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1 PROOFS

We first recall the definition of D̂(X∥Xin) here.

D̂(X∥Xin) = max
f̂(.)∈H

1

m

∑
xj∈X

f̂(xj)− log
∑

xin
i ∈Xin

ef̂(x
in
i ) + logN (1)

We define the value inside the max expression for any particular f as D̂f (X∥Xin).

D̂f̂ (X∥Xin) =
1

m

∑
xj∈X

f̂(xj)− log
∑

xin
i ∈Xin

ef̂(x
in
i ) + logN (2)

1.1

Proof of Theorem 1.

Let m = minxin
i
f̂∗(xin

i ). By way of contradiction assume that there is xj such that f̂∗(xj) < m. Define function f̄ as
follows. For any xi ∈ X,

f̄(xi) =

{
f̂∗(xi) if f(xi) ≥ m

(f̂∗(xi) +m)/2 otherwise

We show that D̂f̄ (X∥Xin) > D̂f̂∗(X∥Xin). To see this, first note that for any xin
i ∈ Xin, f̄(xin

i ) = f̂∗(xin
i ). So we have

log
∑

xin
i ∈Xin

ef̄(x
in
i )

|Xin|
= log

∑
xin
i ∈Xin

ef̂
∗(xin

i )

|Xin|
. (3)

Moreover, we have that for any xi ∈ X, f̄(xi) ≥ f̂∗(xi). This is because if f̂∗(xi) ≥ m, then f̄(xi) = f̂∗(xi) and if
f̂∗(xi) < m, then f̄(xi) = (m+ f̂∗(xi))/2 > f̂∗(xi). Since there is at least one xj such that f̂∗(xj) < m, we have that

∑
xj∈X

f̄(xj)

|X|
>

∑
xj∈X

f̂∗(xj)

|X|
. (4)

By Eq 3 and 4 and the definition of D̂f (X∥Xin), we have that D̂f̄ (X∥Xin) > D̂f̂∗(X∥Xin). Since D̂f̂∗(X∥Xin) =

D̂(X∥Xin) = max D̂f (X∥Xin), this is a contradiction. So for all xj ∈ X, we have f̂∗(xj) ≥ m. □
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1.2

Proof of Theorem 2. By way of contradiction assume that maxxj∈X f̂∗(xj) < maxxin
i ∈Xin f̂∗(xin

i ). Let m =

maxxj∈X f̂∗(xj). Define f0(x) = min(f̂∗(x),m). Thus, f0(x) ≤ f̂∗(x) for all x with strict inequality f0(x) < f̂∗(x) for
at least some xin

i ∈ Xin.

We will now that show that D̂f0(X∥Xin) > D̂f̂∗(X∥Xin). To see this, note that:

log
∑

xin
i ∈Xin

ef0(x
in
i )

|Xin|
< log

∑
xin
i ∈Xin

ef̂
∗(xin

i )

|Xin|
. (5)

This leads to:

D̂f0(X∥Xin) =
∑
xj∈X

f0(xj)

|X|
− log

∑
xin
i ∈Xin

ef0(x
in
i )

|Xin|

>
∑
xj∈X

f0(xj)

|X|
− log

∑
xin
i ∈Xin

ef̂
∗(xin

i )

|Xin|

=
∑
xj∈X

f̂∗(xj)

|X|
− log

∑
xin
i ∈Xin

ef̂
∗(xin

i )

|Xin|
since f̂∗(xj) ≤ m for all xj ∈ X making f̂∗(xj) = f0(xj)

= D̂f̂∗(X∥Xin). (6)

This is a contradiction since D̂f̂∗(X∥Xin) = D̂(X∥Xin) = maxf∈H D̂f (X∥Xin). So, we have maxxj∈X f̂∗(xj) ≥
maxxin

i ∈Xin f̂∗(xin
i ). □

1.3

Proof of Theorem 3. By the definition of Xood, since for any xj ∈ Xood we have f̂∗(xj) > log
∑

xin
i ∈Xin ef̂

∗(xin
i ), we

obtain 1
m

∑
xj∈Xood f̂∗(xj) > log

∑
xin
i ∈Xin ef̂

∗(xin
i ) and thus by Eq 2 we get that D̂f̂∗(Xood∥Xin) > logN . Now since

D̂(Xood∥Xin) = maxf̂ D̂f̂ (X
ood∥Xin), we have that D̂(Xood∥Xin) ≥ D̂f̂∗(Xood∥Xin) > logN . Note that the function

attaining a maximum in D̂(Xood∥Xin) is not necessarily f̂∗ and we don’t make a such assumption.

□

1.4

Proof of Theorem 4. First we consider present → past direction in computing KL-D. We show present data points as a set
P and historical past data points as H . For any subset T of the historical past, we show the KL divergence between present
and this subset of the past by D̂kl(P ||T ). Recall that we can assume there is a neural net function f : fP→T optimizing
D̂kl(P ||T ) for episodes T ⊆ H of the past data. Formally we assume that

D̂kl(P ||T ) = fP − log ef
T

For T = P , we have that D̂kl(P ||P ) is near zero since the KL-D between P and P is zero. So we have

D̂kl(P ||P ) = fP − log ef
P
= O(1)

So fP ≤ log ef
P
+O(1).

Now using the fact that the replay samples R are taken with respect to the present bins distribution, we show that
| log efR − log ef

P | ≤ d. There is α > 0 such that for each present bin B, if B has nB present data points we sample αnB



B1 B2 B3 B4 B8. . .

Figure 1: DV representation of data points in one dimension. The grey points represent past data and the red points represent
present data. Observe that if we remove all the points in B4, . . . , B8, the mean value of past data points will decrease.

past points in B. Moreover for any present data xP and replay data xR in B we have xP − d ≤ xR ≤ xP + d. Let BR be
the set of replay samples in B and BP be the set of present samples in B. So

αe−d
∑

x∈BP

ef(x) ≤ α
∑

x∈BP

ef(x−d) ≤
∑

x∈BR

ef(x) ≤ α
∑

x∈BP

ef(x+d) ≤ αed
∑

x∈BP

ef(x)

So we have ef
P · e−d ≤ ef

R ≤ ef
P · ed. And so | log efR − log ef

P | ≤ d. This means that

0 ≤ D̂kl(P ||R) = fP − log ef
R ≤ fP − log ef

P
+ d+O(1) ≤ O(d)

The replay → present direction is very similar, we note it here for completeness.

Again there is a neural net function g : fR→P optimizing D̂(T ||P ) for episodes T ⊆ H of the past data. This means:

D̂kl(T ||P ) = gT − log egP

For T = P , we have
D̂kl(P ||P ) = gP − log egP = O(1)

So gP ≤ log egP + O(1). For every bin B, we have that the difference in value between any present sample and replay
sample is at most d, and hence |gP − gR| ≤ d So we have

0 ≤ D̂kl(R||P ) = gR − log egP ≤ gP − log egP + d+O(1) ≤ O(d)

□

1.5

Lemma 1 The value of the function D̂f (Xa∥Xb) :=
1

|Xa|
∑

xj∈Xa
f(xj)− log 1

|Xb|
∑

xi∈Xb
ef(xi) is unchanged if we

replace f(x) with f̃(x) = f(x) + c for some constant c for all x ∈ Rk, given any two sets Xa and Xb ⊆ Rk.

Proof of Lemma 1.

D̂f̃ (Xa∥Xb) =
1

|Xa|
∑

xj∈Xa

f̃(xj)− log
1

|Xb|
∑

xi∈Xb

ef̃(xi)

=
1

|Xa|
∑

xj∈Xa

(f(xj) + c)− log
1

|Xb|
∑

xi∈Xb

ef(xj)+c

= c+
1

|Xa|
∑

xj∈Xa

f(xj)− log
ec

|Xb|
∑

xi∈Xb

ef(xj)

= c+
1

|Xa|
∑

xj∈Xa

f(xj)− log ec − log
1

|Xb|
∑

xi∈Xb

ef(xj)

=
1

|Xa|
∑

xj∈Xa

f(xj)− log
1

|Xb|
∑

xi∈Xb

ef(xj) = D̂f (Xa∥Xb). (7)

□



Next, we prove Theorem 5. We define: D̂f (Xa∥Xb) :=
1

|Xa|
∑

xj∈Xa
f(xj)− log 1

|Xb|
∑

xi∈Xb
ef(xi) for any Xa,Xb ⊆

Rk. Then, D̂(Xa∥Xb) = maxf∈H D̂f (Xa∥Xb) where H is the set of all learnable functions defined as follows: H ⊆
{f : Rk → R} such that (i) −∞ < f(x) < ∞ for all x ∈ Rk and (ii) If f1, f2, g ∈ H, then functions of the form
f1(x)I(g(x) ≥ τ) + f2(x)I(g(x) < τ) (which are essentially entirely derived from functions in H) also lie in H. Here
I(·) is the indicator function. This stems from the intuition that if we are able to learn some functions on Rk → R, then a
function that is entirely derived from those functions should also be learnable.

Proof of Theorem 5. We have D̂(X∥Xin) = maxf∈H D̂f (X∥Xin) and D̂(X̄∥Xin) = maxf∈H D̂f (X̄∥Xin). Now,
f̂1 ∈ H is such that D̂(X∥Xin) = D̂f̂1

(X∥Xin). We also let f̂2 ∈ H be a function such that D̂(X̄∥Xin) = D̂f̂2
(X̄∥Xin).

Observe that, D̂(X̄∥Xin) = maxf∈H D̂f (X∥Xin) ≥ 1
|X̄|

∑
xj∈X̄ f̂1(xj)− log 1

|Xin|
∑

xin
i ∈Xinef̂1(x

in
i ) = D̂f̂1

(X̄∥Xin).

By way of contradiction, let us assume strict inequality: D̂f̂1
(X̄∥Xin) < D̂(X̄∥Xin).

Then, plugging in f̂2, we get,

1

|X̄|
∑
xj∈X̄

f̂1(xj)− log
1

|Xin|
∑

xin
i ∈Xin

ef̂1(x
in
i ) <

1

|X̄|
∑
xj∈X̄

f̂2(xj)− log
1

|Xin|
∑

xin
i ∈Xin

ef̂2(x
in
i ). (8)

Or,

D̂(X∥Xin) =
1

|X|
∑
xj∈X

f̂1(xj)− log
1

|Xin|
∑

xin
i ∈Xin

ef̂1(x
in
i )

<
1

|X̄|
∑
xj∈X̄

f̂2(xj) +
1

|X|
∑
xj∈X

f̂1(xj)−
1

|X̄|
∑
xj∈X̄

f̂1(xj)− log
1

|Xin|
∑

xin
i ∈Xin

ef̂2(x
in
i )

=
1

|X̄|
∑
xj∈X̄

f̂2(xj) +
1

|X|

 ∑
xj∈X̄

f̂1(xj) +
∑

xj∈X\X

f̂1(xj)

− 1

|X̄|
∑
xj∈X̄

f̂1(xj)− log
1

|Xin|
∑

xin
i ∈Xin

ef̂2(x
in
i )

=
1

|X|

 ∑
xj∈X̄

|X|
|X̄|

f̂2(x) + (1− |X|
|X̄|

)f̂1(x) +
∑

xj∈X\X

f̂1(xj)

− log
1

|Xin|
∑

xin
i ∈Xin

ef̂2(x
in
i )

≤ 1

|X|

 ∑
xj∈X̄

f̂2(xj) +
∑

xj∈X\X̄

f̂1(xj)

− log
1

|Xin|
∑

xin
i ∈Xin

ef̂2(x
in
i ), (9)

where the last line holds because, without loss of generality, we can assume that f̂2(x) < f̂1(x). This is because, if the f̂2(x)
happens to be greater than f̂1(x) at some values of x, using Lemma 1, we can always redefine another f̂2(x) ∈ H as the old
f̂2(x)− c where the constant c is an offset that is chosen appropriately, e.g., c = maxx∈R |f̂1(x)− oldf̂2(x)| < ∞ since f̂1
and old f̂2 also belong to H.

Let us now define a function f̃(x) as follows: f̃(x) = f̂1(x)I(f̂1(x) > τ) + f̂2(x)I(f̂1(x) ≤ τ). This function attains the

following values over the subsets X̄, X\X̄ and Xin: f̃(x) =

{
f̂1(x), x ∈ X\X̄
f̂2(x), x ∈ Xin ∪ X̄,

since f̂1(x) > τ for x ∈ X\X̄

and f̂1(x) ≤ τ for x ∈ Xin ∪ X̄. The function f̃ also belongs to H because of its form that is entirely derived from other
functions in H.

But this means that we now have a function f̃(x) ∈ H, such that 1
|X|

∑
xj∈X f̃(xj) − log 1

|Xin|
∑

xin
i ∈Xinef̃(x

in
i ) =

D̂f̃ (X∥Xin) > D̂(X∥Xin) which is a contradiction since D̂(X∥Xin) = maxf∈H D̂f (X∥Xin).

Thus, the strict inequality (D̂f̂1
(X̄∥Xin) < D̂(X̄∥Xin)) does not hold, and we have:

D̂(X̄∥Xin) = D̂f̂1
(X̄∥Xin) =

1

|X̄|
∑
xj∈X̄

f̂1(xj)− log
1

|Xin|
∑

xin
i ∈Xin

ef̂1(x
in
i )



□

2 MORE ON EXPERIMENTAL ANALYSIS

2.1 VISUALIZATIONS

(a) SUN (b) Places (c) iNaturalist

(d) Textures (e) Animation (f) Arabic

(g) Tumors (h) Chest Xray (i) M. Pox

(j) M. Posters (k) YouTube T. (l) Shells P.

Figure 2: With our method DDE* for OOD detection in WideResnet101, Imagenet dataset (ID set in blue) vs OOD test
sets (in red) are shown to be separated in the respective dual functional spaces.



2.2 ANALYSIS FOR VITS

In Table 1, we present results for OOD detection in ViT-L-16. Note that OOD detection in pretrained Vision Transformers is
under explored. The results suggest that all the methods are fundamentally limited in their capability for OOD detection in
ViTs. It is only for a few OOD datasets such as USPS, Alzeihmers, Arabic Characters, Sign Language, Shells Pebbles, that
we observe good performance across a majority of the methods. While our methods, DDE* and DDE-SM*, are signfiicantly
superior w.r.t. all the methods for ViT-L-16, the ViT does limit even our proposed OOD detectors in comparison to the
WideResnet.

2.3 VARYING SAMPLE SIZE IN IMAGENET (ID) DATASET

We perform a new ablation study for our method (DDE*) by varying the sample size (N ) on the Imagenet (ID) dataset.
Following the same experimental setup as in Table 1 in the paper, we present results in the table below. "All" refers to
using all the samples in the Imagenet dataset for OOD detection which is the same as column "DDE*" in Table 1 of the
paper. For a given sample size, we randomly select samples from the Imagenet dataset and use only those samples for the
entire experiment including tuning the hyperparameters. We perform 10 random trials, and correspondingly report mean
and standard deviation of the FPR95 scores for each of the 51 test OOD sets. We observe that, for many of the OOD test
sets, even a small sample size of a few thousands (N = 3000) suffices to achieve high OOD detection rate. However, on
the extreme end, using a sample size of 100 is clearly not enough. Note that the numbers from this study should not be
compared to other methods in the paper, since the latter use the entire Imagenet dataset.

2.4 BATCH INFERENCE ON TEST SET

Following the same experimental setup as in Table 1 in the paper, we perform an ablation study of OOD detection in a
test set splitting it into (100) small ordered batches of equal sizes; batch size across the OOD test set varies from 2 to 430
with median value of 28. We believe batch inference of a test set to strongly resemble real world scenarios of continual
lifelong learning. For attaining a reasonable sample size in a test set (though not necessary), we augment each batch of test
samples with (300) randomly selected samples from ID training set (i.e. Imagenet dataset) and (300) samples from the OOD
validation set (same as discussed in the paper, generated from ID samples in Imagenet by simple perturbations proposed by
Hendrycks et al. [2019]). We perform 10 trials to account for randomness in selecting the samples for augmentation. In the
table below, referring to this batch-inference based online version of our method as "DDE-Online", we present mean and
standard deviation of FPR95 scores (from 10 trials) for each of the OOD test sets. In addition, for a comparison, we present
the original results for our method ("DDE*") as well as the best of all the baselines (which is different for each OOD test
set) from Table 1 in the paper. It is interesting to note that the standard deviation of FPR95 scores is low and that it performs
even better than "DDE*" for many test sets. Even for most of the other cases, "DDE-Online" has lower FPR95 than the best
of the baselines.

2.5 FIXED ESTIMATOR TUNED FOR TEST SETS

As per the reviewer’s suggestion, in the table below, we present results from an ablation study on generalization of the
estimator. We optimize the dual function for estimating KL-divergence between the ID training set and the OOD validation
set. Using this dual function, we perform OOD detection across all the OOD test sets. This highly compute efficient variant
of our method is referred as "DDEv". Optionally, we fine tune for a given test set using 10% or 20% of the original compute
cost of our method (DDEvt10 and DDEvt20). For a comparison, we also present results for the default version of our method
DDE* and the best of the baselines from Table 1 in the paper. FPR95 scores in the table below suggest that the estimator
does generalize to many OOD test sets, and it further benefits from fine tuning.

2.6 MIXTURE OF ID & OOD SAMPLES IN TEST SET

We evaluate our approach for OOD detection on test sets containing both ID and OOD samples. We augment each OOD test
set with (3000) ID test samples. Besides this change, evaluation setup is same as for Table 1 in the paper. Results for this
setting are denoted as "DDE-mixed". In the table below, for each test set, we report FPR95 scores for OOD samples, as well
as for ID samples in parenthesis. In addition, for a comparison, we present the results of "DDE*" as well as the best of all
the baselines from Table 1 in the paper. Our method detects ID samples in each test set with a very high accuracy (FPR95 >



Dataset msp mls odin ebo gn react gm knn dice ash wm klm cider ige dde* dde-sm*
ID Test↑ 95 94 93 94 95 93 92 95 95 93 94 93 94 94 96 95

OOD Val. 77 74 75 68 68 67 67 79 68 66 83 73 79 68 54 59
SUN 96 96 94 98 97 98 98 99 99 97 – 96 96 98 91 91

Places 96 95 94 97 96 96 95 98 98 96 – 96 95 97 96 94

iNaturalist 93 93 90 95 94 94 98 99 96 92 – 93 93 95 76 66

Textures 95 93 94 90 91 88 89 94 90 85 – 94 95 90 71 58
Agr. Crop 85 89 78 98 96 97 98 98 98 98 – 96 85 97 40 33

Animation – 99 99 – – – – – – – – 99 – – 18 19

B. Tumors 91 88 86 91 93 89 13 30 92 66 – 96 67 92 31 31

C. Xray 90 91 84 – – – 80 – – – – 90 93 – 4 7

Faces in W. 91 88 87 93 95 90 59 83 91 90 – 92 88 93 30 35

Fastfood 98 98 97 98 98 97 96 98 96 97 – 97 98 97 62 50

Gemstone – – 99 – – – 97 99 – 99 – – 99 – 78 63

Lego – – 99 – – 99 98 99 – 99 – 98 97 – 66 66

Plant D. 99 – 99 – – – – – – – – – – – 27 20

USPS 0 0 0 0 – – – 0 – – – 0 0 – 0 0
Alzeihmers 17 3 7 4 14 1 2 98 53 0 – 68 76 8 0 0

B. Cells – – – – – – – – – – – – – – 11 12

B. Logos 98 98 98 98 98 98 95 98 99 98 – 98 98 98 23 25

Captcha – – – – – – – – – – – – – – 0 0
Cards 98 98 98 96 97 96 94 96 97 94 – 97 97 96 47 36

Arabic 48 36 43 19 15 18 0 1 2 1 29 66 12 24 0 0

Chess 94 93 93 90 91 90 82 86 90 87 95 96 90 90 74 80

C. Fine Art 99 99 99 98 98 98 97 98 97 97 – 99 99 98 68 48

Coffee B. – – – – – – – – – – – – – – 3 5

Colon S. – – – – – – 84 94 – – – – – – 0 0

Covid CT S. – – – – – – – – – – – – – – 6 7

Diamonds – – – – – – – – – – – – – – 12 15

E. Faces – – 99 – – – 90 98 – – – – 99 – 10 14

H. Eyes – – – – – – 99 – – – – – – – 13 15

Fire & S. – – – 98 – 98 68 69 90 98 95 – 82 99 57 63

H.W. Eng. – – – – – – – – – – – – – – 0 0
Excavation – – 99 99 99 97 – – 99 99 – 93 – 99 23 22

Eyes – – – – – – – – – – – – – – 29 31

H.W. Math – – – – – – – – – – – – – – 8 8
H. & B. 99 99 98 99 99 99 99 – – 99 – 96 – 99 8 10

I. Food 97 96 96 95 96 94 92 96 93 94 – 97 96 95 75 56

Lego M. F. – – 99 – – 99 98 99 – 99 – 98 97 – 66 61

Licence P. 81 81 79 91 96 91 66 81 94 89 – 94 64 92 26 34

Meat Q. – – – – – 99 – – – – – – – – 0 0

M. Pox – – 99 – 99 99 83 99 98 99 – 99 – 99 55 52

M. Posters 87 82 83 75 78 72 75 81 74 71 – 88 84 75 43 52

Orna. P. – – 99 – – – – – – 99 – 98 – – 11 15

Paintings 96 96 95 98 98 97 41 43 98 97 67 – 88 98 51 51

Pollen G. – – – – – – – – – – – – – – 6 8

QR C. 86 83 77 – – 97 75 – – 47 – 95 99 – 0 0

Railway T. – – – – – – – – – – – 99 – – 21 19

Weed C. 76 72 72 71 71 70 63 85 76 68 – 87 78 71 33 40

YouTube T. 84 78 79 76 77 72 75 83 79 72 – 83 83 75 59 51

Weather 99 98 98 98 98 98 95 97 99 97 – 98 95 98 87 89

Sign L. 34 25 30 6 11 4 0 2 1 1 98 65 38 8 0 1

Stairs 98 98 98 99 99 99 98 98 99 98 99 99 97 99 51 71

Shells P. 0 0 0 0 93 90 – 0 93 85 – 0 0 – 0 0

Table 1: Evaluation results for OOD detection in ViT-L-16 pretrained on Imagenet-1k using the metric FPR95 (↓). Due to
space constraints, we display method names in lower case and use "–" wherever FPR95 is 100. Best scores are shown in
bold and the second best scores are underlined.



Dataset All N=30000 N=10000 N=3000 N=1000 N=100

ID Test ↑ 95 95±1 94±1 94±1 95±2 96±4

OOD Validation 31 46±6 47±5 42±5 35±5 33±22

SUN 18 29±8 33±6 32±9 33±23 44±35

Places 10 32±12 37±8 34±9 34±23 45±35

iNaturalist 11 22±9 28±9 24±6 28±17 39±31

Textures 15 27±10 38±13 32±8 34±12 61±37

Agriculture Crop 0 3±3 9±7 8±4 17±28 19±21

Animation 6 14±7 20±7 18±6 19±11 33±29

Brain Tumors 3 8±5 11±5 12±4 11±2 35±33

Chest Xray 4 9±5 14±6 14±6 12±4 44±37

Faces in the Wild 9 16±8 23±8 19±8 24±26 37±33

Fastfood 10 27±8 35±9 33±9 27±7 44±35

Gemstones 4 10±6 17±9 18±6 16±6 40±33

LEGO 0 3±3 6±5 6±3 15±28 40±37

Plant Diseases 2 8±5 13±5 13±5 15±13 47±35

USPS 1 5±3 9±5 8±4 7±2 29±31

Alzeihmers 1 4±4 6±4 6±3 5±2 28±36

Blood Cells 1 5±4 9±6 9±4 17±24 21±25

Brand Logos 0 0±0 1±2 1±1 1±1 7±16

Captcha 0 0±0 0±0 0±0 0±0 0±0

Cards 11 17±7 23±12 19±7 21±9 45±32

Arabic Handwritten Characters 4 7±4 10±5 9±3 8±2 18±20

Chess 1 5±4 10±5 11±5 11±4 32±34

Chinese Fine Art 1 4±4 9±5 9±5 17±28 44±36

Coffee Beans 1 4±3 6±5 6±3 5±3 18±24

Colonoscopy 1 3±2 6±4 5±2 5±2 22±28

Covid CT Scan 3 7±5 11±5 11±5 12±6 24±27

Diamonds 3 5±3 9±5 7±3 7±2 35±33

Emotional Faces 5 13±7 20±10 17±7 22±26 39±34

Human Eyes 5 11±6 19±7 17±9 15±5 28±30

Fire & Smoke 0 0±0 1±1 0±1 10±30 11±20

English Handwritten Characters 2 4±3 7±4 6±3 6±2 15±18

Excavation 0 2±2 4±3 4±2 13±29 41±40

Eyes 3 5±3 7±4 6±3 9±10 35±34

Handwritten Math Symbols 1 3±3 ±4 6±3 6±2 15±19

Bart and Homer 0 1±1 3±3 3±2 13±29 16±20

Indian Food 13 23±11 29±9 30±8 32±19 41±33

Lego Minifigures 0 3±3 7±4 6±4 15±29 32±35

Licence Plates 0 0±0 0±1 0±1 0±1 20±38

Meat Quality 0 0±1 2±3 1±1 1±2 11±26

Monkeypox 8 14±7 21±7 21±6 29±25 44±35

Movie Posters 14 26±10 35±9 31±9 26±10 37±30

Ornamental Plants 0 3±4 6±5 6±3 14±29 21±26

Paintings 1 5±4 9±5 8±4 16±28 21±26

Pollen Grain 1 4±4 9±6 11±5 9±3 25±27

QR Codes 1 2±2 4±3 3±2 3±2 12±16

Railway Tracks 1 2±2 6±5 6±4 14±29 31±34

Weed Crop 4 6±4 9±6 9±4 17±28 27±25

YouTube Thumbnail 5 22±11 31±8 27±7 31±24 49±33

Weather 14 27±8 33±12 29±7 31±20 51±40

Sign Language 1 3±4 6±5 6±3 4±1 22±24

Stairs 0 0±0 1±2 1±1 0±1 9±22

Shells or Pebbles 22 26±6 31±9 31±8 26±9 53±35

Table 2: Evaluation results for OOD detection in WideResnet101 pretrained on Imagenet-1k using the metric FPR95 (↓).



Dataset Best of the Baselines DDE* DDE-Online
SUN 12 18 14±1

Places 34 10 14±0

iNaturalist 12 11 8±1

Textures 12 15 10±1

Agriculture Crop 0 0 3±1

Animation 21 6 4±1

Brain Tumors 14 3 6±1

Chest Xray 7 4 4±0

Faces in the Wild 19 9 5±1

Fastfood 47 10 14±1

Gemstone 39 4 11±1

LEGO 2 0 4±1

Plant Diseases 14 2 6±1

USPS 12 1 1±0

Alzeihmers 4 1 1±0

Blood Cells 6 1 6±1

Brand Logos 0 0 0±0

Captcha 0 0 0±0

Cards 59 11 9±1

Arabic Handwritten Characters 4 4 0±0

Chess Pieces 9 1 7±1

Chinese Fine Art 2 1 7±1

Coffee Beans 10 1 4±1

Colonoscopy 1 1 2±1

Covid CT Scans 11 3 6±1

Diamonds 31 3 5±1

Emotional Faces 15 5 4±0

Human Eyes 20 5 5±1

Fire & Smoke 0 0 0±0

English Handwritten Characters 8 2 2±1

Excavation 1 0 2±1

Eyes 11 3 5±1

Handwritten Math Symbols 10 1 1±1

Bart and Homer 0 0 1±0

Indian Food 49 13 14±1

LEGO Minifigures 1 0 4±1

Licence Plates 0 0 0±0

Meat Quality 0 0 0±0

Monkeypox 50 8 9±1

Movie Posters 37 14 13±1

Ornamental Plants 10 0 3±2

Paintings 2 1 5±1

Pollen Grain 12 1 6±2

QR Codes 5 1 0±0

Railway Tracks 1 1 2±1

Weed Crops 26 4 7±1

YouTube Thumbnails 40 5 17±2

Weather 58 14 16±1

Sign Language 10 1 2±1

Stairs 0 0 0±0

Shells or Pebbles 59 22 14±1

Table 3: Evaluation results for OOD detection in WideResnet101 pretrained on Imagenet-1k using the metric FPR95 (↓).



Dataset Best of the Baselines DDE* DDEv DDEvt10 DDEvt20

SUN 12 18 33 22 21

Places 34 10 32 23 16

iNaturalist 12 11 29 15 15

Textures 12 15 82 65 43

Agriculture Crop 0 0 0 0 0

Animation 21 6 6 6 6

Brain Tumors 14 3 5 6 6

Chest Xray 7 4 3 7 7

Faces in the Wild 19 9 7 6 6

Fastfood 47 10 35 24 17

Gemstone 39 4 26 10 9

LEGO 2 0 1 3 3

Plant Diseases 14 2 4 10 10

USPS 12 1 2 4 4

Alzeihmers 4 1 1 2 2

Blood Cells 6 1 2 7 7

Brand Logos 0 0 0 0 0

Captcha 0 0 0 0 0

Cards 59 11 50 21 15

Arabic Handwritten Characters 4 4 3 5 5

Chess Pieces 9 1 5 6 6

Chinese Fine Art 2 1 2 11 11

Coffee Beans 10 1 2 3 3

Colonoscopy 1 1 0 0 0

Covid CT Scans 11 3 3 4 4

Diamonds 31 3 16 6 6

Emotional Faces 15 5 4 6 6

Human Eyes 20 5 6 6 6

Fire & Smoke 0 0 0 0 0

English Handwritten Characters 8 2 0 1 1

Excavation 1 0 0 1 1

Eyes 11 3 8 5 5

Handwritten Math Symbols 10 1 1 2 2

Bart and Homer 0 0 0 0 0

Indian Food 49 13 31 18 13

LEGO Minifigures 1 0 0 3 3

Licence Plates 0 0 0 0 0

Meat Quality 0 0 0 0 0

Monkeypox 50 8 31 14 11

Movie Posters 37 14 23 15 12

Ornamental Plants 10 0 2 4 4

Paintings 2 1 2 4 4

Pollen Grain 12 1 6 7 7

QR Codes 5 1 0 3 3

Railway Tracks 1 1 0 1 1

Weed Crops 26 4 10 5 5

YouTube Thumbnails 40 5 27 18 14

Weather 58 14 51 29 21

Sign Language 10 1 2 4 4

Stairs 0 0 0 0 0

Shells or Pebbles 59 22 44 28 20

Table 4: Evaluation results for OOD detection in WideResnet101 pretrained on Imagenet-1k using the metric FPR95 (↓).



94). As for detecting OOD samples, for many of the test sets, our method achieves lower FPR95 scores (as desired) w.r.t. the
best of the baselines.

2.7 DETAILS ON DUAL DIVERGENCE ESTIMATION VIA DEEP NEURAL NETWORKS

As it has been explored in the previous works for dual divergence estimation [Belghazi et al., 2018], we employ a lightweight
deep neural net, independent of the pretrained DNN, as a dual function approximator. The neural dual function is optimized
via maximization of the divergence measure w.r.t. the weight parameters. Large batch size (10k in our experiments) is
recommended to avoid otherwise high variance in estimating the measure [Song and Ermon, 2019].

Besides, DNNs present the challenge of overfitting. In the context of divergence estimation, it means that if we perform a
very large number of batch updates, the estimate can eventually diverge. In practice, a few hundred batch updates with low
learning rate (5e-4 in our experiments) suffice to converge before the phenomenon of divergence may start to take place after
a few thousand batch updates.

The neural architecture, along with the hyperparameters such as learning rate, and number of batch updates, can be
automatically tuned such that 5% of the samples in ID set are identified as OOD as it is the standard practice in all the
previous works on OOD detection in pretrained networks (corresponding to metric FPR95). Furthermore, as suggested
in previous works, one can also minimize false positive rates on a validation set of OOD samples which is generated via
various kinds of perturbations performed on ID samples [Hendrycks et al., 2019].

It is also worth noting that, while the architecture and all the hyperparameters are fixed after the tuning on the ID set, the
weight parameters of a DNN are optimized independently for each test set. This is because the dual function is unique to the
problem of dual divergence estimation between a test set and the ID set. Despite this, we find in our experimental analysis
that the average compute time for OOD detection in a test set (of size in few thousand) is in seconds.

2.8 DATASETS FOR ID DETECTION

US stocks prices. We started with the 1000 stocks from the constituents of the Russell 3000 index that have the highest
liquidity. This dataset is publicly available, though very large in size to be released as a single file. After performing
necessary preprocessing and checks on data quality issues, we use 982 of those stocks. The returns are evaluated every 5
minutes, for the period of from May 2021 to May 2022, i.e. 7800 timesteps.

ECG dataset is available on Kaggle.1

2.9 TEST DATASETS FOR OOD DETECTION

All the new datasets are available at Kaggle. For the previously benchmarked test OOD datasets, we obtained the preprocessed
versions from the respective sources.

References

Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeshwar, Sherjil Ozair, Yoshua Bengio, Aaron Courville, and Devon
Hjelm. Mutual information neural estimation. In Proceedings of International Conference on Machine Learning, 2018.

Dan Hendrycks, Mantas Mazeika, and Thomas Dietterich. Deep anomaly detection with outlier exposure. In Proceedings of
International Conference on Learning Representations, 2019.

Jiaming Song and Stefano Ermon. Understanding the limitations of variational mutual information estimators. arXiv
preprint arXiv:1910.06222, 2019.

1https://www.kaggle.com/datasets/shayanfazeli/heartbeat?select=ptbdb_abnormal.csv

https://www.kaggle.com/datasets/shayanfazeli/heartbeat?select=ptbdb_abnormal.csv


Dataset Best of the Baselines DDE* DDE-mixed

SUN 12 18 37 (99)

Places 34 10 36 (98)

iNaturalist 12 11 17 (98)

Textures 12 15 20 (98)

Agriculture Crop 0 0 25 (95)

Animation 21 6 10 (98)

Brain Tumors 14 3 1 (96)

Chest Xray 7 4 1 (96)

Faces in the Wild 19 9 7 (96)

Fastfood 47 10 23 (97)

Gemstone 39 4 5 (98)

LEGO 2 0 14 (95)

Plant Diseases 14 2 5 (95)

USPS 12 1 0 (98)

Alzeihmers 4 1 0 (96)

Blood Cells 6 1 11 (98)

Brand Logos 0 0 1 (94)

Captcha 0 0 0 (94)

Cards 59 11 9 (98)

Arabic Handwritten Characters 4 4 2 (98)

Chess Pieces 9 1 16 (94)

Chinese Fine Art 2 1 28 (95)

Coffee Beans 10 1 0 (98)

Colonoscopy 1 1 4 (94)

Covid CT Scans 11 3 0 (96)

Diamonds 31 3 0 (98)

Emotional Faces 15 5 10 (99)

Human Eyes 20 5 3 (97)

Fire & Smoke 0 0 2 (94)

English Handwritten Characters 8 2 0 (98)

Excavation 1 0 9 (95)

Eyes 11 3 1 (98)

Handwritten Math Symbols 10 1 0 (97)

Bart and Homer 0 0 6 (94)

Indian Food 49 13 20 (97)

LEGO Minifigures 1 0 11 (94)

Licence Plates 0 0 1 (94)

Meat Quality 0 0 0 (97)

Monkeypox 50 8 5 (97)

Movie Posters 37 14 35 (98)

Ornamental Plants 10 0 0 (94)

Paintings 2 1 21 (95)

Pollen Grain 12 1 7 (96)

QR Codes 5 1 0 (98)

Railway Tracks 1 1 9 (94)

Weed Crops 26 4 2 (98)

YouTube Thumbnails 40 5 38 (97)

Weather 58 14 35 (99)

Sign Language 10 1 0 (96)

Stairs 0 0 12 (94)

Shells or Pebbles 59 22 31 (98)

Table 5: Evaluation results for OOD detection in WideResnet101 pretrained on Imagenet-1k using the metric FPR95 (↓).
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