =

(
µi,+ µi,−
1 1

)
and X−1

i =
1

µi,+ − µi,−

(
1 −1

−µi,− µi,+

)
For a general d× d matrix A, using a similar procedure, it can be shown thatX1 0 0

0
. . .

...
0 · · · Xd

E2d×2d

(
S 0
0 S

)
P

(
S−1 0
0 S−1

)
E−1

2d×2d

X−1
1 0 0

0
. . .

...
0 · · · X−1

d



=


µ1,+ 0 0 · · · 0
0 µ1,− 0 · · · 0
... 0

. . . · · · 0
0 · · · 0 µd,+ 0
0 · · · 0 0 µd,−


where E2d×2d and E−1

2d×2d are permutation matrices that transform the matrix between them to a block diagonal matrix. Let

Ŝ =

X1 0 0

0
. . .

...
0 · · · Xd

E2d×2d

(
S 0
0 S

)
. Therefore,

Ĉ =

√
d

σmin(Ŝ)σmin(Ŝ−1)

In order to simplify the expression for Ĉ, we require the following lemma:

Lemma D.1. For all invertible matrices M of order d× d, the following identity holds:

1

σd(M)σd(M−1)
= σ1(M)σ1(M

−1),

where σ1(X) ≥ · · · ≥ σd(X) denote the singular values of X .



Proof. By definition, σ2
1(M) ≥ · · · ≥ σ2

d(M) are the eigenvalues of MTM . Then, the eigenvalues of (MTM)−1 =
M−1(M−1)T are 1

σd(M)2 ≥ · · · ≥ 1
σ1(M)2 . Note that M−1(M−1)T and (M−1)TM−1 are similar since (M−1)TM−1 =

M(M−1(M−1)T )M−1. Consequently, M−1(M−1)T and (M−1)TM−1 have the same set of eigenvalues and we find that
the singular values of M−1 are 1

σd(M) ≥ · · · ≥ 1
σ1(M) .

Thus,

σ1(M
−1) =

1

σd(M)
,

σd(M
−1) =

1

σ1(M)

and the result follows.

Using Lemma D.1, we have

Ĉ =
√
dσmax(Ŝ)σmax(Ŝ

−1)

≤
√
dmax

i
{σmax(Xi)}σmax(S)σmax(S

−1)max
i

{σmax(X
−1
i )}

= Cmax
i

{σmax(Xi)}max
i

{σmax(X
−1
i )},

where C is as defined in (43). Now, for any matrix X of order d× d,

σmax(X) = ∥X∥2 ≤ ∥X∥F = (
∑
i,j

|xij |2)1/2 ≤ dmax
i,j

|xij |,

where ∥·∥F denotes the Frobenius norm. Using the above inequality, σmax(Xi) ≤ 2 and σmax(X
−1
i ) ≤ 2

|µi,+−µi,−| =
2

|
√
∆i|

.

Next we lower bound |
√
∆i|.

For a complex number z, observe that |
√
z| =

√
|z|. Now,

|∆i| = 4η − (1 + η − αλi)
2 (46)

≥ 4η − (1 + η − αλmin)
2

Using η =
(
1−

√
αλmin

2

)2
,

|∆i| ≥ 4η −
(
1 + 1 +

αλmin

4
−
√
αλmin − αλmin

)2

= 4η − (2
√
η − 3α

4
λmin)

2

= 4

[
(
√
η)2 −

(
√
η − 3αλmin

8

)2
]

=
3αλmin

2

(
2
√
η − 3αλmin

8

)
=

3αλmin

2

(
2−

√
αλmin − 3αλmin

8

)
≥ 3αλmin

2

(
2− 1− 3

8

)
=

15

16
αλmin

Using this, we get maxi{σmax(X
−1
i )} ≤ 2

√
16
15

1√
αλmin

, and therefore Ĉ ≤ 5C√
αλmin



D.4 PROOF OF LEMMA C.3

The proof of the lemma can proceed exactly as in the proof of Lemma D.3. The only difference is that one needs to lower

bound |∆i| = 4η(1−αλi)− (α(1+ η)λi − 1− η)2 for η =

(
1−

√
αλmin

2

)2

(1−αλi)
. We define η′ =

(
1−

√
αλmin

2

)2
and therefore

η = η′

(1−αλi)
. Using this, we get

|∆i| = 4η(1− αλi)− (1 + η − α(1 + η)λi)
2

= 4η′ − (1 + η − αλi(1 + η))2

= 4η′ −
(
(1 + η)(1− αλi)

)2
= 4η′ −

((
1 +

η′

1− αλi

)
(1− αλi)

)2

= 4η′ − (1 + η′ − αλi)

The expression for |∆i| is exactly same as in the proof of Lemma D.3 (cf. (46)). Thereafter, we proceed as in proof of
Lemma D.3 to prove the claim.

E DETAILS OF SIMULATION

Here we provide details of the simulation in Figure 1. The MSE at each iteration n is defined as the average of the errors
obtained, ∥xn − x∗∥2, over the number of runs. We consider the same objective function and noise distribution for each
sub-figure and plot the MSE obtained for SGD, SHB and ASG against the number of iterations. The only differences within
the sub-figures is the choice of stepsize and momentum parameters.

We consider a quadratic optimization problem of the form xTAx− bTx+ c, where

A =

(
1 0
0 50

)
, b =

(
0
0

)
, c = 0.

The solution to the above problem is x∗ =

(
0
0

)
. To simulate stochastic gradients, we add gaussian noise and the gradient

at x is given by Ax − b + ν, where ν ∼ N (0, 1500I). We run SGD, SHB and ASG on the above problem, starting at
[600, 600], averaged over 50 runs. In particular, we run SHB and ASG in all three sub-figures with momentum parameter η
as 0.9025 and 0.9048, respectively. The stepsize choices for each case are provided below Figure 1. Due to space constraints,
the y-axes are scaled down by a factor of 10000.


	Introduction
	Main Results
	Proof of the Lower Bound (Theorem 2.5)
	Proof of Lemma 3.1
	Proof of Lemma 3.2
	Proof of Lemma 3.3
	Proof of Lemma 3.4

	Concluding Remarks
	Comparison with recent works
	Comparison with
	Comparison with SHB, Can et al. (2019)
	Comparison with Assran and Rabbat (2020)

	Proof of Claims in Section 3.3
	Proof of Proposition 2.8
	Proof of Auxilary Lemmas
	Proof of Lemma B.1
	Proof of Lemma C.1
	Proof of Lemma C.2
	Proof of Lemma C.3

	Details of Simulation

