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1 DYNAMIC DISCRETE CHOICE MODELS IN THEIR ORIGINAL FORMULATION

In this section, we formulate dynamic discrete choice models (DDMs) using the original formulation [Rust, 1987], and
discuss its connection with the IRL formulation in Section 2.1. Note that the setup in this section is an alternative to the IRL
formulation which our main results are based on and just is provided for completeness and comparison. SamQ does not
require the assumptions listed in this section.

1.1 MODEL

Agents choose actions according to a Markov decision process described by the tuple {{S, E} ,A, r, γ, P}, where

• {S, E} denotes the space of state variables;

• A represents a set of na actions;

• r represents an agent utility function;

• γ ∈ [0, 1) is a discount factor;

• P represents the transition distribution.

At time t, agents observe state St taking values in S , and ϵt taking values in E to make decisions. While St is observable to
researchers, ϵt is observable to agents but not to researchers. The action is defined as a na× 1 indicator vector, At, satisfying

•
∑na

j=1 Atj = 1,

• Atj takes value in {0, 1}.

In other words, at each time point, agents make a distinct choice over na possible actions. Meanwhile, ϵt is also a na × 1
representing the potential shock of taking a choice.

The agent’s control problem has the following value function:

V (s, ϵ) = max
{at}∞

t=0

E

[ ∞∑
t=0

γtr(St, ϵt, At) | s, ϵ

]
, (1)

where the expectation is taken over realizations of ϵt, as well as transitions of St and ϵt as dictated by P . The utility function
r(st, ϵt, at) can be further decomposed into

r(st, ϵt, at) = u(st, at) + a⊤t ϵt,

where u represents the deterministic part of the utility function. Agents, but not researchers, observe ϵt before making a
choice in each time period.
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1.2 ASSUMPTIONS AND DEFINITIONS

We study DDMs under the following common assumptions.

Assumption 1. The transition from St to St+1 is independent of ϵt

P(St+1 | St, ϵt, At) = P(St+1 | St, At).

Assumption 2. The random shocks ϵt at each time point are independent and identically distributed (IID) according to a
type-I extreme value distribution.

Assumption 1 ensures that unobservable state variables do not influence state transitions. This assumption is common, since
it drastically simplifies the task of identifying the impact of changes in observable versus unobservable state variables. In
our setting, Assumption 2 is convenient but not necessary, and ϵt could follow other parametric distributions. As pointed out
by Arcidiacono and Ellickson [2011], Assumptions 1 and 2 are nearly standard for applications of dynamic discrete choice
models. Such a formulation is proved to be equivalent to the IRL formulation in Section 2.1 by Geng et al. [2020], Fu et al.
[2018], Ermon et al. [2015].

2 PROOF OF THEOREM 1

Proof. By definition of L and L̃, we can derive

L(D; θ∗)− L̃(D; θ∗) =
1

T

∑
(s,a)∈D

[
Qθ∗

(s, a)− Q̃θ∗
(Π(s), a)

+ log

( ∑
a′∈A

exp(Q̃θ(Π(s), a′))

)
− log

( ∑
a′∈A

exp(Qθ(s, a′))

)]
≤ 1

T

∑
(s,a)∈D

[∣∣∣Qθ∗
(s, a)− Q̃θ∗

(Π(s), a)
∣∣∣+max

a′∈A

∣∣∣Qθ∗
(s, a′)− Q̃θ∗

(Π(s), a′)
∣∣∣]

≤2max
a′∈A

∣∣∣Qθ∗
(s, a′)− Q̃θ∗

(Π(s), a′)
∣∣∣,

(2)

where the first inequality is due to the fact that the log sum exp function is Lipschitz continuous with constant 1. Then, we
take f in Lemma 2 as Qθ∗

(s, a), and derive

max
(s,a)∈S×A

∣∣∣Qθ∗
(s, a)− Q̃θ∗

(Π(s), a)
∣∣∣ ≤ 2

1− γ
max

(s,a)∈S×A

∣∣∣Qθ∗
(s, a)−Qθ∗

(Π(s), a)
∣∣∣. (3)

By taking (3) to (2),

L(D; θ∗)− L̃(D; θ∗) ≤ 4

1− γ
max

(s,a)∈S×A

∣∣∣Qθ∗
(s, a)−Qθ∗

(Π(s), a)
∣∣∣.

Finally, by Lemma 1

ϵasy ≤ 4

cH(1− γ)
max

(s,a)∈S×A

∣∣∣Qθ∗
(s, a)−Qθ∗

(Π(s), a)
∣∣∣ = ϵQ,

which finishes the proof.

Lemma 1. Under Assumption 1 and Assumption 2,∥∥∥θ̃ − θ∗
∥∥∥2 ≤ E[L(D; θ∗)− L̃(D; θ∗)]

cH
.

Proof. By the definition of θ̃,

0 ≤ E[L̃(D; θ̃)− L̃(D; θ∗)] ≤ E[L(D; θ∗)− L̃(D; θ∗)]. (4)



Further, by Taylor expansion, we have

E[L̃(D; θ̃)− L̃(D; θ∗)] = (θ̃ − θ∗)⊤E

[
−∂2L̃(D; θ̄)

∂θ2

]
(θ̃ − θ∗),

where θ̄ = kθ∗ + (1− k)θ̃ with some k ∈ [0, 1]. Note that the first order term is zero, since θ̃ maximizes E[L̃(D, θ)]. By
Assumption 1, we finish the proof.

E[L̃(D; θ̃)− L̃(D; θ∗)] = (θ̃ − θ∗)⊤E

[
−∂2L̃(D; θ̄)

∂θ2

]
(θ̃ − θ∗) ≥ CH

∥∥∥θ̃ − θ∗
∥∥∥2 .

Lemma 2. For any projection function Π defined in Section 3.1 and its aggregated Q function Q̃, the following inequality is
true:

max
(s,a)∈S×A

∣∣∣Qθ∗
(s, a)− Q̃θ∗

(Π(s), a)
∣∣∣ ≤ 2

1− γ
min
f

max
(s,a)∈S×A

∣∣∣Qθ∗
(s, a)− f(Π(s), a)

∣∣∣,
where f(s, a) : S ×A → R is any function.

Proof. The proof follows Theorem 3 of Tsitsiklis and Van Roy [1996].

3 PROOF OF THEOREM 2

3.1 TECHNICAL LEMMAS FOR THEOREM 2

Lemma 3. Given θ ∈ Θ, for any δ ∈ (0, 1), we provide the following probabilistic bound for the estimated aggregated
likelihood L̂

P
(∣∣∣L̂(D; θ)− E[L̃(D; θ)]

∣∣∣ ≤2(Rmax + 1)

1− γ

√
log( 4δ )

2N

+
Rmax + 1

1− γ

√
log( 8|S̃||A|

δ )

2N

2

Cuni −

√
log(

4|S̃||A|
δ )

2N

)
≥ 1− δ,

where the expectation is over the sampleD.

Proof. By inserting L̃(D; θ), we have∣∣∣L̂(D; θ)− E[L̃(D; θ)]
∣∣∣ ≤ ∣∣∣L̂(D; θ)− L̃(D; θ)

∣∣∣+ ∣∣∣L̃(D; θ)− E[L̃(D; θ)]
∣∣∣. (5)

First term on the RHS of (5) To start with, we consider
∣∣∣L̂(D; θ̂)− L̃(D; θ̂)

∣∣∣. To this end, we aim to bound

max(s̃,a)∈S̃×A

∣∣∣Q̃θ(s̃, a)− Q̂θ(s̃, a)
∣∣∣. We insert T̂ (Q̃θ(s̃, a)):

Q̃θ(s̃, a)− Q̂θ(s̃, a) =T̃ (Q̃θ(s̃, a))− T̂ (Q̃θ(s̃, a)) + T̂ (Q̃θ(s̃, a))− T̂ (Q̂θ(s̃, a)).

Since T̂ is a contraction with γ, we further derive

∣∣∣Q̃θ(s̃, a)− Q̂θ(s̃, a)
∣∣∣ ≤

∣∣∣T̃ (Q̃θ(s̃, a))− T̂ (Q̃θ(s̃, a))
∣∣∣

1− γ
. (6)



By the definition of T̃ and T̂ , it can be seen that T̂ (Q̃θ(s̃, a)) is a sample average estimation to T̃ (Q̃θ(s̃, a)). Therefore, we
aim to bound the difference between the two by concentration inequalities. Specifically, by assumption 6 and Hoeffding’s
inequality, we have

P
( ∑

i=1,2,··· ,N
1{Π(si)=s̃,ai=a} ≥ NCuni −

√
−1

2
N log(

δ

2
)

)
≥ 1− δ

2
. (7)

Further, conditional on the event
{∑

i=1,2,··· ,N 1{Π(si)=s̃,ai=a} ≥ NCuni −
√

−N log( δ2 )

}
, by Hoeffding’s inequality

and Assumption 7, for any (s̃, a) ∈ S̃ × A

P
(∣∣∣∣T̃ (Q̃θ(s̃, a))− T̂ (Q̃θ(s̃, a))

∣∣∣∣ ≤ Rmax + 1

1− γ

√
log( 4δ )

2N

1

Cuni −
√

log( 2
δ )

2N

)
≥ 1− δ

2
. (8)

Combining (7) and (8), for a given (s̃, a) ∈ S̃ × A, for any δ ∈ (0, 1)

P
(∣∣∣∣T̃ (Q̃θ(s̃, a))− T̂ (Q̃θ(s̃, a))

∣∣∣∣ ≤ Rmax + 1

1− γ

√
log( 4δ )

2N

1

Cuni −
√

log( 2
δ )

2N

)
≥ 1− δ.

Next, by union bound again, we can extend the results to any (s̃, a) ∈ S̃ × A

P
(

max
s̃∈S̃,a∈A

∣∣∣∣T̃ (Q̃θ(s̃, a))− T̂ (Q̃θ(s̃, a))

∣∣∣∣ ≤ Rmax + 1

1− γ

√
log( 4|S̃||A|

δ )

2N

1

Cuni −

√
log(

2|S̃||A|
δ )

2N

)
≥ 1− δ. (9)

Combined with (6), we derive:

P
(

max
(s̃,a)∈S̃×A

∣∣∣Q̃θ(s̃, a)− Q̂θ(s̃, a)
∣∣∣ ≤ Rmax + 1

(1− γ)2

√
log( 4|S̃||A|

δ )

2N

1

Cuni −

√
log(

2|S̃||A|
δ )

2N

)
≥ 1− δ.

By the definition of L̃ in (6) and (2), we have

P
(∣∣∣L̃(D; θ)− L̂(D; θ)

∣∣∣ ≤ Rmax + 1

(1− γ)2

√
log( 4|S̃||A|

δ )

2N

2

Cuni −

√
log(

2|S̃||A|
δ )

2N

)
≥ 1− δ.

Second term on the RHS of (5) Now, we consider
∣∣∣L̃(D; θ)− E[L̃(D; θ)]

∣∣∣. By (2) and Assumption 7, L̃(D; θ̂) is bounded

by 2(Rmax+1)
1−γ . Thus, by Hoeffding’s inequality, for any δ ∈ (0, 1)

P
(∣∣∣E[L̃(D; θ̂)]− L̃(D; θ̂)

∣∣∣ ≤2(Rmax + 1)

1− γ

√
log( 2δ )

2N

)
≥ 1− δ.

Therefore, by union bound, (5) can be bounded by

P
(∣∣∣L̂(D; θ)− E[L̃(D; θ)]

∣∣∣ ≤2(Rmax + 1)

1− γ

√
log( 4δ )

2N

+
Rmax + 1

(1− γ)2

√
log( 8|S̃||A|

δ )

2N

2

Cuni −

√
log(

4|S̃||A|
δ )

2N

)
≥ 1− δ.



Lemma 4. Let θ̃Π̂ := argmaxθ∈Θ E[L̃(D; θ, Π̂)]. Then,∥∥∥θ∗ − θ̃Π̂
∥∥∥ ≤ 4

CH(1− γ)

(
Rmax + 1

1− γ

4

n
1

na
s − 1

+ 2ϵQ + ϵc

)
.

Proof. A Euclidean ball of radius R inRna can be covered by
(

4R+δ
δ

)na

balls of radius δ (see Lemma 2.5 of Van de Geer

and van de Geer [2000]). Therefore, with ns states after aggregation, by Assumption 4,

ϵ̂(Π∗) ≤ Rmax + 1

1− γ

4

n
1

na
s − 1

.

Further by Assumption 4 and Assumption 5,

ϵ(Π̂) ≤ ϵ̂(Π∗) + 2ϵQ + ϵc ≤
Rmax + 1

1− γ

4

n
1

na
s − 1

+ 2ϵQ + ϵc.

Therefore, by Theorem 1 ∥∥∥θ∗ − θ̃Π̂
∥∥∥ ≤ 4

CH(1− γ)

(
Rmax + 1

1− γ

4

n
1

na
s − 1

+ 2ϵQ + ϵc

)
.

3.2 PROOF

We first aim to bound E[L̃(D; θ̃Π̂) − L̃(D; θ̂)], where the expectation is over D only instead of θ̂. To this end, we insert
L̂(D; θ̃Π̂) and L̂(D; θ̂):

E[L̃(D; θ̃Π̂)− L̃(D; θ̂)] ≤E[L̃(D; θ̃Π̂)− L̂(D; θ̃Π̂)] + L̂(D; θ̃Π̂)− L̂(D; θ̂) + L̂(D; θ̂)− E[L̃(D; θ̂)]

≤
∣∣∣E[L̃(D; θ̃Π̂)− L̂(D; θ̃Π̂)]

∣∣∣+ ∣∣∣L̂(D; θ̂)− E[L̃(D; θ̂)]
∣∣∣.

By Lemma 3 and the union bound,

P
(
max
θ∈Θ

∣∣∣L̂(D; θ)− E[L̃(D; θ)]
∣∣∣ ≤ 2(Rmax + 1)

1− γ

√
log( 4|Θ|

δ )

2N

+
Rmax + 1

(1− γ)2

√
log( 8|S̃||A||Θ|

δ )

2N

2

Cuni −

√
log(

4|S̃||A||Θ|
δ )

2N

)
≥ 1− δ.

Therefore,

P
(
E[L̃(D; θ̃Π̂)− L̃(D; θ̂)] ≤ 4(Rmax + 1)

1− γ

√
log( 4|Θ|

δ )

2N

+
Rmax + 1

(1− γ)2

√
log( 8|S̃||A||Θ|

δ )

2N

4

Cuni −

√
log(

4|S̃||A||Θ|
δ )

2N

)
≥ 1− δ.

By Assumption 1 and a similar analysis as Lemma 1,

P
(∣∣∣θ̂ − θ̃Π̂

∣∣∣ ≤ 4(Rmax + 1)

(1− γ)CH

√
log( 4|Θ|

δ )

2N

+
Rmax + 1

(1− γ)2CH

√
log( 8|S̃||A||Θ|

δ )

2N

4

Cuni −

√
log(

4|S̃||A||Θ|
δ )

2N

)
≥ 1− δ.



Combined with Lemma 4,

P
(∣∣∣θ̂ − θ∗

∣∣∣ ≤ 4

CH(1− γ)

(
Rmax + 1

1− γ

4

n
1

na
s − 1

+ 2ϵQ + ϵc

)
+

4(Rmax + 1)

(1− γ)CH

√
log( 4|Θ|

δ )

2N

+
Rmax + 1

(1− γ)2CH

√
log( 8nsna|Θ|

δ )

2N

4

Cuni −
√

log(
4nsna|Θ|

δ )

2N

)
≥ 1− δ.
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