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Abstract

Information-theoretic clustering is one of the most
promising and principled approaches to finding
clusters with minimal apriori assumptions. The
key criterion therein is to maximize the mutual in-
formation between the data points and their cluster
labels. Such an approach, however, does not explic-
itly promote any type of inter-cluster behavior. We
instead propose to maximize the Kullback–Leibler
divergence between the underlying data distribu-
tions associated to clusters (referred to as cluster
distributions). We show it to entail the mutual in-
formation criterion along with maximizing cross
entropy between the cluster distributions. For prac-
tical efficiency, we propose to empirically estimate
the objective of KL-D between clusters in its dual
form leveraging deep neural nets as a dual function
approximator. Remarkably, our theoretical analy-
sis establishes that estimating the divergence mea-
sure in its dual form simplifies the problem of
clustering to one of optimally finding k − 1 cut
points for k clusters in the 1-D dual functional
space. Overall, our approach enables linear-time
clustering algorithms with theoretical guarantees
of near-optimality, owing to the submodularity of
the objective. We show the empirical superiority of
our approach w.r.t. current state-of-the-art methods
on the challenging task of clustering noisy time-
series as observed in domains such as neuroscience,
healthcare, financial markets, spatio-temporal en-
vironmental dynamics, etc.

1 INTRODUCTION

Clustering [Jain, 2010] is one of the most fundamental prob-
lems in machine learning. It is particularly challenging in do-
mains such as neuroscience, healthcare, and finance, where
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Figure 1: A high level toy example of our approach. On the
l.h.s., we show 6 points in the original 3-dimensional space.
These data points are represented in the 1-D dual space
such that KL-divergence can be computed between any two
subsets of data points (clusters) as a deterministic function
of the representations. With the objective of maximizing the
KL-divergence between clusters, we find clusters simply by
greedy search of cut points in the dual space.

data often consists of noisy timeseries of significant length.
In neuroscience, the functional structure of neuronal en-
semble activity is key to understanding how brain regions
interact with each other [Siegle et al., 2021, de Vries et al.,
2020]. In finance, systemically grouping assets that change
in value together plays a critical role in portfolio optimiza-
tion [Tola et al., 2008]. Clustering algorithms are typically
employed for exploratory analysis. Therefore, they should
ideally be sufficiently flexible and make minimal assump-
tions on the data [Ver Steeg et al., 2014]. They should not
require that “prototypical” clusters be specified [Böhm et al.,
2006], nor explicitly define notions of similarity between
data points [Slonim et al., 2005]. With these considerations,
one of the most promising and principled approaches is in-
formation theoretic clustering introduced by Gokcay and
Principe [2002]. Owing to its theoretical appeal, it has been
studied extensively [Sugar and James, 2003, Still and Bialek,
2004, Banerjee et al., 2005, Ver Steeg et al., 2014, Cicalese
et al., 2019], primarily in the form where the objective is to
maximize mutual information (MI) between data points and
their cluster labels. Despite the popularity of this approach,
it is noteworthy that such an objective characterizes only
intra-cluster properties, i.e. minimizing entropy (variance)
within each cluster, while inter-cluster properties are only
implied from the former.
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As our first contribution, we argue that a fundamental crite-
rion for clustering is that the distributions implied from any
two clusters (of the same support) should have minimal over-
lap with each other, as quantified by the Kullback–Leibler
Divergence (KL-D) [Cover, 1999]. Such a criterion is gen-
eral enough to satisfy the desiderata of a “good” clustering
solution, while simultaneously stating, explicitly, required
inter-cluster behavior. Additional constraints, such as proper-
ties of data distributions within a cluster (e.g. low entropy of
distribution) or continuity of manifold, are problem-specific,
potentially impractical, and can be implied from the primary
criterion itself.

While information theoretic clustering is theoretically ap-
pealing, it is nontrivial to estimate the required functions (in-
cluding mutual information), and often intractable to opti-
mize them w.r.t. cluster labels. Various ITC models have
been explored in practice, including those based on k-
nearest neighbors [Faivishevsky and Goldberger, 2010],
minimal spanning trees [Müller et al., 2012], kernel func-
tions, eigen-decomposition, max-k-cut, etc. [Davis and
Dhillon, 2006, He et al., 2015, Böhm et al., 2006, Singh
and Hooi, 2015, Wang and Sha, 2011, Sugiyama et al.,
2014]. Yet, assuming a specific model of the data coun-
teracts the theoretical appeal of the framework of being
model agnostic. Further, these prior works rely on tradi-
tional (non-parametric) models which may be unsuitable for
noisy, high-dimensional data which often arise in practice.

In light of the above, we propose to estimate the divergence
measure in its dual form by Donsker and Varadhan [1975],
employing deep neural nets as the dual function approxi-
mators [Belghazi et al., 2018]. Estimating divergence in its
dual form circumvents the need to learn or characterize the
cluster distributions and it suffices to have samples from
those cluster distributions - i.e. data points belonging to
their respective clusters. Moreover, neural networks lend
expressiveness as universal approximators, and capacity to
operate in high dimensional (noisy) settings.

Through theoretical analysis of the dual form of the pro-
posed objective, we establish that clusters are optimally
contiguous in 1-D dual functional space. This theoretical
result is highly valuable, not only for its interpretability,
but also because it simplifies the combinatorial problem of
searching for optimal cluster labels to finding cut points in
the 1-D dual space. Consequently, k clusters can be near-
optimally identified by a greedy search of k − 1 cut points
in the dual space.

Contributions We make the following contributions to
the information theoretic clustering literature: (i) While MI
is known as the most principled objective for clustering
from an information theoretic perspective, we show that
the objective of KL-D is superior, entailing the former, and
we advocate for it as the new fundamental criterion for
optimization of cluster labels, as well as evaluation. (ii)

Our theoretical analysis establishes that clusters are opti-
mally contiguous in the dual function space of the objective
thus simplifying the combinatorial optimization of cluster
labels to one of finding cut points in the 1-D dual space.
(iii) Owing to the submodularity of the proposed objective,
we propose nearly-optimal greedy algorithms for finding
k− 1 cut points to obtain k clusters. (iv) We evaluate our ap-
proach for clustering noisy timeseries observed in domains
like healthcare, finance, environmental dynamics, etc., along
with a synthetic dataset, and demonstrate its competitive-
ness to the other information theoretic, traditional, and ad-
vanced deep learning methods for clustering. (v) Codebase
at github.com/morganstanley/MSML/tree/main/papers.

Other Related Works Deep learning has been extensively
applied to the problem of clustering [Min et al., 2018]. A
common theme is to apply traditional clustering algorithms
(e.g. K-Means, spectral, Gaussian mixture, subspace, nearest
neighbors matching, etc.) in the latent representation space
of an autoencoder [Ji et al., 2017, Law et al., 2017, Madiraju,
2018, Ma, 2019, Yang et al., 2019a, Bo et al., 2020, Dang
et al., 2021]. Another paradigm for deep clustering is to
minimize the KL-D between an auxiliary target distribution
and the posterior distribution of the data represented by their
cluster labels [Xie et al., 2016]. Aside from information
theoretic clustering, information theory has been explored
for representation learning including for the task of deep
clustering such as based on variational autoencoders [Chen
et al., 2016, Hu et al., 2017, Yang et al., 2019b, 2020, 2022,
Ntelemis et al., 2021, Ahmadi et al., 2022]. However, these
works differ from the niche field of so called “information
theoretic clustering" for their primary criteria to cluster are
not information theoretic. A KL-Divergence objective was
previously considered with the highly restrictive assumption
of clusters being Gaussian distributed [Das Gupta et al.,
2015]; while Dhillon et al. [2003], used the KL-D between
two words for the problem of clustering words, but not as a
measure of divergence between clusters.

2 OUR APPROACH

Next, we discuss our approach of information theoretic clus-
tering by maximizing KL-D between cluster distributions.

The standard objective in the information theoretic clus-
tering literature is to maximize mutual information (MI)
between data points (X) and cluster labels (Y ).

I(X : Y ) = E(x,y)∼(X ,Y)

[
log

P (x, y)

P (x)P (y)

]
Here, X is the high dimensional data distribution, and Y is
the distribution of cluster labels; X and Y are the respective
random variables. I(X : Y ) is the MI function, a fundamen-
tal measure of dependence. Typically, the MI function is
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expressed in terms of the conditional entropy function:

argmax
Y

I(X : Y ) = argmax
Y

H(X)−H(X| Y ) (1)

Since entropy of X, H(X), is a constant, the problem of
maximizing MI is tantamount to minimizing conditional
entropy of data points X given the clusters Y . This objective
accounts for intra-cluster characteristics explicitly and inter-
cluster characteristics are only implied from the former. To
further elucidate, we consider a two-cluster problem with
cluster labels Y = 0 and Y = 1. Let Xy0 and Xy1 denote
conditional random variables given the cluster labels, and
corresponding cluster distributions, Xy0 and Xy1, both with
support X . We note that the conditional entropy explicitly
decomposes into intra-cluster entropy terms.

argmin
Y

H(X| Y ) = argmin
Y

Py0H(Xy0) + Py1H(Xy1)

Here, Py0 is shorthand for P (Y = 0). Similarly, Py1 de-
notes P (Y = 1). Thus, maximizing the mutual information
is equivalent to minimizing entropy of both the cluster dis-
tributions. Considering the limitations of MI criterion in
capturing inter-cluster characteristics, we instead propose
an objective of maximizing KL-D between the cluster distri-
butions, X|Y=0 and X|Y=1, as below.

argmax
Y

D(Xy0‖Xy1) +D(Xy1‖Xy0) (2)

= argmin
Y

H(Xy0)+H(Xy1)︸ ︷︷ ︸
intra-cluster

−HXy0
(Xy1)−HXy1

(Xy0)︸ ︷︷ ︸
inter-cluster

Clearly, the proposed objective minimizes entropy of cluster
distributions, while maximizing cross entropy between the
distributions, i.e. minimizing their overlap. For the problem
of k-clusters, a variety of simple extensions are applicable,
which we discuss later in this section. It is interesting to
note that cross entropy is a pure and fundamental (directed)
measure of non-overlap between two distributions whereas
KL-D also accounts for entropy of one of the distributions
itself. This insight is important in establishing that the pro-
posed KL-D objective entails the MI function.

Theorem 1 Let Xy0 and Xy1 be the conditional random
variables associated with the conditional distributions of
data points, Xy0 and Xy1, given cluster labels Y =0 and
Y = 1 respectively. Optimizing the two clusters such that
KL-Divergence between the two distributions is maximized,

argmaxY Py0D(Xy0‖Xy1) + Py1D(Xy1‖Xy0),

is equivalent to,

argmaxY I(X : Y ) + Py1HXy1(Xy0) + Py0HXy0(Xy1),

where, I(X : Y ) is mutual information function, and
HXy1(Xy0) and HXy0(Xy1) are cross entropy functions.

Note, the above theoretic result depends upon Py0 and Py1

for establishing the equivalence. In practice, assuming a

prior of clusters of equal sizes, we propose to simply maxi-
mize the objective, D(Xy0‖Xy1) +D(Xy1‖Xy0).

Although the objective of maximizing KL-D between cluster
distributions is fundamental and intuitive, doing so w.r.t.
cluster labels and input samples is not straightforward. To
understand this challenge, we present KL-D between the
two cluster distributions in the standard expression below.

D(Xy0‖Xy1) = EX∼Xy0
log

P (X|Y = 0)

P (X|Y = 1)
(3)

To estimate the KL-D objective from the above expression,
one needs to obtain the conditional densities, P (X|Y = 0)
and P (X|Y = 1), for the respective (unknown) cluster dis-
tributions Xy0 and Xy1, even if the expectation is computed
empirically from the data in cluster Y = 0 as the empirical
realization of Xy0. We do not have these densities available,
and it may be impossible to learn the densities from samples
coming from the clusters, due to limited data, small clusters,
high dimensionality, or noise that is prevalent in neural or
financial timeseries data, etc. There are also practical chal-
lenges in estimating the KL-Divergence objective above,
such as the function being unbounded in its value, variance
of the empirical estimate, compute cost, vulnerability of
nonparameteric kNN based KL-D estimators to noise, etc.
One practical solution, which we propose next, is to em-
pirically estimate the KL-D objective in its dual form by
Donsker and Varadhan [1975], leveraging deep learning as
the dual function approximator.

We argue that estimating the KL-D function in its dual form,
as shown below, is particularly suitable for its use as the
clustering objective.

D(Xy0‖Xy1) = max
f(.)∈L∞(X )

EXy0f(x)− logEXy1e
f(x)

Here, f : X → R, is any function from the space of locally
∞-integrable functions such that expectations in the expres-
sion are finite, referred as the dual function. To estimate
the dual form of KL-D, we only need samples from clus-
ter distributions and not actual density functions. A cluster
distributions’ existence is only implied by data points in
clusters of the same support. Thus, a cluster is the optimal
empirical realization of the cluster distribution, and both
expectations in the dual form are empirically computable
from the respective clusters only.

D̂(Xy0‖Xy1) = max
f̂(.)∈H

∑
xy0∈Xy0

f̂(x)

ny0
− log

∑
xy1∈Xy1

ef̂(x)

ny1

Here, D̂(Xy0‖Xy1) is an empirical estimate of
D(Xy0‖Xy1) from clusters, Xy0 = {xi : yi = 0}ni=1

and Xy1 = {xi : yi = 1}ni=1; ny0 and ny1 are the
respective cluster sizes. As mentioned above, since the
cluster distributions, Xy0 and Xy1, are themselves defined
from their respective clusters, Xy0 and Xy1, it is only
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Figure 2: 2-clustering algorithm. First we optimize fy0→y1

and fy1→y0, next we optimize clusters Xy0 and Xy1. Note
that in the second step we only consider clusters Xy0 and
Xy1 such that their representations are contiguous in one of
fy0→y1 or fy1→y0. One example is shown for each case.

D̂(Xy0‖Xy1) that is of interest as the clustering objective
whereas D(Xy0‖Xy1) is notional. Correspondingly, f̂(.) is
the dual function for estimating D̂(Xy0‖Xy1), where the
maximization is over a fixed class of functionsH.

As proposed in Belghazi et al. [2018], f(.) can be a deep
neural net function; for instance, neural timeseries models
like LSTMs, RNNs, Transformers, TCNs, NBeats, etc. [Bai
et al., 2018, Oreshkin et al., 2019, Kitaev et al., 2019, Beni-
dis et al., 2020, Zeng et al., 2021, Fan et al., 2021, Gu
et al., 2021, Challu et al., 2022], are all relevant for clus-
tering of time series in this framework. To learn a stable
neural dual function and avoid high variance in estimating
the objective [Song and Ermon, 2019], practical tricks, such
as early stopping, large batch size, low learning rate, etc.,
are well known. Furthermore, our goal is not to estimate
the divergence measure exactly, but to find assignments
that maximize divergence across clusters. It is the relative
estimate of divergence across different sets of cluster assign-
ments that matters. Besides, to avoid potential numerical
instability from log sum exp function (smooth max), we
propose a practical trick of using max function as a known
approximation of the former Boyd et al. [2004].

D̂(Xy0‖Xy1)

≈ max
f̂(.)

∑
xy0∈Xy0

f̂(xy0)− max
xy1∈Xy1

f̂(xy1) + log |ny1|

Here, note that the max function is not sensitive to outliers
in cluster Xy1 since that term is being minimized. This not
only stabilizes the optimization, but gives a nice interpreta-
tion for the expression in the context of clustering. From a
deep learning perspective, the max function is essentially
a max pooling operation, over the dual function outputs of
the data points in Xy1.

The overall expression for optimizing cluster labels is:

argmax
y

log(ny0ny1) (4)

+ max
fy0→y1

∑
xy0∈Xy0

fy0→y1(xy0)

ny0
− log

∑
xy1∈Xy1

efy0→y1(xy1)

+ max
fy1→y0

∑
xy1∈Xy1

f̂y1→y0(xy1)

ny1
− log

∑
xy0∈Xy0

efy1→y0(xy0)

Here, fy0→y1(.) and fy1→y0(.) are the dual functions
corresponding to estimating KL-D in both directions,
D̂(Xy0‖Xy1) and D̂(Xy1‖Xy0). Note, log|ny0ny1| natu-
rally encourages balanced clusters. Next, we establish that
the optimization in Eq. 4 has a solution which uniquely
recovers the two clusters.

Theorem 2 The optimal solution for the objective in Eq. 4
exists when f (for both fy0→y1 and fy1→y0) is continuous
and bounded between [a, b] for some a ≤ b. Moreover, if f
is also L-Lipschitz, then for two clusters where the distance
between cluster (defined as the minimum between points in
separate cluster) is more than the distance within cluster
(defined as the maximum distance between points in the
same cluster), there exists some Lipschitz constant L where
the optimal solution in Eq. 4 uniquely recovers the clusters.

Clusters are optimally contiguous in the dual space Our
key observation about the optimization problem (Eq. 4)
which enables highly efficient and near-optimal algorithms
for clustering, is that clusters are optimally contiguous in the
space of dual functions (fy0→y1 and fy1→y0) i.e. dual space,
as we theoretically prove in the following. This simplifies
the combinatorial-optimization of finding clusters to that of
finding a cut point in the dual space. Theorem 3 proves the
contiguity of two clusters in the dual space.

Theorem 3 Consider a dual function f̂(.), and the as-
sociated representation of data points in the dual space,
{f̂(xi)}ni=1, and the KL-D estimate between clusters Xy0 =
{xi : yi = 0}ni=1, Xy1 = {xi : yi = 1}ni=1 is

D̂f̂ (Xy0‖Xy1) =
∑

xy0∈Xy0

f̂(x)

ny0
−log

∑
xy1∈Xy1

ef̂(x)+log(ny1).

Then the clusters that maximize D̂f̂ (Xy0‖Xy1), i.e.

argmax
y

D̂f̂ (Xy0‖Xy1),

are contiguous in the dual space: there is a cut point c such
that xi ∈ Xy0 if f̂(xi) ≥ c and xi ∈ Xy1 if f̂(xi) < c.

Cut Point Algorithm for Clustering This theoretical
result on the contiguity of clusters in the dual space nat-
urally leads to a cut-point based clustering algorithm as
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fy0→y1

updating fy0→y1

splitting cluster 2 into two clusters

cluster 2cluster 1

highest entropy cluster

Figure 3: Greedy bisection of the highest entropy cluster.
First we find two clusters using our 2 cluster algorithm,
then we take the cluster with the highest entropy which
is cluster 2, we update fy0→y1 and fy1→y0 and then split
cluster 2 using our 2 clustering algorithm. Note that we are
not showing cluster 1 in the updated fy0→y1 representation.

illustrated in Fig. 2. Here, we consider KL-D in both di-
rections. We start by random clusters Xy0 and Xy1 and
optimize fy0→y1(.) and fy1→y0(.) with respect to these
clusters. Then, in order to optimize clusters Xy0 and Xy1,
we only consider cluster pairs (Xy0,Xy1) such that both
Xy0 and Xy1 are “contiguous” in one of the representations
defined by dual functions, fy0→y1(.) and fy1→y0(.).

More formally, we first consider the one dimensional space
defined by fy0→y1(.). We sort the indices of the correspond-
ing data points with respect to the values of the function
fy0→y1(.). For each pair of clusters defined by a cut point i,
we evaluate the divergence objective. For a given cut point, it
is computed from mean and (smooth) max statistics, values
for all the cut points can be computed iteratively in fy0→y1,
with linear time compute complexity. We do the same for
the one dimensional space defined by fy1→y0 and output the
cluster pair that maximizes the divergence from either of the
two dimensions. We continue optimizing for a fixed number
of iterations (100) or until convergence of the cluster labels.

When employing DNN as a dual function, the step of op-
timizing the dual functions given cluster labels as shown
in Fig. 2 is a single iteration of updating weights of the
corresponding two DNNs via backpropagation, rather than
retraining from scratch for a change in cluster labels. Both
updating the dual function for a change in cluster labels,
and optimizing cluster labels by finding cut points in the
re-optimized dual functional spaces, are highly efficient.
Moreover, for the first few warmup iterations (10), we only
update weights of the neural estimators and not the cluster
labels. In our experiments, it takes only a few seconds to
run the entire procedure to obtain cluster in a dataset of few
thousand timeseries.

For the k-clusters problem, we want to maximize divergence
between each pair of clusters, or maximize divergence of
each cluster w.r.t. the rest. While in theory, there should
be a different estimator for each pair of clusters, it suf-

f

Greedily find k − 1 cutpoints

update f clusters

Figure 4: Greedy cuts. For a randomly initialized dual func-
tion, f(.), data points are represented in the dual space,
{f(xi)}ni=1, and sorted accordingly. The k − 1 cut points
are searched greedily to obtain k clusters, with each data
point being a candidate as a cut point. Cut points and the
dual function are updated iteratively.

fices in practice to produce two estimates D̂(Xyi‖Xyj) and
D̂(Xyj‖Xyi) respectively from f̂y0→y1 and f̂y1→y0, as in
the two-cluster problem. For training any of the two estima-
tors, in each batch update, two out of k clusters are randomly
sampled, for which the estimator learns to maximize the es-
timate of KL-D. To optimize cluster labels, we propose a
greedy search for k−1 cut points in the dual space, in which
various variants of the KL-D objective are applicable. Next,
we establish contiguity of k clusters in the dual space for
one such objective.

Theorem 4 Consider a dual function f̂(.) and the asso-
ciated representation of input points in the dual space,
{f̂(xi)}ni=1. Let X∗y1 = {xi : y∗i = 1}ni=1, . . . ,X

∗
yk =

{xi : y
∗
i = k}ni=1 be the clusters that maximize the objec-

tive,

argmax
y

k−1∑
i=1

D̂f̂ (Xy>i‖Xyi);

D̂f̂ (Xy>i‖Xyi) = Ex∈Xy>i
f̂(x)− logExyi∈Xyi

ef̂(xyi),

where Xy>i is the set of all data points which lie on the
r.h.s. of Xyi in the dual space. Then X∗y1, . . . ,X

∗
yk form

contiguous clusters in the dual space.

We now propose two intuitive, greedy algorithms for finding
k − 1 cut points in dual space.

Greedy bisection of the entropy cluster First, as illus-
trated in Fig. 3, we use a recursive bisection approach. In
each greedy iteration we pick a cluster with the highest
entropy (cluster size being a good proxy for it if cluster
sizes are non-uniform), and bisect it using the two-clusters
algorithm (Fig. 2). As described previously, the two dual
functions, f̂y0→y1 and f̂y1→y0, are updated considering all
the clusters learned so far, maximizing the estimate of KL-D
for each pair of clusters (old or new) in a batch update. We
evaluate this algorithm extensively in our experiments.

Greedy cuts Another approach, as illustrated in Fig. 4, is
to find k−1 greedy cuts in the dual space. Updating the dual
function and the cuts is done iteratively. While the algorithm
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is generally applicable for many possible objectives based
on KL-D between clusters, we prove theoretical guaranties
for one such objective owing to its submodularity.

Theorem 5 Consider a dual function f̂(.) and the associ-
ated representation of input data points in the dual space,
{f̂(xi)}ni=1. Let OPT be the optimal value of the objective,

argmax
y

k−1∑
i=1

D̂f̂ (Xy>i‖Xyi);

D̂f̂ (Xy>i‖Xyi) = Ex∈Xy>i f̂(x)− logExyi∈Xyie
f̂(xyi),

where Xy>i is the set of all data points which lie on the
r.h.s. of Xyi in the dual space. Optimizing k-1 cuts greedily
in the dual space finds clusters X∗y1, . . . ,X

∗
yk such that,

k−1∑
i=1

D̂f̂ (X
∗
y>i‖X∗yi) ≥

e− 1

e
OPT.

In practice, there is space to explore various algorithms for
finding the cut points while greedy algorithms as proposed
above enjoy theoretical guaranties.

3 EMPIRICAL EVALUATION

One of the best-motivated application of (especially infor-
mation theoretic) clustering algorithms, is clustering (noisy)
timeseries in domains such as neuroscience, healthcare, fi-
nance, environmental dynamics, etc. For instance, in neu-
roscience, it is of substantial interest to find a subset of
neurons in which neural activity exhibits high dependence
(MI) w.r.t. each other.

Datasets We evaluate our approach on the following time-
series datasets: (i) electrophysiological Neuropixels, (ii) US
stock returns, (iii) EEG, (iv) ECG, (v) Rain, (vi) Wind,
(vii) Pollution, and four representative UCR datasets, (viii)
UCR-Mallat, (ix) UCR-Trace, (x) UCR-Small Kitchen Ap-
pliances, (xi) UCR-ECG-Torso, and (xii) a synthetic time-
series dataset. See the supplement for more details.

Competitive Methods We compare our information the-
oretic clustering approach of divergence maximization (re-
ferred as “ITC-DM*") w.r.t. the traditional baseline models,
“KMeans", “Spectral" clustering, “kShape" clustering [Pa-
parrizos and Gravano, 2015]. We use two important baseline
estimators of MI based ITC: (i) a kNN based nonparame-
teric estimator, referred to as “ITC-kNN" [Faivishevsky and
Goldberger, 2010], and (ii) a minimum spanning trees es-
timator, referred as “ITC-MST" [Müller et al., 2012]. We
also evaluate various deep learning baselines: DEC [Xie
et al., 2016], NNM [Dang et al., 2021], include temporal
clustering models, DTC [Sai Madiraju et al., 2018], and
DTCR [Ma et al., 2019].

Hyperparameters Selection Our task is to obtain the best
possible clusters within an input dataset in an unsupervised
setting. The deep learning optimization of estimating and
maximizing KL-D w.r.t. cluster labels is unique to every
single input of a dataset. Hyperparameters can be chosen in-
dependently for a given input of dataset by maximizing the
proposed objective itself. We consider it valuable if some
hyper-parameter choices perform well across all the datasets,
to avoid the overhead of tuning as discussed next. Across
all 12 datasets, we use the entire input dataset for rather
than batch sampling. This is aligned with previous works
on dual divergence estimation Belghazi et al. [2018], Song
and Ermon [2019] which suggest to use a large batch size
to avoid high variance. We chose LSTMs with one hidden
layer of 32 units with a learning rate of 1e-1, weight parame-
ters initialized with std of 0.1. We perform 100 iterations in
the greedy algorihtm, with 10 warmup iterations, to update
the dual function and not optimize the cut points (clusters la-
bels). We use the greedy bisection algorithm for the primary
analysis (Fig. 3). These choices were made via preliminary
clustering analysis on a stock price dataset independently of
the datasets in this paper. In Sec. 3.1.3, we present an exten-
sive ablation study on the Neuropixels dataset, varying each
hyperparameter from the above defaults. For the baseline
clustering methods, we follow the respective strategies for
selecting the hyperparameters as described in their papers
or codebases.

3.1 EVALUATION RESULTS

Next, we present our extensive empirical results on many
real world datasets along with a synthetic timeseries dataset.

3.1.1 How to evaluate clusters of timeseries?

As the science of clustering objectives and algorithms ad-
vance in consideration of challenges presented by high di-
mensional noisy datasets in the modern times, we must
further the science of evaluation metrics as well. Next, we
discuss two evaluation metrics which we deem to be the
most appropriate in terms of being fundamental, robust to
noise, and can be estimated reliably.

Pairwise mutual information between timeseries We
propose to evaluate clusters in terms of pairwise MI between
timeseries within- and across- clusters. This is independent
of the clustering objective and simple to compute. We treat
timeseries observations as I.I.D. samples from a univariate
random variable ignoring the temporal correlations; we em-
ploy a kNN based estimator (k = 3). Cluster level statistics
of intra- and inter-cluster MI are obtained from the pairwise
MI function by taking averages and normalizing it using the
respective cluster sizes. Note, this MI function is not to be
confused with the clustering criterion of mutual informa-
tion between high dimensional data points (timeseries) and
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Figure 5: Evaluating clusters in terms of pairwise mutual information between timeseries within clusters (intra-cluster ↑)
and across clusters (inter-cluster ↓). The proposed method is ITC-DM shown in solid red circles.

cluster labels.

KL-divergence metric In addition, the KL-Divergence
objective can itself serve as an evaluation metric. For every
pair of clusters, we evaluate empirical KL-D between their
respective cluster distributions. We are only interested in
the relative values of KL-D between and across clusters
obtained from all the methods. For estimating the KL-D
criterion as a metric, we ensure that it is estimated inde-
pendently of its estimation as the objective. We employ
Transformers with 10 attention heads and feedforward di-
mension of 32 to estimate the KL-D metric; we use learning
rate of 3e-4, dropout rate of 0.2, and 200 iterations of weight
updates or until convergence.

On the role of domain knowledge in evaluating clusters
We argue that, since clustering is purely an unsupervised
problem for exploratory analysis, it is not apt to consider
class labels or any domain knowledge gleaned from super-
vised tasks as a proxy for cluster labels. Class labels can
only serve as yet another human annotation of cluster labels,
and not as the ground truth.

3.1.2 Comparative Analysis

First, we focus on the metric of inter- and intra-cluster MI,
and present the comparative analysis of our approach and
others in Fig. 5. We use the same number of clusters as the
classes for the datasets where domain specific class labels
are available, like the brain regions in the neuropixel dataset.
This is designed to present a fair comparison concerning the
class labels (yet not to be considered as ground truth). For
the remaining datasets (Rain, Wind, Pollution, Stock Prices),
we tune the number of clusters across all the methods and
then present results on the same number of clusters. We note
that some comparison methods fail to obtain clusters despite
many trials with random seeds; results for such cases are
missing in the plots.

In terms of achieving high intra-cluster MI but low inter-
cluster MI, our method ITC-DM* performs competitively
across all the datasets. In contrast, ITC-kNN which uses the
mutual information objective (1) achieves high intra-cluster
MI for some of the datasets (US stock returns, EEG, ECG,
UCR-Mallat) but at the expense of higher inter-cluster MI.
For some of the other datasets (Rain, Wind, Pollution, UCR-
Trace, UCR-Small Kitchen Appliances), ITC-kNN finds
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(l) SR: ITC-DM*

Figure 6: For the Neuropixels and Stock Returns datasets, corresponding to the prefixes "N:" and "SR:", KL-D values (nor-
malized by the maximum value) for intra-cluster (diagonal entries) and inter-cluster (off-diagonal entries) are shown across
all the competitive methods while excluding those methods (due to space constraints) which produce clusters of highly poor
quality. The clusters are sorted in ascending order of the cluster size.

clusters which are poor at both the metrics, intra- and inter-
cluster MI, in comparison to ITC-DM. ITC-MST, which is
also based on the objective of mutual information performs
poorly across many datasets (Synthetic, Neuropixels, US
Stock Returns, Pollution, EEG), partly due to its reliance
upon minimal spanning trees for estimating MI.

Traditional methods like kMeans and Spectral clustering
are ineffective due to sensitivity to noise and degrade when
clusters are high imbalanced; see the results for datasets:
Synthetic, Neuropixels, US Stock Returns, Rain, Pollution,
EEG, ECG, UCR-Small Kitchen Appliances. Even deep
learning based approaches such as NNM, i.e. clustering via
nearest neighbor matching of input data points in their deep
neural representations, are vulnerable to the noisy timeseries
datas including, Neuropixels, US Stock Returns, Rain, Wind,
Pollution, EEG, ECG, UCR-Mallat, UCR-Trace. Similarly,
the deep clustering method DEC exhibits unreliable per-
formance, finding poor choices of clusters for some of the
datasets, Neuropixels, Rain, Wind, EEG, and UCR-Trace.
While DTCR is consistently superior to DTC (except for
the synthetic data), it also finds clusters of poor quality for
Neuropixels, US Stock Returns, Wind, and UCR-Mallat.

In Fig. 5, it is also interesting to see that, for some datasets,
ITC-DM* outperforms w.r.t. class labels as well; see the
results for Neuropixels, UCR-Mallat and UCR-Trace. In
Fig. 5(b), when comparing ITC-DM* w.r.t. brain regions.
ITC-DM* finds clusters of neurons with lower inter-cluster
MI. This empirical result conforms to knowledge of human
brains where strong dependence between neurons across
brain regions imply information flow in the visual system.
As a matter of fact, all the clustering methods, except for
kMeans, spectral, and DTC, find clusters with inter-cluster
MI lower than the brain regions. Among those, ITC-DM*

kMeans Spectral ITC-kNN ITC-MST DEC DTCR NNM ITC-DM*
418 5902 2 15 289 545 231 168

Table 1: Average compute time (in seconds) for all the clus-
tering methods on Neuropixels dataset.

find the ones with the highest intra-cluster MI.

Comparisons with KL-D metric Next, in Fig. 6, we com-
pare the most competitive methods above in terms of the
KL-D metric. As desired, we observe higher KL-D (↑) be-
tween clusters from our method ITC-DM* vs the other meth-
ods. For neuropixels dataset, we observe high divergence
between brain regions as well.

Compute time In Table 1, we observe that compute time
is competitively lower w.r.t. the neural baselines. On the
other hand, ITC-kNN and ITC-MST which rely upon near-
est neighbor distances instead of neural representations ex-
hibit comparably negligible compute cost. As for Spectral
clustering, compute time can vary as per the Eigen spectrum.

3.1.3 Ablation Study

We present a detailed analysis for our approach using the
Neuropixels dataset.

In Fig. 7(a) and 7(b), we analyze intra- and inter-cluster MI
as we increase the number of clusters from 2 to 50. We ob-
serve that the inter-cluster MI initially declines and attains
a minimum at 6 clusters, and then continues to increase.
Interestingly, the optimal number of clusters (6) as indicated
by the lowest inter-cluster MI is also the number of brain
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Figure 7: Detailed analysis of our ITC-DM model (also
referred as "DV-LSTM") for Neuropixels dataset.

regions. In Fig. 7(c) and 7(d), we analyze clusters obtained
from 100 different trials of neural activity, and correlate
intra- and inter-cluster MI of the clusters w.r.t. the brain re-
gions. Note that MI metrics vary even for fixed brain regions,
since neural activity varies across all the trials. We observe
that the intra- and inter- cluster MI of clusters learned by our
algorithm remain close to the corresponding brain regions,
and exhibit high correlations with the latter.

In Fig. 8, we present an ablation study varying all the hy-
perparameters in our model one by one. To provide relative
measures, we show intra- and inter-cluster MI for all the
competitive methods and ITC-DM with its default hyperpa-
rameters, as in 5(b). Starting from the default configuration,
we vary each hyperparameters to observe the corresponding
change in the two metrics. We vary the number of layers in
the default LSTM model (1, 2, 3, 4, 5, 8, 10) and observe
only marginal changes in the metrics. However, the number
of hidden units is a sensitive hyperparameter (8, 16, 32, 64,
128, 256, 512, 1024); large or small numbers of units de-
grade the performance. Std for the initialization of weight
parameters is an important parameter (0.01, 0.03, 0.05, 0.1,
0.2, 0.3, 0.5) with high variability in the results; however,
the default value of 0.1 works consistently across all the
experiments. Perhaps surprising, the learning rate (LR) is
only mildly sensitive (1e-5 to 1e-1) with no clear pattern
for whether lower or higher LR is better.

From varing the number of iterations in the greedy bisec-
tion algorithm (10 to 300), we find that a minimum of 30
iterations is necessary to ensure good performance. We vary
warm up iterations between two extremes from 0 to 50 (de-
fault is 10) and notice that extremly low or high values are
detrimental. We also find that FNNs perform well, and their
performance varies by learning rate. We find Transformers
suited for estimating KL-D as a metric for their stability
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Figure 8: Ablation study for our approach using Neuropixels
dataset. ITC-DM refers to our model with default configu-
ration used for the primary analysis. We analyze the perfor-
mance of our model w.r.t. change in all the hyperparametes,
such as the number of layers, learning rate, etc.

in learning, but their performance for clustering underper-
forms FNNs and LSTMs. Lastly, we evaluate the greedy cut
point algorithm (4) and observe its performance comparable
but not superior to greedy bisection algorithm. Overall, it
is noteworthy that even changing any hyperparameter to
extreme values, ITC-DM* remain highly competitive.

4 CONCLUSIONS

To the best of our knowledge, this paper presents the first
deep learning based information theoretic approach for clus-
tering, together with a novel KL-Divergence criterion for
optimization with no assumptions underlying the true data
distribution. This new criterion subsumes the objective of
mutual information. We propose to estimate KL-D in its dual
form which gives us a highly efficient framework for opti-
mization along with theoretical guaranties. Our experimen-
tal results on 12 real world timeseries datasets demonstrate
that our approach is highly competitive w.r.t. other infor-
mation theoretic clustering methods as well as advanced
deep learning methods in ensuring two desirable properties:
high KL-divergence among cluster distributions, and low
inter-cluster pairwise mutual information.
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