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A DERIVATIONS

A.1 DERIVATION OF AR-BP

For illustration purposes, we first start by summarising the derivation of the update without autoregression,
closely following Appendix E.1.2 in Fong et al. [2021].

A.1.1 No Autoregression (R-BP)

The multivariate DPMM with factorized kernel has the form

fG(x) =
∫ d∏

j=1
N (xj | θj , 1) dG(θ), G ∼ DP (a, G0) , G0(θ) =

d∏
j=1
N (θj | 0, τ−1).

Given

pi(x) = pi−1(x)hi(x, xi),

Hahn et al. [2018] and Fong et al. [2021] derive the predictive density updates for R-BP by initally only considering
the first step update h1

p1(x) = p0(x)h1(x, x1)·

From

hi(x, xi) =
∫

f(x|θ)f(xi|θ)πi−1(θ)dθ∫
f(x|θ)πi−1(θ)dθ

∫
f(xn|θ)πi−1(θ)dθ

,

it follows that

h1(x, x1) = E [fG(x) fG(x1)]
p0(x) p0(x1) (1)

where the expectation is over G coming from the prior. Following the stick-breaking representation of the DP,
Fong et al. [2021] write G as

G =
∞∑

k=1
wk δθ∗

k
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where wk = vk

∏
j<k{1− vj}, vk

iid∼ Beta(1, a) and θ∗
k

iid∼ G0. Fong et al. [2021] then derive the numerator as

E

 ∞∑
j=1

∞∑
k=1

wj wk K(x | θ∗
j ) K(x1 | θ∗

k)


=
(

1− E

[ ∞∑
k=1

w2
k

])
E [K(x | θ∗)] E [K(x1 | θ∗)] + E

[ ∞∑
k=1

w2
k

]
E [K(x | θ∗) K(x1 | θ∗)]

where they have used the fact that
∑∞

k=1 wk = 1 almost surely. As p0(x) = E [K(x | θ∗)], it follows that (1) can
be expressed as

1− α1 + α1
E [K(x | θ∗) K(x1 | θ∗)]

p0(x) p0(x1) ·

for some fixed α1. For R-BP, the kernel K factorises with independent priors on each dimension, and p0(x) =∏d
j=1 p0(xj) =

∏d
j=1N (xj | 0, 1 + τ−1), so

E [K(x | θ∗) K(x1 | θ∗)]
p0(x) p0(x1) =

d∏
j=1

E
[
K(xj | θ∗j) K(xj

1 | θ∗j)
]

p0(xj) p0(xj
1)

· (2)

Fong et al. [2021] then show that each univariate term corresponds to the bivariate Gaussian copula density,

c(u, v; ρ) =
N2
{

Φ−1(u), Φ−1(v) | 0, 1, ρ
}

N {Φ−1(u) | 0, 1}N {Φ−1(v) | 0, 1} ,

where Φ is the normal cumulative distribution function (CDF), and N2 is the standard bivariate density with
correlation parameter ρ = 1/(1 + τ). They then suggest an alternative sequence hi which iteratively repeats h1,
with the key feature that αi = (2 − 1

i ) 1
i+1 . See Appendix E.1.1. in Fong et al. [2021] for a derivation of this

sequence αi.

A.1.2 With Autoregression (AR-BP)

For the derivation of the AR-BP update, we can follow the arguments in the previous section until (2) where the
factorised kernel assumption applies for the first time. For AR-BP, we instead have

E [K(x | θ∗) K(x1 | θ∗)]
p0(x) p0(x1) =

d∏
j=1

E
[
K{xj | θ∗j(x1:j−1)}K{xj

1 | θ∗j(x1:j−1)}
]

p0(xj) p0(xj
1)

· (3)

The factorisation of the denominator follows from

p0(x) = E

 d∏
j=1

K{xj | θ∗j(x1:j−1)}

 =
d∏

j=1
E
[
K{xj | θ∗j(x1:j−1)}

]
as we have independent GP priors on each function θ∗j . For notational convenience we write {y, x} in place of
{xj , x1:j−1} in the following. With the autoregressive kernel assumption, there is the additional complexity

E [N{y | θ(x), 1}N{y1 | θ(x1), 1}]

where θ(·) ∼ GP{0, τ−1k}. The marginal distribution of the GP is normal, so we have

[θ(x), θ(x1)]T ∼ N2(x, x1 | 0, Σx,x1)

where

Σx,x1 =
[

τ−1 τ−1k(x, x1)
τ−1k(x, x1) τ−1

]
·



Again from the conjugacy of the normal, we can show that

E [N{y | θ(x), 1}N{y1 | θ(x1), 1}] = N (y, y1 | 0, Kx,x1)

where

Kx,x1 =
[

1 + τ−1 τ−1k(x, x1)
τ−1k(x, x1) 1 + τ−1

]
·

Here p0(y) = E[N (y|θ(x))] is the same as above, since marginally θ(x) ∼ N (0, τ−1). Plugging in y = P −1
0 {Φ(z)}

again gives us the Gaussian copula density with correlation parameter

ρ1(x) = ρ0k(x, x1)

for ρ0 = 1/(1 + τ).

A.2 DERIVATION OF GAUSSIAN PROCESS POSTERIOR

In this section, we derive the copula sequence for the Gaussian Process, which is fully tractable. This section is
mostly for insight, but it would however be interesting to investigate any potential avenues for methodological
development.

A.2.1 First Update Step

We consider a univariate regression setting with {y, x}. For the GP, we have the model

fθ(y | x) = N (y | θ(x), σ2), θ(·) ∼ GP(0, τ−1k).

Like in the above, we can derive the function h1(x, x1). Following a similar argument to the AR-BP derivation,
the first step GP copula density is

N2
(
y, y1 | 0, K2 + σ2I

)
p0(y | x)p0(y1 | x1)

where Ki is the i× i Gram matrix, with kernel

k(x, x′) = τ−1 exp
{
−0.5(x− x′)2/ℓ

}
.

Writing in terms of P0, we have
c {P0(y | x), P0(y1 | x1); ρ1(x)}

where c is again the Gaussian copula density, but we have the correlation parameter as

ρ1(x) =
exp

{
−0.5(x− x1)2/ℓ

}
1 + τσ2 .

From this, we can derive the first step of the update scheme:

p1(y | x) = c{P0(y | x), P0(y1 | x1); ρ1(x)} p0(y | x)

where c(u, v; ρ) is again the Gaussian copula density, and p0(y | x) = N (y; 0, σ2 + τ−1).

A.2.2 All Update Steps

We can even derive the copula update scheme for i > 1, as the Gaussian process posterior is tractable. After
observing i− 1 observations, we have

π(θx, θxi
| y1:i−1, x1:i−1) = N (µi−1, Σi−1)



where each element of Σi−1 has the entry

ki−1(x, x′) = k(x, x′)− k(x, x1:i−1)
[
Ki−1 + σ2I

]−1
k(x1:i−1, x′)

where the subscript i− 1 indicates it is the posterior kernel and µi−1 is the posterior mean vector of the GP at x
and xi. Marginally, the GP copula after i− 1 data points is

N2
(
y, yi; µi−1, Σi−1 + σ2I

)
N
{

y; µy
i−1, ki−1(x, x) + σ2

}
N
{

yi+1; µ
yi−1
i−1 , ki−1(xi, xi) + σ2

}
where µy

i−1 is the posterior mean of the GP at x and likewise for µ
yi−1
i−1 . This is equivalent to the bivariate

Gaussian copula density c(u, v; ρi(x)), where as before u = Pi−1(y | x) and v = Pi−1(yi+1 | xi+1). The correlation
parameter is now

ρi(x) = ki−1(x, xi)√
{ki−1(x, x) + σ2}{ki−1(xi, xi) + σ2}

In summary, we have the update

pi(y | x) = c{Pi−1(y | x), Pi−1(yi | xi); ρi(x)} pi−1(y | x).

This gives the same predictives as fitting a full GP. While this update form does not offer any computational
gains, it gives us insight into the GP update. The copula update corresponds to the regular normal update [Hahn
et al., 2018] with a data-dependent bandwidth ρi(x) which measures the distance between x and xi based on the
posterior kernel. A potential interesting direction of research is to seek approximations of the expensive ρi(x) to
aid with the computation of the GP.

A.3 INTUITION FOR AR COPULA

As in the main paper, we consider bivariate data, (x, y). As shown in Fong et al. [2021], the update for the
conditional density for R-BP takes the form

pi(y | x) = [1− αi(x, xi) + αi(x, xi) c {Pi−1(y | x), Pi−1(yi | xi); ρ}] pi−1(y | x), (4)

where

αi(x, xi) = αic{Pi−1(x), Pi−1(xi); ρ}
1− αi + αic{Pi−1(x), Pi−1(xi); ρ}

·

To show the effect of the AR update, we make simplifying assumptions to derive the update for the conditional
mean function, µi(x) =

∫
y pi(y | x)dy. Let us assume that our predictive densities are normally distributed,

that is Pi−1(y | x) = N (y | µi−1(x), σ2
y). This is an accurate approximation if the truth is normal and we have

observed sufficient observations. Without loss of generalizability, we assume that σ2
y = 1. This then gives the

form Pi−1(y | x) = Φ(y − µi−1(x)), which will help us in the calculation of the bivariate Gaussian copula. If we
multiply by y and integrate on both sides of (4), we get

µi(x) = [1− αi(x, xi)]µi−1(x) + αi(x, xi)
∫

c (Pi−1(y | x), Pi−1(yi | xi); ρ) y pi−1(y | x) dy.

Plugging in Pi−1(y | x) = Φ{y − µi−1(x)} (and similarly for the density) to the above gives∫
c (Pi−1(y | x), Pi−1(yi | xi); ρ) y dy =

∫
N (y, yi | [µi−1(x), µi−1(xi)], 1, ρ)

N (yi | µi−1(xi), 1) y dy·

The above is simply the expectation of a conditional normal distribution, giving us∫
c (Pi−1(y | x), Pi−1(yi | xi); ρ) y dy = µi−1(x) + ρ(yi − µi−1(xi)).

Putting it all together, we thus have

µi(x) = µi−1(x) + αi(x, xi)ρ(yi − µi−1(xi)).



In the autoregressive case, we have

µi(x) = µi−1(x) + αi(x, xi)ρ(x, xi)(yi − µi−1(xi)),

where we use the notations ρi(x) = ρ(x, xi) interchangeably to highlight the dependence of ρ on the distance
between x and xi. Further assuming Pi−1(x) = N (x | 0, 1) returns a tractable form for αi(x, x′), giving us Figure
3 in the main paper.

A.4 DERIVATION OF COPULA UPDATE FOR SUPERVISED LEARNING

We now derive the predictive density update for supervised learning tasks, closely following the derivations of Fong
et al. [2021] for the conditional methods in Supplements E.2 and E.3. We assume fixed design points x1:n ∈ Rn×d

and random response y1:n ∈ Rn.

A.4.1 Conditional Regression with Dependent Stick-Breaking

We follow Appendix E.2.2 in Fong et al. [2021], and derive the regression copula update inspired by the dependent
DP. Consider the general covariate-dependent stick-breaking mixture model

fGx
(y) =

∫
N (y | θ, 1) dGx(θ), Gx =

∞∑
l=1

wl(x) δθ∗
l

(x). (5)

For the weights, we elicit the stick-breaking prior wl(x) = vl(x)
∏

j<l{1 − vj(x)} where vl(x) is a stochastic
process on X taking values in [0, 1], and is independent across l. For the atoms, which are now dependent on x,
we assume they are independently drawn from a Gaussian process,

θ∗
l (·) iid∼ GP(0, τ−1k),

where k is the covariance function. Once again, we want to compute

E
[
fGx

(y) fGx1
(y1)

]
p0(y | x) p0(y1 | x1) ·

Following the stick-breaking argument as in Section A.1.1, we can write the numerator as

{1− β1(x, x1)}E [K{y | θ∗(x)}] E [K{y1 | θ∗(x1)}] + β1(x, x1)E [K{y | θ∗(x)}K{y1 | θ∗(x1)}]

where

K{y | θ∗(x)} = N{y | θ∗(x), 1}, θ∗(·) ∼ GP(0, τ−1k),

and

β1(x, x1) =
∞∑

k=1
E [wk(x)wk(x1)] .

As before, we have

E
[
fGx

(y) fGx1
(y1)

]
p0(y | x) p0(y1 | x1) = c {P0(y | x), P0(y1 | x1); ρ1(x)}

where ρ1(x) = ρ0k(x, x1) and ρ0 = 1/(1 + τ). We thus have the copula density as a mixture of the independent
and Gaussian copula density. This then implies the copula update step of the form

pi(y | x) = [1− βi(x, xi) + βi(x, xi) c {Pi−1(y | x), Pi−1(yi | xi); ρi(x)}] pi−1(y | x),

where we write ρi(x) = ρd+1
i (x). As in Fong et al. [2021], we turn to the multivariate update for inspiration where

we do not update Pn(x) and instead keep it fixed at P0(x) = Φ(x) (for each dimension). This gives us

βi(x, xi) =
αi

∏d
j=1 c

{
Φ
(
xj
)

, Φ
(

xj
i

)
; ρj

i (x1:j−1)
}

1− αi + αi

∏d
j=1 c

{
Φ (xj) , Φ

(
xj

i

)
; ρj

i (x1:j−1)
} · (6)



A.4.2 Classification with Beta-Bernoulli Copula Update

In the classification setting (Appendix E.3.1 in Fong et al. [2021]), Fong et al. [2021] assume a beta-Bernoulli
mixture for yi ∈ {0, 1}. As the derivation is written w.r.t ρ, we simply replace ρ with our definition of ρj

i (x1:j−1),
giving the update

pi(y | x) = (1− βi(x, xi) + βi(x, xi) b {qi−1, ri−1; ρi(x)}) pi−1(y | x)

where qi−1 = pi−1(y | x), ri = pi−1(yi | xi), ρi(x) as in Equation 9, βi(x, xi) similarly as in (15), and finally the
copula-like function b given by

b{qi−1, ri−1; ρi(x)} =


1− ρi(x) + ρi(x) qi−1 ∧ ri−1

qi−1 ri−1
if y = yi

1− ρi(x) + ρi(x) qi−1 − {qi−1 ∧ (1− ri−1)}
qi−1 ri−1

if y ̸= yi·

B METHODOLOGY

In this section, we provide more details on the methodology referred to in the main part of the paper.

B.1 GENERATIVE MODELLING

First, we consider three approaches to generative modelling

1. Inverse sampling
2. Importance sampling
3. Sequential Monte Carlo (SMC)

B.1.1 Inverse Sampling

Univariate setting As noted by Fong et al. [2021], we can sample from x∗ ∼ Pn(x) by inverse sampling, that is

u ∼ U [0, 1], x∗ ∼ P −1
n (u).

As we cannot evaluate P −1
n (u) directly, we instead solve an optimisation problem

x∗ = argmin
x
|Pn(x)− u|

Multivariate setting The univariate procedure can be repeated iteratively in the multivariate setting given
the conditional distribution

u1 ∼ U [0, 1], x1 = P −1
n (u1)

u2 ∼ U [0, 1], x2 = P −1
n (u2 | x1)

. . .

ud ∼ U [0, 1], xd = P −1
n (ud | x1:d−1)

B.1.2 Importance Sampling

In practice, inverse sampling is unstable and is highly dependent on the performance of the optimization. An
alternative approach to data generation is importance sampling. This includes two steps

1. Sampling a set of particles z1, . . . , zB from the initial predictive p0.
2. Re-sampling z1, . . . , zB with replacement based on the weights w1 = pn(z1)/p0(z1), . . . , wB = pn(zB)/p0(zB).



B.1.3 Sequential Monte Carlo

Importance sampling will perform poorly if pn and p0 are far apart. Instead, we propose a SMC procedure. A
similar SMC sampling scheme has been proposed for univariate imputation of censored survival data by Fong and
Lehmann [2022]. Here, the goal is parameter inference, and thus only requires implicit sample observations by
drawing the marginal CDF uj

n from a uniform distribution. In our case, we generate new explicit data directly by
sampling from the data space. Please see Algorithm 6 for a complete overview. As this sampling approach is
similar to evaluating the density at test data points (Algorithm 5), we highlighted the differences in blue. In short,

1. We sample a set of particles z1, . . . , zB from the initial predictive p0, and set the particle weights to w
[0]
k = 1

for all k = 1, . . . , B

2. We update the predictive pi−1 → pi, and the particle weights w
[i]
k = w

[i−1]
k · pi

(
z

[i−1]
k

)
/pi−1

(
z

[i−1]
k

)
for each

training observation

3. If the effective sample size (ESS) is smaller than half of the number of particles, we resample z1, . . . , zB and
w

[i]
1 , . . . , w

[B]
1 based on their weights.

Note that particle diversity can be improved by introducing move steps, for example using Markov kernels Chopin
[2002], Gunawan et al. [2020].

In Figure 1, we see that inverse sampling struggles on a simple GMM example. On the other hand, importance
sampling and SMC provide reasonable samples. Similar sampling schemes have been proposed for Restricted
Boltzmann Machines [Larochelle and Murray, 2011, Salakhutdinov and Murray, 2008] where samples can only be
drawn from the model approximately by Gibbs sampling.

B.2 SUPERVISED LEARNING

We briefly recap how joint density estimation can be extended to conditional supervised learning (regression
and classification), as outlined by Fong et al. [2021]. Please see Supplement A.4 for the derivation. Given fixed
design points x1:n and random response y1:n, the problem at hand is to infer a family of conditional densities
{fx(y) : x ∈ Rd}.

B.2.1 Regression

For the regression case, Fong et al. [2021] posit a Bayesian model with the nonparametric likelihood being a
covariate-dependent stick-breaking Dirichlet Process Mixture Model (DPMM):

fGx(y) =
∫
N (y | θ, 1) dGx(θ), Gx =

∞∑
k=1

wk(x) δθ∗
k
, (7)

where wk(x) follows an x-dependent stick-breaking process. Our contribution is to assume an autoregressive
factorisation of the kernel and independent GP priors on θ∗

k. See Supplement A.4.1 for the derivation of the
predictive density update that is now given by

pi(y | x) = [1− βi(x, xi) + βi(x, xi) c {Pi−1(y | x), Pi−1(yi | xi); ρi(x)}] pi−1(y | x), (8)

where ρi(x) = ρd+1
i (x) and β as in (6).

B.2.2 Classification

For yi ∈ {0, 1}, Fong et al. [2021] assume a beta-Bernoulli mixture. As explained in Supplement A.4.2 and Fong
et al. [2021], this gives the same update as in the regression setting with the difference that the copula c in (8) is
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Figure 1: 100 samples generated from ARd-BP trained on 50 samples from a GMM with 4 components. All three
sampling approaches manage to preserve the multi-modal data distribution.



replaced with

b{qi−1, ri−1; ρi(x)} =


1− ρi(x) + ρi(x) qi−1 ∧ ri−1

qi−1 ri−1
if y = yi

1− ρi(x) + ρi(x) qi−1 − {qi−1 ∧ (1− ri−1)}
qi−1 ri−1

if y ̸= yi,

where ρi(x) = ρd+1
i (x), qi−1 = pi−1(y | x), ri−1 = pi−1(yi | xi) and ρy ∈ (0, 1).

B.3 IMPLEMENTATION DETAILS

Please see Algorithm 1 for the full estimation procedure, Algorithm 2 for the optimisation of the bandwidth
parameters, Algorithm 4 for the fitting procedure of the predictive density updates, and eventually Algorithm 5
for the steps during test-time inference. All algorithms are written for one specific permutation of the dimensions,
and are repeated for different permutations.

Note that at both training time and test time, we need to consider the updates on the scale of the CDFs, that is
for the terms such as uj

i (xj), which appear in the update step (8). Given

uj
i (xj) = Pi(xj |x1:j−1) =

∫ xj

−∞
pi(x1:j−1, x

′j)/pi(x1:j−1)dx
′j ,

and (8), the CDFs uj
i (xj) take on the tractable update

uj
i =

{
(1− αi)uj

i−1 + αiH
(

uj
i−1, vj

i−1; ρj
i

) k−1∏
r=1

c
(
ur

i−1, vr
i−1; ρr

i

)} pi−1
(
x1:k−1)

pi (x1:k−1) , (9)

and set vj
i−1 = uj

i−1(xi) which holds by definition, where we dropped the argument x for simplicity from ρj
i and

uj
i , and H(u, v; ρ) denotes the conditional Gaussian copula distribution with correlation ρ, that is

H(u, v; ρ) =
∫ u

0
c(u′, v; ρ)du′ = Φ

{
Φ−1(u)− ρΦ−1(v)√

1− ρ2

}
·

The Gaussian copula density c(u, v; ρ) is given by

c(u, v; ρ) =
N2
{

Φ−1(u), Φ−1(v) | 0, 1, ρ
}

N{Φ−1(u) | 0, 1}N{Φ−1(v) | 0, 1} ,

where Φ is the normal CDF, and N2 is the standard bivariate density with correlation ρ ∈ (0, 1).

Ordering Note that the predictive density update depends on the ordering of both the training data and the
dimensions. This permutation dependence is not an additional assumption on the data generative process, and the
only implication is that the subset of ordered marginal distributions continue to satisfy (5) (main paper). In the
absence of a natural ordering of the training samples or the dimensions, we take multiple random permutations,
observing in practice that the resulting averaged density estimate performs better. More precisely, for a given
permutation of the dimensions, we first tune the bandwidth parameters, and then calculate density estimates
based on multiple random permutations of the training data. We then average over each of the resulting estimates
to obtain a single density estimate for each dimension permutation, and subsequently take the average across
these estimates to obtain the final density estimate. Importantly, our method is parallelizable over permutations
and thus able to exploit modern multi-core computing architectures.



Algorithm 1 Full density estimation pipeline
Input:

x1:n: training observations;
xn+1:n+n′ : test observations;
M : number of permutations over samples and features to average over;
nρ: number of train observations used for the optimisation of bandwidth parameters; Output:
pn(xn+1), . . . pn(xn+n′): density of test points

1: procedure full_density_estimation
2: Compute optimal bandwidth parameters ▷ O(Mn2

ρd ·#gradient steps)

3: Compute v
j,(m)
i for i ∈ {1, . . . , n}, j ∈ {1, . . . , d}, m ∈ {1, . . . , M} ▷ O(Mn2d)

4: Evaluate density at test observations xn+1:n+n′ ▷ O(Mnn′d)
5: end procedure

Algorithm 2 Estimate optimal bandwidth parameters
Input:

x1:n: training observations;
M : number of permutations over samples and features to average over;
nρ: number of train observations used for the optimisation of bandwidth parameters;
maxiter: number of iterations;
R(0): initialisation of bandwidth parameters:
-R(0) = {ρ(0)

0 , l
(0)
1 , . . . , l

(0)
d−1} (by default, ρ

(0)
0 ← 0.9, l

(0)
1 ← 1, . . . , l

(0)
d−1 ← 1) for AR-BP,

-R(0) = {ρ(0)
0 , w} (by default, ρ

(0)
0 ← 0.9, and w initialised as implemented in Haiku by default) for

ARnet-BP
Output:
R(maxiter): optimal bandwidth parameters

1: procedure optimal_bandwidth_and_lengthscales
2: Subsample {x′

1, . . . , x′
nρ
} from x1:n

3: for s← 1 to maxiter do
4: _, {p(m)

i−1 (x′
i)}i,m ← fit_conditional_predictive_cdf(

R(s−1), {x′
1, . . . , x′

nρ
}, M , fit_density=True)

5: Compute L(x′
1, . . . , x′

nρ
) = −

∑M
m=1

∑nρ

i=1 log p
(m)
i−1(x′

i)

6: R(s) ← adam_step(R(s−1), L)
7: end for
8: return R(s)

9: end procedure



Algorithm 3 Single copula update
Input:

z: observation to update the log density;
xi: observation to update with;
i: sample index;
j: feature index;
uj

i−1(z): predictive CDF for z;
v

j,(m)
i−1 : prequential CDF;

ρj
i (z1:j−1)=None: bandwidth;
R=None: bandwidth parameters;

Output:
ui(z)

1: procedure CDF_Update
2: Compute

ρj
i (z1:j−1)← ρ0kR

(
z1:j−1, x1:j−1

i

)
where kR denotes the user-defined kernel if ρ =None

3: Compute the bivariate Gaussian copula density

c{uj
i−1(z), v

j,(m)
i−1 ; ρj} ←

N2

{
Φ−1(uj

i−1(z)), Φ−1(vj,(m)
i−1 ) | 0, 1, ρj

i (z1:j−1)
}

N{Φ−1(uj
i−1(z)) | 0, 1}N{Φ−1(vj,(m)

i−1 ) | 0, 1}

4: Compute the conditional Gaussian copula CDF

H
{

uj
i−1(z), v

j,(m)
i−1 ; ρj

i (z1:j−1)
}
← Φ

Φ−1(uj
i−1(z))− ρj

i (z1:j−1)Φ−1(vj,(m)
i−1 )√

1− ρj
i (z1:j−1)2


5: Compute αi = (2− 1

i ) 1
i+1

6: Compute uj
i (z) = P j

i (z|z1:j−1) by

uj
i (z)←

{
(1−αi)uj

i−1(z)+αiH

(
uj

i−1(z), v
j,(m)
i−1 ; ρj

i (z)
)

j−1∏
l=1

c

(
ul

i−1(z), v
l,(m)
i−1 ; ρj

i (z)
)}

· 1
/{

1− αi + αi

d∏
j=1

c

(
uj

i−1(z), v
j,(m)
i−1 ; ρj

i (z)
)}

7: return ui(z)
8: end procedure



Algorithm 4 Estimate prequential CDFs at train observations
Input:
R: bandwidth parameters
x1:n: training observations;
M : number of permutations over features to average over;
compute_density (by default, False);

Output:
{vj,(m)

i−1 }i,j,m, {p(m)
i−1 (xi)}i,m if compute_density, else {vj,(m)

i−1 }i,j,m

1: procedure fit_conditional_predictive_cdf
2: for m← 1 to M do
3: Sample permutation π1 ∈ Π(n), π2 ∈ Π(d)

4: Change the ordering of the training observations {x(m)
1 , . . . , x

(m)
n } ←

{π1(x1), . . . , π1(xn)} and the features x← [π2(x1), . . . , π2(xd)] ▷ For
simplicity we will drop the superscript in the following

5: for j ← 1 to d do
6: for k ← 1 to n do
7: Initialise uj

0(xk)← Φ(xj
k) ▷ u also depends on the permutation m,

but since we do not reuse u after m is updated, we drop the index for
simplicity

8: end for
9: end for

10: for i← 1 to n do
11: Set v

j,(m)
i−1 ← uj

i−1(xi) for j ← 1 to d
12: for k ← 1 to i do
13: for j ← 1 to d do
14: uj

i (xk)=cdf_update(xk, xi, i, j, uj
i−1(xk), v

j,(m)
i−1 , R)

15: end for
16: if compute_density then
17:

p
(m)
i (xk)←

1− αi + αi

d∏
j=1

c
(

uj
i−1(xk), v

j,(m)
i−1 ; ρj

i (xk)
) p

(m)
i−1 (xk)

18: end if
19: end for
20: end for
21: end for
22: return {vj,(m)

i−1 }i,j,m, {p(m)
i−1 (xi)}i,m if compute_density else {vj,(m)

i−1 }i,j,m

23: end procedure



Algorithm 5 Evaluate density at test observations
Input:
R: bandwidth parameters
xn+1:n+n′ : test observations;
{{x(1)

1 , ..., x
(1)
n }, . . . , {x(M)

1 , ..., x
(M)
n }}: sets of permuted train observations;

{vj,(m)
i }i,j,m: prequential conditional CDFs at train observations;

M : number of observations over features to average over;
Output:
{pn(xn+1), . . . , pn(xn+n′)}

procedure eval_density
for m← 1 to M do

for j ← 1 to d do
for k ← 1 to n′ do

Initialise uj
0(xn+k)← Φ(xj

n+k)
end for

end for

for i← 1 to n do
for k ← 1 to n′ do

for j ← 1 to d do
uj

i (xk)=cdf_update(xn+k, xi, i, j, uj
i−1(xn+k), v

j,(m)
i−1 , R)

end for
Compute density

p
(m)
i (xn+k)←1− αi + αi

d∏
j=1

c
(

uj
i−1(xn+k), v

j,(m)
i−1 ; ρj

i (xn+k)
) p

(m)
i−1 (xn+k)

end for
end for

end for

▷ Average density over permutations
for i← n + 1 to n + n′ do

pn(xi)← 1
M

∑M
m=1 p

(m)
n (xi)

end for
return {pn(xn+1), . . . , pn(xn+n′)}

end procedure



Algorithm 6 Sample new observations
Input:
R: bandwidth parameters
{z[0]

1 , . . . , z
[0]
B }: initial samples from proposal distribution;

{q(z[0]
1 ), . . . , q(z[0]

B )}: proposal density evaluated at initial samples;
{{x(1)

1 , ..., x
(1)
n }, . . . , {x(M)

1 , ..., x
(M)
n }}: sets of permuted train observations;

{vj,(m)
i }i,j,m: prequential conditional CDFs at train observations;

Output:
{z[n]

1 , . . . , z
[n]
B } and {pn(z[n]

1 ), . . . , pn(z[n]
B )}

1: procedure sample
2: for m← 1 to M do
3: for k ← 1 to B do
4: for j ← 1 to d do
5: Initialise uj

0(z[0]
k )← Φ(z[0]

k )
6: end for
7: Initialise w

[0]
k ← p0(z[0]

k )/q(z[0]
k )

8: end for
9: end for

10: for i← 1 to n do
11: for k ← 1 to B do
12: for m← 1 to M do
13: for j ← 1 to d do
14: uj

i (xk)=cdf_update(z[i−1]
k , xi, i, j, uj

i−1(z[i−1]
k ), v

j,(m)
i−1 , R)

15: end for
16: Compute density

p
(m)
i

(
z

[i−1]
k

)
←

1− αi + αi

d∏
j=1

c
(

uj
i−1(xn+k), v

j,(m)
i−1 ; ρj

i (z[i−1]
k )

) p
(m)
i−1

(
z

[i−1]
k

)

17: end for
18: pi(z[i−1]

k )← 1
M

∑M
m=1 p

(m)
i (z[i−1]

k )
19: w

[i]
k ← w

[i−1]
k · pi

(
z

[i−1]
k

)
/pi−1

(
z

[i−1]
k

)
20: end for
21: ess ←

(∑
k w

[i]
k

)2
/
(∑

k w
[i]2

k

)
22: if ess < 0.5 ·B then
23: {z[i]

k }k ←resample_with_replacement
(
{z[i−1]

k }k, {w[i]
k }k

)
24: w

[i]
k ← 1 for k = 1, . . . , B

25: else
26: z

[i]
k ← z

[i−1]
k for k = 1, . . . , B

27: end if
28: end for
29: return {z[i]

k }k

30: end procedure



C EXPERIMENTS

C.1 EXPERIMENTAL DETAILS

The UCI data sets [Asuncion and Newman, 2007] we used are: wine, breast, parkinson (PARKIN), ionosphere
(IONO), boston housing (BOSTON), concrete (CONCR), diabetes (DIAB), and digits.

Code We downloaded the code for MAF and NSF from https://github.com/bayesiains/nsf, and the code
for R-BP from https://github.com/edfong/MP/tree/main/pr_copula, and implemented EarlyStopping with
patience 50, and 200 minimal, and 2000 maximal iterations. Note that we chose the autoregressive version of
RQ-NSF over the coupling variant as the former seemed to generally outperform the latter in Durkan et al. [2019].
The neural network in ARnet-BP was implemented with Haiku [Hennigan et al., 2020]. The remaining methods
are implemented in sklearn. For the DPMM with VI (mean-field approximation), we use both the diagonal and
full covariance function, with default hyperparameters for the priors. The code used to generate these results is
available as an additional supplementary directory.

Initialisation We initialise the predictive densities with a standard normal, the bandwidth parameter with
ρ0 = 0.9, the length scales with l2 = 1, ..., ld−1 = 1, and the neural network weights inside ARnet-BP by sampling
from a truncated normal with variance proportional to the number of input nodes of the layer.

Data pre-processing For each dataset, we standardized each of the attributes by mean-centering and rescaling
to have a sample standard deviation of one. Following Papamakarios et al. [2017], we eliminated discrete-valued
attributes. To avoid issues arising from collinearity, we also eliminated one attribute from each pair of attributes
with a Pearson correlation coefficient greater than 0.98.

Hyperparameter tuning We average over M = 10 permutations over samples and features. The bandwidth of
the kernel density estimations (KDEs) was found by five-fold cross validation over a grid of 80 log-scale-equidistant
values from ρ = 0.1 to 100. For the DPMM, we considered versions with a diagonal (Diag) and full (Full)
covariance matrix for each mixture component. We optimized over the weight concentration prior of the DPMM
by five-fold cross validation with values ranging from 10−40 to 1. The model was trained with variational inference
using sklearn. The hyperparameters of masked autoregressive flows (MAFs) and rational-quadratic neural spline
flows (RQ-NSFs) were found with a Bayesian optimisation search. For MAF and RQ-NSF, we applied a Bayesian
optimisation search over the learning rate {3 · 10−4, 4 · 10−4, 5 · 10−4}, the batch size {512, 1024}, the flow steps
{10, 20}, the hidden features {256, 512}, the number of bins {4, 8}, the number of transform blocks {1, 2} and
the dropout probability {0, 0.1, 0.2}. On each data set, the hyperparameter search ran for more than 5 days.
Please see Table 1 for the optimal parameters found. For the benchmark UCI data sets, we did not tune the
hyperparameters for neither MAF nor RQ-NSF but instead used the standard parameters given by Durkan
et al. [2019]. The kernel parameters of the Gaussian process (GP) are optimised during training, the α resp. λ
intialization parameter of the linear model over the range from 1 to 2 resp. 0.01 to 0.1, and the hidden layer sizes
of the MLP over the values {64, 128, 256}.

Compute We run all BP and neural network experiments on a single Tesla V100 GPU, as provided in the
internal cluster of our department. In total, these experiments required compute of approximately 4000 GPU
hours. The remaining experiments were run on a single core of an Intel(R) Xeon(R) Gold 6240 CPU @ 2.60GHz,
using up a total of 100 hours.

C.2 ADDITIONAL EXPERIMENTAL RESULTS

Computational analysis For the computational study, we consider data sampled from a Gaussian mixture
model (GMM). By default, we set the number of training samples to n = 500, the number of test samples to
n′ = 500, the number of features to d = 2, the number of mixture components to K = 2, and the number of
feature and samples permutations to 1. In Figure 2, we plot the compute in elapsed seconds w.r.t changes in
these parameters.

https://github.com/bayesiains/nsf
https://github.com/edfong/MP/tree/main/pr_copula
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Figure 2: Computational study: computational time measured in elapsed seconds for a simple GMM example.
Note that R-BP has the same computational complexity and only saves an indiscernible constant time factor.



Table 1: Hyperparameters for MAF and RQ-NSF

data batch size learning
rate

flow steps hidden
nodes

bins transform
blocks

dropout

M
A

F

WINE 10000 0.0003 20 512 - 1 0.2
BREAST 10000 0.0004 20 512 - 1 0.2
PARKINSONS 10000 0.0004 20 512 - 1 0.2
IONOSPHERE 10000 0.0003 20 512 - 1 0.2
BOSTON 10000 0.0003 10 512 - 1 0.2
CONCRETE 1024 0.0003 10 512 - 1 0.2
DIABETES 10000 0.0004 20 512 - 1 0.2
CHECKERBOARD 10000 0.0003 20 512 - 1 0.2

R
Q

-N
SF

WINE 10000 0.0004 20 512 8 1 0.2
BREAST 10000 0.0005 10 512 8 1 0.2
PARKINSONS 10000 0.0005 20 512 8 1 0.2
IONOSPHERE 10000 0.0003 10 512 8 1 0.2
BOSTON 10000 0.0003 10 512 8 1 0.2
CONCRETE 1024 0.0004 20 256 8 2 0.1
DIABETES 256 0.0004 10 512 8 2 0.2
CHECKERBOARD 1024 0.0004 10 512 8 2 0.1
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Figure 3: Sensitivity analyis: Average test NLL over 5 runs reported with standard error for a simple GMM
example over a range of simulation and parameter settings.

Sensitivity analysis For the sensitivity study, we consider the same simulated GMM data as in the computa-
tional study, and plot the results in Figure 3. As expected, we observe that the test negative log-likelihood (NLL)
decreases in n, and in the number of permutations. It also decreases in the number of mixture components. One
possible explanation for this is that, as noted by Hahn et al. [2018], R-BP can be interpreted as a mixture of
n normal distributions. The NLL decreases in d, as the mixture components are easier to distinguish in higher
dimensional covariate spaces.

Ablation study Figure 3 shows the test NLL of ARnet-BP and AR-BP for the above GMM example, as a
function of the number of sample permutations, and number of feature permutations. We see that averaging over
multiple permutations is crucial to the performance of AR-BP. In Table 2, we also show results on the small UCI
datasets for:

• a different choice of covariance function, namely a rational quadratic covariance function, defined by
k(x, xi) =

(
1 + ||x−xi||2

2
2γℓ2

)−γ

, where ℓ, γ > 0 and

• a different choice of initial distribution, namely a uniform distribution (unif).

We observe that none of these ablations consistently outperforms ARd-BP.

Benchmark UCI data sets As we only presented a subset of the results on the benchmark data sets introduced
by Papamakarios et al. [2017] in Section 5, we present more results for density estimation on the complete data
set in Table 3. These results underscore that 1) MAF and RQ-NSF outperform any other baseline, the more
data is available; 2) KDE underperforms in high-dimensional settings; 3) DPMM is not suitable for every data
distribution. Note that evaluation of the R-BP variants take at least 4 days to run on any of the data sets with



Table 2: Average NLL with standard error over five runs on five UCI data sets of small-to-moderate size

WINE BREAST PARKIN IONO BOSTON
n/d 89/12 97/14 97/16 175/30 506/13
ARd-BP 13.22±0.04 6.11±0.04 7.21±0.12 16.48±0.26 −14.75±0.89
AR-BP (RQ) 13.53±0.02 7.39±0.06 8.79±0.08 21.26±0.08 4.49±0.00
ARd-BP (RQ) 13.36±0.04 6.18±0.03 7.85±0.08 20.25±0.09 −20.41±1.28
ARd-BP (unif) −5.18±0.04 −15.51±0.11 −16.58±0.06 −47.77±3.77 −10.73±1.63

(a) True data (b) R-BP (c) Rd-BP (d) AR-BP

(e) ARd-BP (f) ARnet-BP (g) MAF (h) RQ-NSF

Figure 4: Scatter plot and density estimates of 60,000 observations sampled from a chessboard data distribution.
Test log likelihoods are R-BP: 2.25±0.0, Rd-BP : 2.19±0.0, AR-BP: 2.21±0.0, ARd-BP: 2.10±0.0, ARnet BP :
2.19±0.0, MAF : 2.09±0.0, RQ-NSF : 2.05±0.0.

more than 800,000 observations which is why we omitted those results here.

Table 3: Average NLL with standard error over five runs on benchmark UCI data from Papamakarios et al. [2017]

POWER GAS HEPMASS MINIBOONE BSDS300
n/d 1,659,917/6 852,174/8 315,123/21 29,556/43 1,000,000/ 63

Gaussian 7.73±0.00 3.59±0.00 27.93±0.00 37.20±0.00 56.45±0.00
KDE 29.39±0.00 −9.61±0.00 26.44±0.00 43.88±7.52 63.70±10.00
DPMM (Diag) 0.51±0.01 1.20±0.02 25.80±0.00 39.16±0.01 37.55±0.02
DPMM (Full) 0.33±0.00 −5.57±0.04 23.40±0.02 18.82±0.01 4.47±0.00
MAF 0.52±0.00 −2.21±0.54 21.10±0.04 12.81±0.08 2.76±0.17
RQ-NSF 0.00±0.01 −6.41±0.14 19.46±0.08 12.51±0.19 2.44±0.56

Image examples We provide preliminary results on two image datasets, digits and MNIST, in Table 4. Note
that the AR-BP copula updates investigated here were not designed with computer vision tasks in mind. The rich
parameterization allows the model to overfit to the data leading to a prequential negative log-likelihood of at least
-684 at train time while the test NLL is considerably higher. ARnet-BP, on the other hand, helps to model the
complex data structure more efficiently. We expect that further extensions based on, for instance, convolutional
covariance functions [Van der Wilk et al., 2017] may prove fruitful.

Toy examples Figure 4 shows density estimates for the introductory example of the checkerboard distribution
in a large data regime. We observe that neural-network-based methods outperform the AR-BP alternatives.
Nevertheless, AR-BP performs better than the baseline R-BP. An illustration of this behaviour on another



Table 4: Image datasets: average test NLL over five runs displayed with standard error

DIGITS MNIST

MAF −8.76±0.10 −7.14±0.48
RQ-NSF −6.17±0.13 −8.49±0.03
R-BP −8.80±0.00 −9.04±0.07
Rd-BP −7.46±0.12 −7.73±0.07
AR-BP −8.66±0.03 −7.31±42.54
ARd-BP −7.46±0.18 −8.32±61.92
ARnet-BP −7.72±0.28 −9.20±0.10

Figure 5: Illustration of the importance of an autoregressive kernel. We trained the models on 500 data points
sampled according to a sine wave distribution (given in Figure 6). We visualise the predictive density after
observing a different number, n, of observations, highlighting the last five points with . We observe that for
highly non-linear relationships between x1 and x2, the optimal bandwidth of R-BP is quite high (ρ = 0.93) which
results in strong overfitting. Even when we choose ρ0 = 0.93 for AR-BP and ARnet-BP, we observe that these
models learn the true data distribution with fewer samples than R-BP does.

toy example is also given in Figure 5. Figure 6 shows density estimates from AR-BP on a number of complex
distributions.

Figure 6: Scatter plots of 60,000 samples from different data distributions in the first row, and corresponding
autoregressive predictive density estimates in the second row.
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