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Abstract

Stochastic Heavy Ball (SHB) and Nesterov’s Ac-
celerated Stochastic Gradient (ASG) are popular
momentum methods in optimization. While the
benefits of these acceleration ideas in deterministic
settings are well understood, their advantages in
stochastic optimization are unclear. Several works
have recently claimed that SHB and ASG always
help in stochastic optimization. Our work shows
that i.) these claims are either flawed or one-sided
(e.g., consider only the bias term but not the vari-
ance), and ii.) when both these terms are accounted
for, SHB and ASG do not always help. Specifically,
for any quadratic optimization, we obtain a lower
bound on the sample complexity of SHB and ASG,
accounting for both bias and variance, and show
that the vanilla SGD can achieve the same bound.

1 INTRODUCTION

In deterministic convex optimization (when one has access
to exact gradients), Gradient Descent (GD) is a popular op-
timization algorithm [Cauchy, 1847]. In practice, though,
exact gradients are not available and one has to rely on their
noisy estimates. This brings forth the idea of Stochastic Gra-
dient Descent (SGD). Two classic momentum methods used
to accelerate GD are Heavy Ball (HB) [Polyak, 1964, 1987,
Qian, 1999] and Nesterov’s Accelerated Gradient (NAG)
[Nesterov, 1983, 2014, 2005]. Naturally, these momentum-
based methods and their variants have also gained signifi-
cant interest in stochastic settings [Sutskever et al., 2013,
Nitanda, 2014a, Hu et al., 2009a]. However, our work shows
that the stochastic variants of HB and NAG, i.e., the Stochas-
tic Heavy Ball (SHB) and Nesterov’s Accelerated Stochastic
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Gradient (ASG), are not always better than the vanilla SGD
for any quadratic optimization. Specifically, we provide con-
ditions for which the sample complexities of SHB and ASG
are never better than that of SGD1.

We elaborate on the discussion above. The benefit of using
momentum in (deterministic) quadratic optimization is the
following. Suppose the driving matrix has condition num-
ber κ. Then, for any ε > 0, GD with an optimal constant
stepsize2 converges to an ε-close solution inO(κ log 1

ε ) iter-
ations. In contrast, both HB and NAG with optimal stepsize
and momentum parameters only need O(

√
κ log 1

ε ) steps;
see, e.g., [Recht, 2010]. Our main claim here is that mo-
mentum does not lead to similar advantages in stochastic
settings. We use Figure 1 to provide an intuitive justifica-
tion for this claim. The setup is as follows. We consider a
quadratic optimization problem (see Section E for the de-
tails) and ensure that only a noisy estimate of its gradient
is available in each iteration. This problem is solved using
SGD, SHB, and ASG and the three panels show how the
Mean Squared Error (MSE) decays for different stepsize
and momentum parameter choices. Note that these param-
eters, once chosen, are fixed, i.e., they do not change from
one iteration to the other.

In stochastic settings, the MSE error at any time instance for
each of SGD, SHB, and ASG can be broken down into two
components: bias and variance. The bias dictates how fast
the distance of the initial estimate to the solution is forgotten,
while the variance represents a cumulative effect of the
noise seen so far. When constant stepsize and momentum
parameters are used, the bias decays exponentially fast while
the variance converges to some (non-zero) positive constant;
this implies the MSE also converges to this constant. Both
the rate at which the bias decays and the constant to which
the variance converges to are influenced by the stepsize and

1Sample complexity refers to the number of iterations required
to reach an ε-ball around the solution. Our statement holds for all
sufficiently small ε.

2Throughout, we only consider algorithms with constant step-
sizes, which are widely popular in practice.
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(a) Stepsize SGD, SHB, ASG: 0.0025 (b) Stepsize SGD: 0.02; SHB, ASG: 0.0025 (c) Stepsize - SGD, SHB, ASG: 0.02

Figure 1: Comparison of SGD, SHB, and ASG’s performances for a 2D quadratic optimization problem (see Section E for
details) for the different stepsize choices given above and ε-threshold = 5 (denoted by the black horizontal line).

momentum parameter choices.

With the above picture in mind, Figure 1 illustrates how
SHB and ASG’s performance can be matched by SGD. Fig-
ure 1a corresponds to the case where a same stepsize is used
in all the three algorithms. In this case, the MSE for the
momentum based methods (SHB, ASG) decreases faster
initially, but settles at a higher limiting value eventually.
Accordingly, one may conjecture that SHB and ASG would
have a better sample complexity if the ε-threshold for the
MSE is set above this limit (one such choice of ε in this
example is 5). However, Figure 1b shows that SGD enjoys
a similar performance for a larger stepsize choice. This time
one may conjecture that SHB and ASG’s performance can
be improved if their stepsizes are also increased similarly.
Figure 1c discusses this case when the stepsize for momen-
tum methods is increased to match the new stepsize for
SGD. Unfortunately, while MSE for momentum based does
decrease faster initially, it also settles at a value that is higher
than the threshold that we had set before, i.e., 5.

Related Works: Some recent results [Loizou and Richtárik,
2020, Mou et al., 2020, Assran and Rabbat, 2020, Can et al.,
2019] claim that SHB and ASG methods are better than
SGD in quadratic or least-squares settings. However, Loizou
and Richtárik [2020] needs a strong assumption on noise,
which Kidambi et al. [2018, Section 6] claim is information-
theoretically impossible even in the simple least squares
regression problem. The other results either are based on a
one-sided analysis [Can et al., 2019]3 or have a flaw [Mou
et al., 2020, Assran and Rabbat, 2020]; see Appendix A.

On the other hand, there are also a few recent negative re-
sults on these momentum methods. Devolder et al. [2014]
make a similar conclusion to ours in the context of (deter-
ministic) proximal gradient methods and their accelerated
variants for smooth convex optimization, when the function
can be estimated only up to some (non-random) fixed in-
accuracy. Yuan et al. [2016] show that SHB and ASG are

3This work only considers bias, while ignoring variance

equivalent to SGD with a rescaled stepsize. However, this
result requires that the stepsize be sufficiently small and the
momentum parameter be away from 1. Liu et al. [2021]
obtain an expression for the asymptotic variance for SHB
and show that it can be matched by that of vanilla SGD with
a rescaled stepsize. However, this discussion is only from
an asymptotic sense and compares the final size of the ball
where the iterates with or without momentum settle, but
not the number of iterations needed to reach such a ball. In
fact, the asymptotic variance estimate does not provide any
information about the sample complexity. In [Kidambi et al.,
2018, Liu and Belkin, 2020], for one specific instance of the
least squares regression with vanishing noise, it is shown
that the performance of SHB and ASG cannot be better than
that of SGD. Finally, Zhang et al. [2019] consider SHB for
quadratic objectives in the noisy setting as our work and
provides upper bounds on the rate at which the objective
function decreases. They also argue that rescaled SGD per-
forms as well as SHB and demonstrate it empirically but
fall short of rigorously coming up with a lower bound that
supports their claim.

SHB and ASG have also been studied in the decreasing
stepsize setting. Ghadimi et al. [2014] had given the first
global convergence of SHB for quadratic objectives while
Yang et al. [2016], Promsinchai et al. [2020], Orvieto et al.
[2019] gave a.s. convergence rates for convex objectives. In
[Sebbouh et al., 2021], improved bounds on both SGD and
SHB have been provided, as compared to previously known
bounds. Hu et al. [2009b], Ghadimi and Lan [2012], Xiao
[2009] study Nesterov’s momentum under a decreasing step-
size setting and show that though the momentum scheme
accelerates the convergence of the iterates in the initial part,
the acceleration is lost in the asymptotic regime. Vaswani
et al. [2019] study ASG with a decreasing momentum pa-
rameter and show a linear convergence to the optimal point.
However, the noise at any stationary point vanishes to zero
in their setting. Finally, we also note that other momentum
methods have been studied in [Allen-Zhu, 2018, Nitanda,
2014b, Defazio et al., 2014, Johnson and Zhang, 2013, Roux

603



et al., 2012] that can provably be shown to have a better
performance than SGD.

The current literature can thus be summarized as follows.

Research Gap: Existing works on SHB and ASG fall into
two groups: i.) positive - where the results claim advantages
of these methods over SGD and ii.) negative - where the
results claim the opposite. Results in the positive group
either have a one-sided or a flawed analysis, while the ones
in the negative apply only in some restricted settings.

Key Contribution: Our work belongs to the negative group:
SHB and ASG do not have an advantage over SGD. Specif-
ically, for all quadratic optimization problems with per-
sistent noise (noise variance is sufficiently bounded away
from zero) and any sufficiently small ε > 0, we show that
number of iterations needed by SHB and ASG to find an
ε-optimal solution are not better than that of SGD. More
technically, we obtain a lower bound on sample complex-
ities of SHB and ASG (Theorem 2.5) and show that these
are of the same order as the corresponding upper bound for
SGD (Proposition 2.8). Our proof techniques are also signif-
icantly different from those used in existing lower bounds
such as [Kidambi et al., 2018, Liu and Belkin, 2020]. This
is because, under non-vanishing noise, the expected error
contains an additional term that cannot be accounted for
from their analyses (see Remark 2.7).

2 MAIN RESULTS

We state our main results here that provide lower and upper
bounds on the sample complexities of SHB and ASG. We
use these bounds along with those of SGD to show that
all these methods need a similar effort to find an ε-optimal
solution.

Throughout, we consider minimizing

f(x) =
1

2
xTAx− bTx+ c, (1)

where A is some symmetric d × d matrix, b ∈ Rd, and
c ∈ R. The update rules for standard algorithms such as
SHB, ASG, and SGD for solving this problem can be jointly
expressed as

xn = xn−1 + α(b−Axn−1 +Mn)

+ η(Id − αβA)(xn − xn−1) (2)
= xn−1 + α(b−A(xn−1 + ηβ(xn−1 − xn−2)) +Mn)

+ η(xn−1 − xn−2) (3)

with x−1 = x0. The notation Id is the d × d identity ma-
trix, and Mn+1 ∈ Rd is noise. Henceforth, we will refer to
the above generic algorithm as Linear Stochastic Approx-
imation with Momentum (LSA-M). Note that LSA-M is
equivalent to SGD (if η = 0 in (2)), to SHB (if β = 0 in
(2)), and to ASG (if β = 1 in (3)).

We make the following assumption on the driving matrix.

Assumption 2.1 (Driving matrix property). A is real
symmetric and all its eigenvalues are positive.

We also denote the the eigenvalues of A by λmax = λ1 ≥
λ2 ≥ . . . ≥ λd = λmin. Under the above assumption, one
would expect the iterates in (2) to go to a neighborhood of
x∗ := A−1b.

We next state two assumptions on the noise sequence (Mn),
the first is used in Theorem 2.5, while the other is used in
Proposition 2.8 and Corollary 2.9. The notation A � B
means A−B is positive semi-definite.

Assumption 2.2 (Noise attributes for Theorem 2.5). (Mn)
is a martingale difference sequence with respect to the fil-
tration (Fn), where Fn = σ(xm,Mm;m ≤ n). Further,
∃K > 0 such that E[Mn+1M

T
n+1|Fn] � KId a.s. ∀n ≥ 0.

Assumption 2.3 (Noise attributes for Proposition 2.8).
(Mn) is a martingale difference sequence with respect to the
filtration (Fn), where Fn = σ(xm,Mm;m ≤ n). Further,
∃K ≥ 0 such that E[‖Mn+1‖2|Fn] ≤ K(1 + ‖xn − x∗‖2)
a.s. ∀n ≥ 0.

Assumptions 2.2 and 2.3 are standard [Mandt et al., 2017,
Jastrzębski et al., 2018, Cheng et al., 2020, Borkar, 2008].
The first of these holds if and only if all the eigenvalues
of E[Mn+1M

T
n+1|Fn] are bounded from below by K, i.e.,

noise is persistent (or non-vanishing) in all directions. On
the other hand, Assumption 2.3 requires that the trace of
E[Mn+1M

T
n+1|Fn] be bounded from above. This bound

can scale with ‖xn − x∗‖ and need not vanish near x∗.

Next, we define sample complexity to quantify the effort
required by LSA-M to obtain an ε-close solution to x∗.

Definition 2.4 (Sample Complexity). The sample complex-
ity of (2) is the minimum number of iterations n0 such that
the expected error E[‖xn − x∗‖2] ≤ ε, ∀n ≥ n0.

To enable easy comparison between different algorithms, we
shall look at the order of their sample complexities. Towards
that, we shall use the notation n0 ∈ Θ(t) to imply that
there exist constants c1 and c2 (independent of t) such that
c1t ≤ n0 ≤ c2t. The notation Θ̃(t) has a similar meaning
but hides the dependence on logarithmic terms. Further,
n0 ∈ Ω(t) implies there exists c1 such that n0 ≥ c1t and
n0 ∈ O(t) implies there exists c2 such that n0 ≤ c2t.

Theorem 2.5. (Lower bound on sample complexity). Con-
sider the LSA-M update rule (2), and suppose Assumptions
2.1 and 2.2 hold. Then there exists an ε′ > 0 such that, for
any ε ∈ (0, ε′) and for any choice of α > 0, β ∈ [0, 1],
and η ∈ [0, 1], the expected error E[‖xn0

− x∗‖2] ≥ ε

for n0 ∈ Θ̃
(

K
ελ2

min

)
. The constant K here is the one from

Assumption 2.2.
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Method β η α

SGD - 0 min
(

λmin
3
4λ

2
min+C2K

, ελmin

4C2K ,
2

λmax+λmin

)
SHB 0

(
1−

√
αλmin

2

)2

min
(

(
λ
3/2
min

3
8λ

2
min+25C2K

)2, ( ε(λmin)3/2

200C2K )2,

( 2√
λmin+

√
λmax

)2
)

ASG 1

(
1−
√
αλmin

2

)2

(1−αλmin) min
(

(
λ
3/2
min

3
8λ

2
min+25C2K

)2, ( ε(λmin)3/2

200C2K )2, 1
λmax

)

Table 1: Parameter choices for Proposition 2.8. Here C = 1 when the matrix A is symmetric and C =
√
d

σmin(S)σmin(S−1)

when A is not symmetric, where σmin(·) denotes the smallest singular value and S is the matrix that diagonalizes A, i.e.,
S−1AS = D, a diagonal matrix. When A is symmetric, indeed the three parameter choices correspond to SGD, SHB and
ASG. We stick to the same naming convention even when the driving matrix A is not symmetric.

See Section 3 for the proof of the above Theorem.

Remark 2.6. As stated below (3), LSA-M includes SHB
and Nesterov’s ASG method as special cases and, hence,
the above result directly applies to them. In fact, this is the
first lower bound on SHB and ASG’s sample complexities in
quadratic optimization.

Remark 2.7. The lower bounds in Kidambi et al. [2018]
and Liu and Belkin [2020] are obtained by viewing the
expected error in SHB and ASG iterates for least squares
as update rules of the form zn+1 = Pzn for some matrix
P [Kidambi et al., 2018, Appendix A, p 16] and [Liu and
Belkin, 2020, Appendix C, p 12]). In particular, they obtain
bounds on the eigenvalues of P to get the desired claim.
In contrast, the error relations for SHB and ASG methods
in our setup (quadratic optimization with persistent noise)
have the form zn+1 = Pzn + αWn for some matrix P and
vector Wn (cf. 4). This forces us to develop a new proof
technique that jointly looks at both these terms and show
that at least one of them remains larger than ε for the choice
of n0 given in Theorem 2.5.

We next state our upper bound on the sample complexity of
(2) in Proposition 2.8 and Corollary 2.9. Similar bounds al-
ready exist in literature when A is assumed to be symmetric
and the noise is assumed to be iid with variance bounded by
a constant ([Can et al., 2019, Zhang et al., 2019]). Here, we
show that a similar upper bound holds under more general
settings: i.) A is not symmetric but is diagonalizable and has
real positive eigenvalues, and ii.) the noise is a martingale
difference sequence satisfying Assumption 2.3.

Proposition 2.8. Consider the LSA-M update rule (2), and
suppose A is a (not necessarily symmetric) real diagonaliz-
able matrix with real positive eigenvalues4. Further suppose

4When A is not symmetric, LSA-M cannot be viewed as a

2.3 holds. Then, ∀ε > 0, there exists a choice of α, β and η
(see Table 1 for exact values) such that the expected error
E[‖xn − x∗‖2] ≤ ε, ∀n > n0, where

(i) n0 ∈ Θ̃( 1
αλmin

), when η = 0, and

(ii) n0 ∈ Θ̃( 1√
αλmin

), when η > 0.

For the proof see Appendix C.

From Table 1, we see that α is a minimum of three terms in
each case. The first term arises due to the unbounded noise
(Assumption 2.3), the second due to the target neighborhood
ε and the third from the optimal choice of stepsize in the
deterministic (no noise scenario) case. Since the bound on
n0 provided in Proposition 2.8 is in terms of α, the minimum
of the three terms dictates the sample complexity. Note that
ε only influences the middle term in all the choices of α
given in Table 1.

Let ε̄ > 0 be such that, for any ε ∈ (0, ε̄), the value of α
equals the middle term in each of the three cases in Table 1.
Then the following result is immediate.

Corollary 2.9 (Upper bound on sample complexity).
Consider the LSA-M update rule (2), and suppose A is
as in Proposition 2.8. Further, suppose Assumption 2.3
holds. Then, for choice of parameters in Table 1, and any
ε ∈ (0, ε̄), ∃n0 ∈ Θ̃

(
K

ελ2
min

)
such that E[‖xn − x∗‖2] ≤ ε,

∀n ≥ n0. The constant K here is the one from Assump-
tion 2.3.

Remark 2.10. From Corollary 2.9, we see that the up-
per bounds on the sample complexities of SGD, SHB, and

gradient-based algorithm for minimizing (1). However, the update
rule still makes sense, and it can be seen as one that is useful for
solving Ax = b.
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ASG match the lower bound given in Theorem 2.5 for small
enough ε > 0. In particular, since an upper bound on the
sample complexity of SGD matches a lower bound for SHB
and ASG, these latter methods do not always outperform
SGD from a sample complexity perspective.

Remark 2.11. Consider ε small enough such that the mini-
mum in choice of α is achieved by the second term in Table
1. For SGD, the stepsize α ∈ Θ( ελmin

K ) is larger than the

choice of stepsize for SHB and ASG, α ∈ Θ(
ε2λ3

min

K2 ). Ob-
serve that SGD chooses a larger stepsize than SHB and ASG
to reach the ε ball. Therefore, although momentum meth-
ods appear to have a better performance than SGD if the
same stepsize is chosen, SGD can match this performance
by re-scaling its stepsize (see Figure 1).

Remark 2.12. When the noise is assumed to be bounded
by a constant, i.e., E[‖Mn+1‖2|Fn] ≤ K a.s. in Assump-
tion 2.3, the first term in the choice of α in Table 1 does not
appear for all three methods. Under such an assumption, if
ε is large enough or K is small enough such that the third
term in the choice of α is the minimum, then the sample
complexity of both SHB and ASG is better than SGD. We
emphasize that such improvements are lost when the noise
variance is large or the neighbourhood under consideration
is small.

3 PROOF OF THE LOWER BOUND
(THEOREM 2.5)

We begin by defining the transformed iterates x̃n = xn−x∗
and rewriting (2) as

X̃n = PX̃n−1 + αWn, (4)

where X̃n ,

(
x̃n
x̃n−1

)
,Wn ,

(
Mn

0

)
and

P ,

(
Id − αA+ η(Id − αβA) −η(Id − αβA)

Id 0

)
.

We derive the bound in Theorem 2.5 by obtained a lower
bound for the error expression E[‖X̃n‖2].

The proof can be summarized by the following key steps.

1. Transform X̃n to obtain Ỹn (see (5)). Decompose the
2d-dimensional update rule for Ỹn (see (6)) into d sep-
arate two-dimensional update rules (see (7)) using a
block diagonalization argument.

2. For each of the two-dimensional components of Ỹn
(denoted Ỹ (i)

n , i = 1, . . . , d), obtain a lower bound
on the error E‖Ỹ (i)

n ‖2. We do this using the following
three steps.

(a) Decompose the error into two components: one
that captures the impact of the initialization
(bias), and the other that concerns the effect of
the cumulative noise (variance); see Lemma 3.2.

(b) Use the above decomposition to derive a lower
bound on E‖Ỹ (i)

n ‖2 for the special case of β = 0.
The core idea is to show that the bias and the
variance in Ỹ (i)

n cannot be simultaneously small;
see Lemma 3.3.

(c) Generalize the result to β ∈ [0, 1] case by show-
ing that it can be reduced to the former case.

3. Use the lower bound on E‖Ỹ (i)
n ‖2 from Step 2 to ob-

tain a lower bound on the original error E‖x̃n‖2. This
proves the desired result for SHB with β = 0 and ASG
with β = 1.

Next we describe the technical results involved in each of
the above steps.

1. Reducing the 2d-dimensional updates into d sepa-
rate two-dimensional updates.
We follow a block diagonalization argument as in [Mou
et al., 2020] to transform the update rule (4) below.

Lemma 3.1. There exists a transformation matrix Z
and a block diagonal matrix B = diag(Bi), where
Bi ∈ R2×2, so that

Ỹn = ZX̃n and W̃n = ZWn (5)

satisfy

Ỹn = BỸn−1 + αW̃n. (6)

In particular, if we break Ỹn into d disjoint components
of 2-dimensional vectors, then the i-th component

Ỹ (i)
n =

(
1− αλi + η′ −η′

1 0

)
Ỹ

(i)
n−1+αW̃ (i)

n (7)

where η′ = η(1− αλiβ).

See Section 3.1 for the proof. Notice that the driving
matrix B in the transformed update rule (6) is a block
diagonal matrix unlike the driving matrix P in (4). In
the next step we exploit this structure to lower bound
E‖Ỹ (i)

n ‖2.

2. Bounding the error E‖Ỹ (i)
n ‖2.

We consider the two dimensional decoupled update
given in (7) for a specific i and express the lower bound
on the sample complexity with respect to λi.

(a) Decompose the error E‖Ỹ (i)
n ‖2 as a sum of bias and

variance.
First observe that the update from Lemma 3.1 can be
re-written as

Ỹ (i)
n = Bni Ỹ

(i)
0 + α

n−1∑
i=0

B
(n−1−i)
i W̃

(i)
i+1. (8)
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Taking the square of the norm on both sides of the
above equation we get

‖Ỹ (i)
n ‖2 = ‖Bni Ỹ

(i)
0 ‖2︸ ︷︷ ︸
I

+ 2α
(
Bni Ỹ

(i)
0

)T n−1∑
j=0

B
(n−1−i)
i W̃

(i)
j+1


︸ ︷︷ ︸

II

+ α2

n−1∑
j=0

B
(n−1−i)
i W̃

(i)
j+1

T n−1∑
j=0

B
(n−1−i)
i W̃

(i)
j+1


︸ ︷︷ ︸

III

.

(9)

Using the fact that (W̃n) = (ZWn) is a martin-
gale difference sequence, it can be shown that ex-
pectation of term II is 0 and that of term III is
α2E

[∑n−1
j=0 ‖B

n−1−j
i W̃

(i)
j+1‖2

]
(See Section 3.2 for

details). This leads to the following lemma.

Lemma 3.2. For the update in (8) the error can be
decomposed as follows:

E‖Ỹ (i)
n ‖2 = ‖Bni Ỹ

(i)
0 ‖2︸ ︷︷ ︸

Bias

+ α2E
[ n−1∑
j=0

‖Bn−1−j
i W̃

(i)
j+1‖

2
]

︸ ︷︷ ︸
V ariance

.

(10)

See Section 3.2 for the proof. The bias and variance
here correspond to that of the i-th block of the trans-
formed iterates in (7).

(b) Bounding the error E‖Ỹ (i)
n ‖2 for β = 0.

Using the fact that η′ = η when β = 0, the update in 7
reduces to

Ỹ (i)
n =

(
1− αλi + η −η

1 0

)
Ỹ

(i)
n−1 + αW̃ (i)

n .

We show that there exists an ε > 0 such that for some
n0 ∈ Θ̃

(
K
ελ2
i

)
, either the bias or the variance is larger

than ε. This is established in the following key lemma.

Lemma 3.3. Let ε′i = min

(
K

32λ2
i
,

(x̃
(i)
0 )2

72

)
. Then for

any ε ∈ (0, ε′i), and any α > 0, β = 0, η ∈ [0, 1],

there exists n0 ∈ Θ̃
(
K
ελ2
i

)
, such that at least one of

the following statements hold:

(a) ‖Bn0
i Ỹ

(i)
0 ‖2 > ε

(b) α2E
[ n0−1∑
j=0

‖Bn0−1−j
i W̃

(i)
j+1‖

2
]
> ε.

See Section 3.3 for the proof. Lemma 3.3 along with
Lemma 3.2 immediately provides a lower bound on
the error, i.e., E‖Ỹ (i)

n0 ‖2 > ε for β = 0. Lemma 3.3 is
the core of the lower bound analysis and the proof is
provided in Section 3.3.

(c) Extending (b) to the case β ∈ (0,1].
We complete Step 2 by extending Lemma 3.3 to the
case when β ∈ [0, 1] as formalized below.

Lemma 3.4. Let ε′i be defined as in Lemma 3.3. Then
for any ε ∈ (0, ε′i), and any α > 0, β = [0, 1], η ∈
[0, 1], there exists n0 ∈ Θ̃

(
K
ελ2
i

)
, such that at least

one of the following statements hold:

(a) ‖Bn0
i Ỹ

(i)
0 ‖2 > ε

(b) α2E
[ n0−1∑
j=0

‖Bn0−1−j
i W̃

(i)
j+1‖

2
]
> ε.

See Section 3.4 for the proof. Note that the general
β ∈ [0, 1] update rule in (7) is equivalent to the β = 0
update with η redefined as η′ and therefore we can
re-use Lemma 3.3 if we can ensure η′ ∈ [0, 1]. We
show this holds when αλi ≤ 1. For the case αλi > 1,
we show that the variance term is greater than ε thus
implying the conclusion of Lemma 3.3.

3. Bounding the original error E[‖X̃n‖2].
Recall that the original update rule is given by

X̃n = PX̃n−1 + αWn.

To provide a bound on the error E[‖X̃n‖2], we invoke
Lemma 3.3 for i = d and λd = λmin and use the fact
that Z is an orthogonal matrix. We have

E[‖X̃n0
‖2] = E[‖Z−1Ỹn0

‖2]

= E[‖Ỹn0
‖2] ≥ E[‖Ỹ (d)

n0
‖2] ≥ ε

for all ε ∈ (0, ε′d) and for n0 as defined in Lemma 3.3
with λi substituted with λmin.
Now to obtain a bound for E‖x̃n‖2 from E‖X̃n‖2, we
note that

2 max (‖x̃n‖2, ‖x̃n−1‖2) ≥ ‖x̃n‖2 + ‖x̃n−1‖2

= ‖X̃n‖2.

Therefore the lower bound on E[‖X̃n‖2] is enough to
prove Theorem 2.5. Choosing ε′ = ε′d and noting that

n0 ∈ Θ̃
(

K
ελ2

min

)
completes the proof of Theorem 2.5.

3.1 PROOF OF LEMMA 3.1

We first discuss how the update rule for Ỹn in (6) can
be obtained using that of X̃n in (4). Towards this, we de-
fine D = diag(λi)

d
i=1. Since A is real symmetric (see As-

sumption 2.1), it has a spectral decomposition of the form
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A = SDS−1. We define the transformation matrix Z as

Z = E2d×2d

(
S 0
0 S

)
(11)

where E2d×2d is the permutation matrix that changes the
order (1, 2, . . . , 2d) into (1, d+ 1, 2, d+ 2, . . . , d, 2d).

Since X̃n = PX̃n−1 + αWn, we get

Ỹn = ZX̃n = ZPX̃n−1 + αZWn

= ZPZ−1Ỹn−1 + αZWn = BỸn−1 + αZWn

= BỸn−1 + αW̃n,

as desired. The last but one equality follows because
ZPZ−1 = B, which itself holds since

ZPZ−1 = E2d×2d

(
S 0
0 S

)
P

(
S−1 0

0 S−1

)
E−1

2d×2d

(a)
= E2d×2d

(
Id×d − αD + ηId×d −ηId×d

Id×d 0d×d

)
︸ ︷︷ ︸

Γ

E2d×2d

(b)
= B.

Here (a) follows because E−1
2d×2d = E2d×2d. Further

(b) follows because the left multiplication of E2d×2d

to Γ changes the order of rows from (1, 2, . . . , 2d) to
(1, d+ 1, 2, d+ 2, . . . , d, 2d) and the right multiplication of
E2d×2d changes the order of columns from (1, 2, . . . , 2d)
to (1, d+ 1, 2, d+ 2, . . . , d, 2d) which exactly results in B.

To see why (7) holds, let

Ỹn =


Ỹ

(1)
n

Ỹ
(2)
n

...
Ỹ

(d)
n

 and M̃n =


M̃n,1

M̃n,2

...
M̃n,d

 = SMn , where

Ỹn ∈ R2d, Ỹ
(i)
n ∈ R2, M̃n ∈ Rd, M̃n,i ∈ R. Now notice

that

ZWn = E2d×2d

(
S 0
0 S

)(
Mn

0

)
(12)

= E2d×2d

(
M̃n

0

)
=



M̃n,1

0

M̃n,2

0
...

M̃n,d

0


,

where the last equality follows because the left multiplica-
tion ofE2d×2d changes the order of rows from (1, 2, . . . , 2d)
to (1, d+ 1, 2, d+ 2, . . . , d, 2d). Therefore, ∀i ∈ [d],

Ỹ (i)
n = BiỸ

(i)
n−1 + αW̃ (i)

n

where W̃ (i)
n =

(
M̃n,i

0

)
.

3.2 PROOF OF LEMMA 3.2

Recall the error expression from (9):

‖Ỹ (i)
n ‖2 = ‖Bni Ỹ

(i)
0 ‖2︸ ︷︷ ︸
I

+ 2α
(
Bni Ỹ

(i)
0

)T n−1∑
j=0

B
(n−1−i)
i W̃

(i)
j+1


︸ ︷︷ ︸

II

+ α2

n−1∑
j=0

B
(n−1−i)
i W̃

(i)
j+1

T n−1∑
j=0

B
(n−1−i)
i W̃

(i)
j+1


︸ ︷︷ ︸

III

.

Since W̃n = ZWn, it follows that (W̃n) is also a martingale
difference sequence w.r.t. the filtration (Fn), where Fn is
as in Assumption 2.2. In particular, since E[W̃

(i)
n ] = 0 for

each n, we get that the expectation of Term II is 0. With
regards to Term III, we have

α2

n−1∑
j=0

B
(n−1−j)
i W̃

(i)
j+1

T n−1∑
j=0

B
(n−1−j)
i W̃

(i)
j+1


= α2

∑
j,k

(W̃
(i)
j+1)T (B

(n−1−j)
i )TB

(n−1−k)
i W̃

(k)
k+1

= α2
∑
j 6=k

(W̃
(i)
j+1)T (B

(n−1−j)
i )TB

(n−1−k)
i W̃

(k)
k+1︸ ︷︷ ︸

III(a)

+ α2
∑
j

‖B(n−1−j)
i W̃

(i)
j+1‖

2

︸ ︷︷ ︸
III(b)

We now show that the expectation of III(a) is 0. Without
loss of generality, suppose j < k. Then,

E
[
(W̃

(i)
j+1)T (B

(n−1−j)
i )TB

(n−1−k)
i W̃

(i)
k+1

]
= E

[
E
[
(W̃

(i)
i+1)T (B

(n−1−i)
i )TB

(n−1−j)
i W̃

(i)
j+1|Fj

]]
= E

[
(W̃

(i)
i+1)T (B

(n−1−i)
i )TB

(n−1−j)
i E[W̃

(i)
j+1|Fj ]

]
= 0.

Therefore, taking expectation on both sides of (9) gives

E‖Ỹ (i)
n ‖2 = ‖Bni X̃0‖2︸ ︷︷ ︸

I

+ E
[
α2

n−1∑
j=0

‖B(n−1−j)
i W̃

(i)
j+1‖

2

︸ ︷︷ ︸
III(b)

]
(13)
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3.3 PROOF OF LEMMA 3.3

This is the key result in the lower bound proof. Here we
outline the main steps involved in proving the result. The
detailed proofs of the all auxiliary lemmas are pushed to
Appendix B.

Before we proceed with the main proof, we provide a lower
bound on the variance term in the following lemma.

Lemma 3.5. Under Assumption 2.2 and n0 as in Lemma 3.3,
the variance term in (10) can be lower bounded as follows:

α2E

n0−1∑
j=0

‖Bn0−1−j
i W̃

(i)
j+1‖

2

 ≥ α2K

n0−1∑
j=0

‖Bji e1‖2

where e1 =

(
1
0

)
and K is as in Assumption 2.2.

For convenience we redefine the term in the right hand side
of the above inequality as the variance. If α and η are such
that ‖Bn0

i Ỹ
(i)
0 ‖2 > ε, then Lemma 3.3 immediately follows

for this choice of α and η. We now consider the case where
α and η are such that ‖Bn0

i Ỹ
(i)
0 ‖2 ≤ ε. Now we show that

for this choice of α and η, the variance is necessarily greater
than ε. Let µ(i)

+ and µ(i)
− be the eigenvalues of Bi. It is easy

to check that

µ
(i)
+ =

1

2

(
(1− αλi + η) + ∆(i)

)
µ

(i)
− =

1

2

(
(1− αλi + η)−∆(i)

) (14)

where ∆(i) =
√

(1− αλi + η)2 − 4η.

Recall that ε ∈ (0, ε′i) in Lemma 3.3 and therefore
‖Bn0

i Ỹ
(i)
0 ‖2 ≤ ε implies ‖Bn0

i Ỹ
(i)
0 ‖2 < ε′i. The follow-

ing Lemma provides a lower bound on the variance in terms
of the eigen values of Bi and the momentum parameter η
assuming the bias is less than ε′i.

Lemma 3.6. Let α > 0 and η ∈ [0, 1] such that
‖Bn0

i X̃0‖2 < ε′i. Then

α2K

n0−1∑
j=0

‖Bji e1‖2 ≥
α2K

2(1− µ2
+)(1− µ2

−)(1− η)
.

It can be shown that (1−µ2
+)(1−µ2

−) = αλi and therefore
the RHS in the above expression reduces to αK

2λi(1−η) . We
define the following function

Q(η;α, λi) ≡
αK

2λi(1− η)

1

(1− ρ(Bi))

where ρ(Bi) = |µ(i)
+ | is the spectral radius of Bi. Note that

ρ(Bi) depends on η (see 14). Now to obtain a further lower

bound on the variance we optimize over the choice of η and
show that

Q(η;α, λi) ≥
K

16λ2
i

Combining this with the definition of Q and Lemma 3.6
gives the following bound:

α2K

n0−1∑
j=0

∥∥∥Bji e1

∥∥∥2

≥ K

16λ2
i

(1− ρ(Bi))

The following lemma proves all these above claims.

Lemma 3.7. Let α > 0 and η ∈ [0, 1] such that
‖Bn0

i X̃0‖2 < ε′i. Then we have the following bound
α2K

∑n0−1
j=0 ‖B

j
i e1‖2 ≥ K

16λ2
i
(1− ρ(Bi)).

Lastly, to show that the variance is lower bounded by ε ∈
(0, ε′), we need to show that (1 − ρ(Bi)) ≥ 16λ2

i

K ε. The
choice of n0 and the fact that we assumed ‖Bn0

i Ỹ
(i)
0 ‖ < ε

exactly ensures that. The following lemma proves this claim.

Lemma 3.8. For any ε ∈ (0, ε′i), if ‖Bn0
i Ỹ

(i)
0 ‖ < ε, then

1− ρ(Bi) ≥ 16λ2
i

K ε.

This completes the proof of Lemma 3.3.

3.4 PROOF OF LEMMA 3.4

We handle the cases αλi ≤ 1 and αλi > 1 separately.

Case 1 (αλi ≤ 1): Observe that the general β update rule
in (7) is equivalent to the β = 0 update with η redefined as
η′. Moreover in this case η′ ∈ [0, 1]. To see this first observe
that

η′ = η(1− αλiβ) ≥ η(1− β) ≥ 0.

Here the first inequality follows because αλi ≤ 1 and the
second inequality follows because β, η ∈ [0, 1].

Therefore in this case Lemma 3.3 holds with η redefined as
η′.

Case 2 (αλi > 1): In this case we show that the variance
term is greater than ε. This follows as shown below

α2E

n0−1∑
j=0

‖Bn0−1−j
i W̃

(i)
j+1‖

2

 (A)

≥ α2K

n0−1∑
j=0

‖Bji e1‖2

(B)

≥ α2K
(C)
>

K

λ2
i

(D)
> ε.

Here (A) follows from Lemma 3.5, (B) follows from non-
negativity of norm and lower bounding the sum with the
j = 0 term and (C) follows since αλi > 1. Finally (D)
follows for any ε < K

λ2
i

which in turn is smaller than ε′i as
defined in Lemma 3.3.
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4 CONCLUDING REMARKS

In this work, we analyze the sample complexity of SHB and
ASG and provide matching lower and upper bounds up to
constants and logarithmic terms. More importantly, we show
that the same sample complexity bound can be obtained by
standard SGD. Our work also calls into question some of
the recent positive results in favour of SHB and ASG in
the stochastic regime. We show that such improvements
do not take into account all the terms involved in the error
decomposition, or have major flaws. We emphasize that our
results hold specifically for SHB and ASG. Other momen-
tum methods could offer provable improvements over SGD
[Jain et al., 2018, Liu and Belkin, 2020].
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