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1 PROOFS

1.1

Proof of Theorem 1. First we compute D(p||q) and D(q||p) in terms of entropy.

D(p||q) = −H(p)− ⟨log q(.)⟩p (1)
= −H(p) +Hp(q) (2)

And similarly we have

D(q||p) = −H(q)− ⟨log p(.)⟩q (3)
= −H(q) +Hq(p) (4)

So with λ = p(y=q)
p(y=p) =

nq

np
we have

argmaxp,q:H(X )=c D(p||q) + λD(q||p) (5)

= argmaxp,q:H(X )=c −H(p)− λH(q) + λHq(p) +Hp(q) (6)

= argmaxp,q:H(X )=c −H(X |y = p)− λH(X |y = q) + λHq(p) +Hp(q) (7)

= argmaxp,q:H(X )=c − p(y = p)H(X |y = p)− p(y = q)H(X |y = q) + p(y = q)Hq(p) + p(y = p)Hp(q) (8)

= argmaxp,q:H(X )=c H(X )− p(y = p)H(X |y = p)− p(y = q)H(X |y = q) + p(y = q)Hq(p) + p(y = p)Hp(q)

(9)

= argmaxp,q:H(X )=c I(X : Y) +
nq

n
Hq(p) +

np

n
Hp(q) (10)

□

1.2

Proof of Theorem 2. The problem can be seen as, given a subset S ⊆ SX , the input space (i.e., for x in a high dimensional
space), we want to solve the optimization problem

Opt1(S) := max
S1∪S2=S
S1∩S2=∅

[
max

f∈C1(SX )
a≤f≤b

[∑
x∈S1

f(x)

|S1|
− log

∑
x∈S2

ef(x)

|S2|

]
+ max

g∈C1(SX )
a≤g≤b

[∑
x∈S2

g(x)

|S2|
− log

∑
x∈S1

eg(x)

|S1|

]]
.
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For any given f , by Jesen’s inequality, we have∑
x∈S2

ef(x)

|S2|
≥ exp

(∑x∈S2
f(x)

|S2|
)
, (11)

so we have

max
S1∪S2=S
S1∩S2=∅

max
f∈C1(SX )
a≤f≤b

[∑
x∈S1

f(x)

|S1|
− log

∑
x∈S2

ef(x)

|S2|

]
≤ max

S1∪S2=S
S1∩S2=∅

max
f∈C1(X )
a≤f≤b

[∑
x∈S1

f(x)

|S1|
−

∑
x∈S2

f(x)

|S2|

]
≤b− a. (12)

Thus, an upper bound for Opt1(S) is simply 2(b− a). However, by letting

f =

{
b, for x ∈ S1

a, for x ∈ S2

and g =

{
a, for x ∈ S1

b, for x ∈ S2

, (13)

we would achieve the optimal value 2(b− a), since (11) is tight for such f, g. Thus, the optimal value of Opt1(S) is exactly
2(b− a).

Now, if there exists two clusters S1, S2 with

dbetween := min
x1∈S1,x2∈S2

∥x1 − x2∥

di := max
x∈Si,x′∈Si

∥x− x′∥

dwithin :=max(d1, d2)

that satisfies dbetween > dwithin. Then for L that satisfies

b− a

dwithin
< L <

b− a

dbetween
,

we claim (13) is the unique optimal solution to

Opt4(S) := max
S1∪S2=S
S1∩S2=∅

[
max

f∈C1(X )
a≤f≤b

f is L-Lipschitz

[∑
x∈S1

f(x)

|S1|
− log

∑
x∈S2

ef(x)

|S2|

]
+ max

g∈C1(X )
a≤g≤b

gis L-Lipschitz

[∑
x∈S2

g(x)

|S2|
− log

∑
x∈S1

eg(x)

|S1|

]
.

To see this, first note that solution (13) is feasible because L < (b−a)
dbetween

. This solution is optimal because it achieves value
2(b− a) which is the upper bound (best possible) of the objective value. This solution is unique because in order to achieve
objective value b− a, the inequality in (13) and (12) must be tight, which means one set of points must take value b and
the other a. One can check if any x ∈ S1 have f(x) ̸= a then either f(x) ̸= b which is sub-optimal or f(x) = b which is
infeasible because b−a

dwithin
. Thus we must have f(x) = a for all x ∈ S1. Similarly f(x) = b for all x ∈ S2. Thus the optimal

solution is unique. □

Reminder of Theorem 3 Consider a DV function f and the associated DV representation of the data. Then the clusters that
maximize D̂f (P ||Q) form contiguous clusters on the DV representation of the data points: there is a cut point c such that
i ∈ P if f(xi) ≥ c and i ∈ Q if f(xi) < c.

Proof of Theorem 3. Recall that:

D̂f (P ||Q) =
1

nP

∑
z∈P

f(z)− log
1

nQ

∑
z′∈Q

exp f(z′). (14)

Consider the clusters P and Q that maximize Equation 14 (possibly different from the initial clusters that are used to define
the DV function f ). Suppose that there are data points z ∈ P and z′ ∈ Q such that f(z) < f(z′). We show that by swapping
z and z′ from their clusters, Equation 14 increases, which is a contradiction (see figure 1). Note that the size of the clusters
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Figure 1: Swapping the cluster labels of two points z and z′ to increase KL-D.

does not change. Since f(z) < f(z′), after swapping z and z′ the first term in Equation 14 increases and the second term
(which is negated) decreases. So there are no such z and z′, which means that the clusters must be contiguous. Note that if
we consider the approximation of (14), namely D̂f (P ||Q) ≈ 1

nP

∑
z∈P f(z)−maxz′∈Q f(z′) + log nQ, the same proof

works.

□

1.3

We first define a total ordering on clusters when the DV representation f is fixed. For any P and Q and fixed DV function f ,
we say P > Q if the maximum f value of the data points in Q is less than the maximum f value of the data points in P .
More formally, P > Q if

max
x∈P

f(x) > max
x∈Q

f(x) (15)

Reminder of Theorem 4 Consider a DV function f and the associated DV representation of the data. Let P ∗
1 < . . . < P ∗

k

be the clusters that maximize the objective

max
P1<...<Pk

k−1∑
i=1

D̂f (P>i||Pi) (16)

where P>i = Pk ∪ . . .∪Pi+1. Then P ∗
1 , . . . , P

∗
k form contiguous clusters on the DV representation of the data points: there

exist cut points c1 < . . . < ck−1 such that for all i < k and for all j ∈ Pi we have f(xj) < ci, and for all i > 1 and for all
j ∈ Pi we have f(xj) ≥ ci.

Proof of Theorem 4. Suppose that there are indices t, j, t < j such that for data points x, y with x ∈ Pt and y ∈ Pj

we have f(x) > f(y). We show that swapping x and y in their clusters increases the function maximized by Equation as
follows.

max
P1<...<Pk

k−1∑
i=1

D̂f (P>i||Pi)

We determine which terms in the Equation above changes with swapping x and y in Pj and Pt. We consider the following
for estimating D̂f (P ||Q).

D̂f (P ||Q) ≈ 1

nP

∑
x∈P

f(x)−max
x∈Q

f(x) + log nQ. (17)

Note that the size of the clusters stays the same by swapping x and y.

For all i < t and all i > j, D̂f (P>i||Pi) does not change. For i = t, D̂f (P>t||Pt) increases since the first term in Equation
17 increases and the second term (which is negated) either stays the same or decreases. For t < i < j, D̂f (P>i||Pi) increases
since the first term increases and the second term doesn’t change. For i = j, D̂f (P>j ||Pj) stays the same since none of the
terms change, because y cannot be the maximum value in Pj by the ordering properties. □

1.4

Reminder of Theorem 5 Let OPT be the optimal value of the objective maxP1<...<Pk

∑k−1
i=1 D̂f (P>i||Pi). Alg. 3 finds

clusters P ∗
1 < . . . < P ∗

k such that
∑k−1

i=1 D̂f (P
∗
>i||P ∗

i ) ≥ e−1
e OPT , where the ordering of clusters is defined with respect



to the DV representation obtained from a DV function f .

Proof of Theorem 5. Let f be the DV function that defines the fixed DV representation in the theorem. We first rewrite the
objective maxP1<...<Pk

∑k−1
i=1 D̂f (P>i||Pi) in terms of cut points that separate contiguous clusters in the DV representation.

Let S be a set of real numbers where for any two values s1, s2 ∈ S, s1 < s2, there is at least one data point x such that
s1 < f(x) < s2, and for any two data points x1, x2, f(x1) < f(x2), there is a value s ∈ S such that f(x1) < s < f(x2).
Note that S can be the set of the value of all the data points in the DV representation minus a very small number. These
conditions mean that we cannot have empty clusters, and that any contiguous cluster can be represented uniquely by the
interval between two values in S without worrying about including or excluding the endpoints of the interval. Recall that in
Alg. 3, we use the DV representation values of the data points as cut points, and we could enforce the non-empty cluster
condition by using the set S.

Let cmin and cmax be the minimum and maximum value in S. Let C = {c1, . . . , ct−1} ⊆ S be a set of cut points. C defines
t clusters, where cluster i is all the data points with DV representation between ci−1 and ci, where we define c0 = cmin and
ct = cmax.

We rewrite the objective in terms of the cut set C. For any two cut points c, c′ ∈ S, c < c′, let nc,c′ be the number of
data points whose DV representation is in (c, c′), and let f((c, c′)) be the mean of the values of the data points in (c, c′),
i.e. f((c, c′)) = 1

nc,c′

∑
x:f(x)∈(c,c′) f(x). Define max f(c, c′) = maxx:f(x)∈(c,c′) f(x). Let C = {c1 < . . . < ct−1}. We

define the function z(·) as follows.

z(C) =

t−1∑
i=1

f(ci, ct)−
t−1∑
i=0

max f(ci, ci+1) +

t−1∑
i=0

log nci,ci+1
(18)

Then the objective is to maximize z(C) over cut sets C of size k − 1. Note that this objective is equivalent to Equation 1.3
because by Theorem 4 we know that the optimal clusters are contiguous.

To prove that the greedy algorithm gives a e−1
e approximation of the optimal solution, we use a result of Nemhauser et al.

[1978] stating that if a set function is submodular, then the generic greedy algorithm is a e−1
e approximation of the optimal.

To show the submodularity of function z, we need to prove that for any two sets A and B where A ⊆ B and for any cut
point c ∈ S, c /∈ B, we have z(A ∪ {c})− z(A) ≥ z(B ∪ {c})− z(B).

First we compute z(A ∪ {c})− z(A). Sort the points in A ∪ {c}, and let c1 < c < c2 be the points before and after c in this
ordering. Note that c1 might be cmin and c2 might be cmax. From equation 18, we see that

z(A ∪ {c})− z(A) = f(c, cmax) + max f(c1, c2)− log nc1,c2

−max f(c, c2) + log nc,c2

−max f(c1, c) + log nc1,c.

Let c /∈ B and let c′1 ≤ c ≤ c′2 be the cut points before and after c in B’s ordering. Similar to above, we have

z(B ∪ {c})− z(B) = f(c, cmax) + max f(c′1, c
′
2)− log nc′1,c

′
2

−max f(c, c′2) + log nc,c′2

−max f(c′1, c) + log nc′1,c
.

Note that since A ⊆ B, we have c1 ≤ c′1 ≤ c ≤ c′2 ≤ c2. Now from the definition of S, we have that nc′1,c
> 0 and

nc,c′2
> 0. So max f(c1, c) = max f(c′1, c), max f(c1, c2) = max f(c, c2) and max f(c′1, c

′
2) = max f(c, c′2). So we have

z(A ∪ {c})− z(A)− (z(B ∪ {c})− z(B)) = − log nc1,c2 + log nc1,c + log nc,c2

+ log nc′1,c
′
2
− log nc′1,c

− log nc,c′2

= log
nc′1,c

′
2

nc′1,c
nc,c′2

− log
nc1,c2

nc1,cnc,c2

= log(
1

nc′1,c
+

1

nc,c′2

)− log(
1

nc1,c
+

1

nc,c2

) ≥ 0

Note that we used the fact that nc1,c+nc,c2 = nc1,c2 , nc′1,c
+nc,c′2

= nc′1,c
′
2
. Moreover, since c1 ≥ c′1, we have nc1,c ≥ nc′1,c

.
Similarly, we have nc,c2 ≥ nc,c′2

, and hence we have the last inequality. □



2 EXPERIMENTAL DETAILS

2.1 DATASETS OF NOISY TIMESERIES

Details for some of the datasets which are of high impact but rare to find are as belows.

Neural Activity We used public electrophysiological Neuropixels dataset [Siegle et al., 2021, Institute, 2020]. Multiple
high-density extracellular electrophysiology probes were used to simultaneously record spiking neural activity from a wide
variety of areas in the mouse brain. We used the data of the animal with session-id 798911424 and included the first 100
out of 195 trials. The first 2000 ms of each trial after stimulus onset was extracted. We time-binned the timestamps with 0.1
ms resolution, giving 443 timeseries, each of length 20,000 timesteps.

Financial time series of returns of US stocks. We started with the 1000 stocks from the constituents of the Russell 3000
index that have the highest liquidity. This dataset is publicly available, though very large in size to be released as a single
file. After performing necessary preprocessing and checks on data quality issues, we use 982 of those stocks. The returns are
evaluated every 15 minutes, for the period of from May 2021 to May 2022, i.e. 2600 timesteps.

Wind Dataset This dataset is daily average wind speed (in knots = 0.5418 m/s) data collected from year 1961 to 1978 at
12 meteorological stations in the Republic of Ireland (Gneiting 2002).1

Rain Dataset Daily data collected for rainy days in 1949–94 across 167 regions in Washington and Oregon states.

Other datasets are available at Kaggle. We also generated a synthetic dataset, with binary timeseries. Script for generating
the data will be provided in the code base. All the data files will be provided as part of the codebase.
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