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Abstract

Bayesian methods are a popular choice for sta-
tistical inference in small-data regimes due to
the regularization effect induced by the prior.
In the context of density estimation, the stan-
dard nonparametric Bayesian approach is to
target the posterior predictive of the Dirich-
let process mixture model. In general, direct
estimation of the posterior predictive is in-
tractable and so methods typically resort to
approximating the posterior distribution as an
intermediate step. The recent development of
quasi-Bayesian predictive copula updates, how-
ever, has made it possible to perform tractable
predictive density estimation without the need
for posterior approximation. Although these
estimators are computationally appealing, they
struggle on non-smooth data distributions.
This is due to the comparatively restrictive
form of the likelihood models from which the
proposed copula updates were derived. To ad-
dress this shortcoming, we consider a Bayesian
nonparametric model with an autoregressive
likelihood decomposition and a Gaussian pro-
cess prior. While the predictive update of such
a model is typically intractable, we derive a
quasi-Bayesian update that achieves state-of-
the-art results in small-data regimes.

1 INTRODUCTION

Modelling the joint distribution of multivariate random
variables with density estimators is a central topic
in modern unsupervised machine learning research
[Durkan et al., 2019, Papamakarios et al., 2017]. As
well as providing insight into the statistical properties
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of the data, density estimates are used in a number
of downstream applications, including image restora-
tion [Zoran and Weiss, 2011], density-based cluster-
ing [Scaldelai et al., 2022], and simulation-based infer-
ence [Lueckmann et al., 2021]. In small-data regimes,
Bayesian methods are a popular choice for a wide range
of machine learning tasks, including density estima-
tion, thanks to their attractive generalization capaci-
ties. For density estimation, the typical Bayesian ap-
proach is to target the Bayesian predictive density,
pn(x) =

∫
f(x|θ)πn(θ)dθ, where πn denotes the poste-

rior density of the model parameters θ after observing
x1, . . . , xn, and f denotes the likelihood function.

De Finetti’s representation theorem [De Finetti, 1937,
Hewitt and Savage, 1955] states that an exchange-
able joint density fully characterises a Bayesian model,
which then implies a sequence of predictive densities.
Further, Fong et al. [2021] recently showed that a se-
quence of predictive densities can be sufficient for full
Bayesian posterior inference. This provides theoretical
motivation for an iterative approach to Bayesian pre-
dictive density estimation by updating the predictive
pi−1(x) to pi(x) given observation xi for i = 1, . . . , n.
The idea of recursive Bayesian updates goes back to
at least Hill [1968], but was only recently made more
widely applicable through the relaxation of the as-
sumption of exchangeability in favour of conditionally
identically distributed [Berti et al., 2004] sequences.

Here, we focus on a particular class of one-step-ahead
predictive updates pi−1(x)→ pi(x) based on bivariate
copulas, which were first introduced by Hahn et al.
[2018] for univariate data, and extended by Fong et al.
[2021] to the multivariate setting and to regression anal-
yses. This class of updates is inspired by Bayesian mod-
els and thus retains many desirable Bayesian properties,
such as coherence and regularization. However, we em-
phasize that the copula updates do not correspond
exactly, nor approximately, to a traditional Bayesian
likelihood-prior model, and we thus refer to them
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Figure 1: Density estimates of 600 observations from a chessboard distribution, reported with mean and standard
deviation of test log likelihoods. For larger training sizes, see Supplement C.2. Our methods, AR-BP and ARnet-BP,
outperform R-BP and AR neural networks.

as quasi-Bayesian [Fortini and Petrone, 2020]. The
most related Bayesian density estimator proposed to
date, henceforth referred to as the Recursive Bayesian
Predictive (Rd-BP), lacks flexibility to model highly
complex data distributions (see Figure 1). This is be-
cause the existing copula updates rely on a Gaussian
copula with a single scalar bandwidth parameter, corre-
sponding to a Bayesian model with a likelihood that fac-
torizes over dimensions. In contrast, popular neural net-
work based approaches, such as masked autoregressive
flows (MAFs) [Papamakarios et al., 2017], and rational-
quadratic neural spline flows (RQ-NSFs) [Durkan et al.,
2019] can struggle in small-data regimes (see Figure 1).

Contributions This motivates our main contribu-
tion, namely the formulation of a more flexible auto-
regressive (AR) copula update based on which we pro-
pose a new Dirichlet Process Mixture Model (DPMM)
inspired density estimator. In particular:

• By considering a DPMM with an AR likelihood
and a Gaussian process (GP) prior, we formu-
late a tractable copula update with a novel data-
dependent bandwidth based on the Euclidean met-
ric in data space. Our method, Autoregressive
Recursive Bayesian Predictives (AR-BP), outper-
forms traditional density estimators on tabular
data with up to 63 features, and 10,000 samples.

• We observe in practice that the Euclidean met-
ric used in AR-BP can be inadequate for highly
non-smooth data distributions. For such cases, we
propose using an AR neural network [Bengio and
Bengio, 1999, Frey et al., 1998, Germain et al.,
2015, Larochelle and Murray, 2011] that maps
the observations into a latent space before band-
width estimation. This introduces additional non-
linearity through the dependence of the bandwidth
on the data, leading to a density estimator, ARnet-
BP, that is more accurate on non-smooth densities.

2 BACKGROUND

We briefly recap predictive density estimation via bi-
variate copula updates, before describing a particular

such update inspired by DPMMs.

2.1 UNIVARIATE PREDICTIVE DENSITY
UPDATES

To compute predictive densities quickly, Hahn et al.
[2018] propose an iterative approach. For x ∈ R, any
sequence of Bayesian posterior predictive densities pi(x)
with likelihood f and posterior πi, conditional on x1:i,
can be expressed as

pi(x) =
∫
f(x|θ)πi(θ)dθ = pi−1(x)hi(x, xi), (1)

for some bivariate function hi(x, xi) [Hahn et al., 2018].
Rearranging for hi, we have

hi(x, xi)=
pi(x)
pi−1(x)

(a)= pi−1(x|xi)
pi−1(x)

(b)= pi−1(x, xi)
pi−1(x)pi−1(xi)

(2)

where (a) holds by definition, and (b) pi−1(x, xi) =
pi−1(x|xi)pi−1(xi) = pi(x)pi−1(xi) holds by Bayes’ law.
Hahn et al. [2018] show that hi(x, xi) is the transfor-
mation of a bivariate copula density. A bivariate copula
is a bivariate cumulative distribution function (CDF)
C : [0, 1]2 → [0, 1] with uniform marginal distributions
that is used to characterise the dependence between
two random variables independent of their marginals:
Theorem 1 (Sklar’s theorem [Sklar, 1959]). For any
bivariate density f(y1, y2) with continuous marginal
CDFs, F1(y1) and F2(y2), and marginal densities f1(y1)
and f2(y2), there exists a unique bivariate copula C with
density c such that

f(y1, y2) = c {F1(y1), F2(y2)} f1(y1)f2(y2).

Applying the copula factorization from Sklar’s
theorem to (2) yields that there exists
some bivariate copula density ci such that
pi−1(x, xi) = ci{Pi−1(x), Pi−1(xi)}pi−1(x)pi−1(xi),
and thus hi(x, xi) = ci{Pi−1(x), Pi−1(xi)}, where Pi−1
is the CDF corresponding to the predictive density
pi−1. Given prior π and likelihood f , Equation 2
suggests that the update function can be written as

hi(x, xi) =
∫
f(x|θ)f(xi|θ)πi−1(θ)dθ∫

f(x|θ)πi−1(θ)dθ
∫
f(xi|θ)πi−1(θ)dθ ·
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For each Bayesian model, there is thus a unique se-
quence of symmetric copula densities ci(u, v) = ci(v, u).
This sequence has the property that cn(·, ·) → 1 con-
verges to a constant function as n→∞, ensuring that
the predictive density converges asymptotically with
sample size n.

In general, the above equation is intractable due to
the posterior so it is not possible to compute the iter-
ative update in (1) for fully Bayesian models. Alter-
natively, we will consider sequences of hi that match
the Bayesian model for i = 1, but not for i > 1. As
mentioned above, this copula update no longer corre-
sponds to a Bayesian model, nor are the resulting pre-
dictive density estimates approximations to a Bayesian
model. Nevertheless, if the copula updates are con-
ditionally identically distributed, they still exhibit de-
sirable Bayesian characteristics such as coherence and
regularization, and are hence referred to as quasi-Bayes.
Please refer to Berti et al. [2004] for details.

2.2 MULTIVARIATE PREDICTIVE
DENSITY UPDATES

The above arguments cannot directly be extended to
multivariate x ∈ Rd since hi cannot necessarily be
written as ci{Pi−1(x), Pi−1(xi)} for d > 1. However,
(2) still holds, and recursive predictive updates with
bivariate copulas as building blocks can be derived
explicitly given a pre-defined likelihood model and a
prior, which we now exhibit.

Hahn et al. [2018] and Fong et al. [2021] propose to use
DPMMs as a general-use nonparametric model. The
DPMM [Escobar, 1988, Escobar and West, 1995] can
be written as

f(x|G) =
∫

Θ
K(x|θ) dG(θ), with G ∼ DP(c,G0) (3)

where θ ∈ Θ = Rd are parameter vectors, the prior as-
signed to G is a Dirichlet process (DP) prior with base
measure G0 and concentration parameter c > 0 [Fergu-
son, 1973], and K(x|θ) is a user-specified kernel (not
to be confused with the covariance function of a GP).
In particular, Fong et al. [2021] consider the base mea-
sure G0 = N (0, τ−1Id) for some precision parameter
τ ∈ R>0, and the factorized kernel K(x|θ) = N (x|θ, Id)
where Id is the d-dimensional identity matrix. The like-
lihood is then

f(x|G) =
∫ d∏

j=1
N
(
xj | θj , 1

)
dG(θ), (4)

where the dimensions of x are conditionally independent
given θ. Following Hahn et al. [2018], we denote the
dimension j of a vector y with yj . We note that the

strong assumption of a factorised kernel form drastically
impacts the performance of the regular DPMM and
also influences the form and modelling capacity of the
corresponding copula update.

This model inspires the following recursive predictive
density update pi(x) = hi(x, xi)pi−1(x) for which the
first d′ ∈ {1, . . . , d} marginals take on the form

pi(x1:d′)
pi−1 (x1:d′) =1−αi+αi

d′∏
j=1

c
(
uji−1(xj), vji−1; ρ0

)
, (5)

uji−1(xj) :=Pi−1
(
xj | x1:j−1) ,

vji−1 :=Pi−1

(
xji | x

1:j−1
i

)
,

where c(u, v; ρ0) is the bivariate Gaussian copula den-
sity with correlation ρ0 = 1/(1 + τ), p0 can be any
chosen prior density, and αi =

(
2− 1

i

) 1
i+1 (see Supple-

ment A and Fong et al. [2021]). Note that the above
update requires a specific ordering of the feature di-
mensions, and the Gaussian copula follows from the
Gaussian distribution in the kernel and G0 for the
DPMM. Unlike the DPMM, there are now no underly-
ing parameters (beyond ρ0) in the copula update as we
have integrated out θ, so we do not carry out clustering
directly. While ρ0 is a scalar here, Fong et al. [2021]
also consider the setting with a distinct bandwidth pa-
rameter for each dimension. We refer to these recursive
Bayesian predictives as Rd-BP, or simply R-BP if the
dimensions share a single bandwidth.

3 AR-BP: AUTOREGRESSIVE
BAYESIAN PREDICTIVES

For smooth data distributions, the recursive update de-
fined in (5) generates density estimates that are highly
competitive against other popular density estimation
procedures such as kernel density estimation (KDE)
and DPMM [Fong et al., 2021]. Moreover, the itera-
tive updates provide a fast estimation alternative to
fitting the full DPMM through Markov chain Monte
Carlo (MCMC). When considering more structured
data, however, performance suffers due to the choices
of the factorized kernel K(·|θ) = N (·|θ, Id) and sim-
ple base measure G0 = N (0, τ−1Id) in the DPMM.
These choices induce a priori independence between
the data dimensions, and are thus insufficiently flexible
to capture more complex dependencies.

3.1 BAYESIAN MODEL FORMULATION

We therefore propose employing more general kernels
and base measures in the DPMM and show that these
inspire a more general tractable recursive predictive
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update. In particular, we allow the kernel to take on
an autoregressive structure

K(x|θ) =
d∏
j=1
N
(
xj | θj

(
x1:j−1) , 1) , (6)

where θj : Rj−1 → R is now an unknown mean func-
tion, and not scalar, for dimension xj , which we allow
to depend on the previous j − 1 dimensions of x. Thus,
specifying our DPMM requires a base measure sup-
ported on the function space in which (θ1, . . . , θd) is
valued. We specify this base measure as a product of
independent GP priors on the functional parameters

θj ∼ GP(0, τ−1kj) for j = 1, ..., d (7)
where kj : Rj−1 × Rj−1 → R and kj can be any given
covariance function that takes as input a pair of x1:j−1

values. In practice, we use the same functional form of
k for each j, so we will drop the superscript j. For later
convenience, we have also written the scaling term τ−1

explicitly. We highlight that for j = 1, θ1 ∼ N (0, τ−1).
Under this choice, the mean of the normal kernels in the
DPMM for each dimension j is thus a flexible function
of the first j − 1 dimensions x1:j−1, on which we elicit
independent GP priors. The conjugacy of the GP with
the Gaussian DPMM kernel in (6) is crucial for deriving
a tractable density update.
Remark. The proposed DPMM kernel in (6) is in fact
more flexible than a general multivariate kernel, K(x |
θ) = N (x | θ,Σ). This is because the multivariate
kernel also implies an AR form like (6) but where the
parameters θj are restricted to be linear in x1:j−1; see
Wade et al. [2014] for details.

3.2 ITERATIVE PREDICTIVE DENSITY
UPDATES

Computing the Bayesian posterior predictive density
induced by the DPMM with kernel given by (6) and
base measure given by (7) through posterior estima-
tion is intractable and requires MCMC. However, as
before, we can utilize the model to derive tractable
iterative copula updates. In Supplement A.1, we derive
the corresponding recursive predictive density update
pi(x) = hi(x, xi)pi−1(x) for the first d′ marginals and
show that it takes on the form
pi(x1:d′)
pi−1(x1:d′) =1− αi + αi· (8)

d′∏
j=1

c
(
uji−1(xj), vji−1; ρj(x1:j−1, x1:j−1

i )
)
,

with uji−1(xj), vji−1 defined as in (5), αi =
(
2− 1

i

) 1
i+1 ,

and the bandwidth given by

ρj(x1:j−1, x1:j−1
i ) = ρ0k

(
x1:j−1, x1:j−1

i

)
, (9)

(a) Train: Estimate vj
i

= Pi−1(x1:j
i

) for each i

Initialise uj
0(xi)← Φ(xj

i
)

For each preceding observation xk with k < i:
For each feature j:
Compute data-dependent bandwidth
ρj(x1:j

i
, x1:j

k
) (9)

Update conditional CDF uj
i
(xk): = P j

i
(xk) based

on the similarity between uj
i−1(xk) and vj

i−1 (18)

Set vj
i
← uj

i
(xi) for all j

(b) Test: Estimate predictive at test point pn(z)

Initialise uj
0(z)← Φ(zj)

For each train observation xi:
For each feature j:
Compute data-dependent bandwidth
ρj(x1:j

i
, z1:j) (9)

Update conditional CDF uj
i
(z): = P j

i
(z) based on

the similarity between uj
i−1(z) and vj

i−1 (18)

Update predictive density pi−1(z)→ pi(z) (8)

Figure 2: Simplified summary of AR-BP. We repeat
the training update for each train datum xi to esti-
mate vji = Pi−1(x1:j

i ). These are needed at test time to
update from pi−1(z) → pi(z). All steps are averaged
over different feature and sample permutations. The
main step that induces autoregression in the observa-
tions is highlighted pink. Please see Supplement B.3
for detailed algorithms.

for ρ0 = 1/(1+τ), and ρ1
i = ρ0. Where appropriate, we

henceforth drop the argument x for brevity. The con-
ditional CDFs uji−1 can also be computed through an
iterative closed form expression similarly to (8) (Supple-
ment B.3). Please see Figure 2 for a simplified overview
of the density estimation pipeline.

Note that the estimation is identical to the update
given in (5) induced by the factorized DPMM kernel,
except for the main difference that the bandwidth ρ
is no longer a constant, but is now data-dependent.
More precisely, the bandwidth for dimension j is a
transformation of the GP covariance function k on
the first j − 1 dimensions. The additional flexibility
afforded by the inclusion of k enables us to capture
more complex dependency structures, as we do not
enforce a-priori independence between the dimensions
of the parameter θ. Similarly to the extension of R-BP
to Rd-BP, we can also define ARd-BP by introducing
dimension dependence in ρ0. Finally, we highlight that
extending R-BP to mixed data is possible as given in
Appendix E.1.3 of Fong et al. [2021], which also extends
naturally to AR-BP.
Remark. The data-dependent bandwidth also appears
when starting from other Bayesian nonparametric mod-
els, such as dependent DPs and GPs (see Supplement
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A.2.2 for the derivation).

Our approach can be viewed as a Bayesian version of
an online KDE procedure. To see this, note that a KDE
trained on i−1 observations – yielding the density esti-
mate qi−1(x) – can be updated after observing the ith
observation xi via qi(x) = (1−αi)qi−1(x) +αid (x, xi),
where αi = 1/i and d(·, ·) denotes the kernel of the
KDE. Rather than adding a weighted kernel term di-
rectly, AR-BP instead adds an adaptive kernel that
depends on a notion of distance between x and xi based
on the predictive CDFs conditional on x1:i−1.

To better understand the importance of the data-
dependent bandwidth, we compare the conditional pre-
dictive mean of R-BP and AR-BP in the bivariate
setting X × Y . Under the simplifying assumption of
Gaussian predictive densities, we show in Supplement
A.3 that the conditional mean of Y | X is given by

µi(x) = µi−1(x) + αi(x, xi)ρ(x, xi)(yi − µi−1(xi)),

αi(x, xi) = αic(Pi−1(x), Pi−1(xi); ρ)
1− αi + αic(Pi−1(x), Pi−1(xi); ρ) .

Note that ρ(x, xi) = ρ0 for R-BP. Intuitively, the up-
dated mean is the previous mean plus a residual term at
yi scaled by some notion of distance between x and xi.
For R-BP, this distance between x and xi depends only
on their predictive CDF values through αi(x, xi). This
can result in undesirable behaviour as shown in the
upper plot in Figure 3(a), where the peak of αi(x, xi),
as a function of x, is not centred at xi. Counterintu-
itively, there is thus an x > xi where µi(x) is updated
more than at the actual observed x = xi. This follows
from the lack of focus on conditional density estimates
for R-BP, which is alleviated by AR-BP. In the AR
case, ρ(x, xi) takes into account the Euclidean distance
between x and xi in the data space. We see in the lower
plot in Figure 3(a) that the peak is closer to xi. Figure
3(b) further demonstrates this difference on another
toy example - we see that R-BP struggles to fit a linear
conditional mean function for n = 4, focussing density
in data sparse regions, while AR-BP succeeds to assign
significant density only to points on the data manifold.

Training the update parameters In order to
compute the predictive density pn(x∗), we require
the vector of conditional CDFs [vj1, . . . , v

j
n−1] where

vji = Pi(xji+1 | x
1:j−1
i+1 ). Given a bandwidth parameteri-

zation, obtaining this vector thus amounts to model-
fitting, and each vji requires i − 1 iterations (Supple-
ment B.3), for i ∈ {1, . . . , n}. We note that the order
of samples and dimensions influences the prediction
performance in AR density estimators [Vinyals et al.,
2015]. In practice, averaging over different permutations
of these improves performance (Supplement B.3). Full
implementation details can be found in Supplement B.

Computational complexity The above procedure
results in a computational complexity of O(Mdn2) at
the training stage where M is the number of permuta-
tions. At test time, we have already obtained the neces-
sary conditional prequential CDFs vjn in computing the
prequential log-likelihood above. As a result, we have a
computational complexity O(Mdn) for each test obser-
vation. Note that the introduction of a data-dependent
bandwidth does not increase the computational com-
plexity at train or test time relative to R-BP and only
adds a negligible factor to the computational time for
the calculation of the bandwidth.

3.3 BANDWIDTH PARAMETERISATION

The choice of covariance function in (7) provides sub-
stantial modelling flexibility in our AR-BP framework.
Moreover, the additional parameters associated with
the covariance function allow us to tune the implied
covariance structure according to the observed data.
This formulation enables us to draw upon the rich
literature on the choice of covariance functions for
Gaussian processes [Williams and Rasmussen, 2006].
For simplicity we only consider the most popular
such choice here, but study the more flexible rational-
quadratic covariance in Supplement C.2. The radial
basis function (RBF) covariance function is defined
as k`(x1:j−1, x

′1:j−1) = exp[−
∑j−1
κ=1{(xκ − x

′κ)/`κ}2],
where ` ∈ Rd−1

>0 is the length scale.

Neural parameterisation As we saw in the motivat-
ing example of the density estimation of a chessboard
distribution in Figure 1, the RBF kernel can restrict
the capacity of the predictive density update to capture
intricate nonlinearities if the training data size is not
sufficient. While the parameterization of the bandwidth
in (9) was initially derived via the first predictive up-
date for a DPMM, all we require is that the bandwidth
function ρj : Rj−1 × Rj−1 → R lies in (0,1). We would
also like ρj(x1:j−1, x

′1:j−1) to take larger values when
x1:j−1 and x′1:j−1 are ‘close’ in some sense. Motivated
by this observation, we now consider more expressive
bandwidth functions that can lead to increased pre-
dictive performance. In particular, we formulate an
AR neural network fw : Rd → Rd×d′ for d′ ∈ N with
the property that the jth row of the output depends
only on the first j − 1 dimensions of the input. Let
Z = fw (x) and denoting zj to be the jth row of the
matrix Z, the covariance function is then computed as
ρj(x1:j−1, x

′1:j−1) = ρ0 exp(−
∑j−1
κ=1||zκ − z

′κ||22).

Numerous AR neural network models have been exten-
sively used for density estimation [Dinh et al., 2014,
Huang et al., 2018, Kingma et al., 2016]. In our experi-
ments, we use a relatively simple model with parameter

662



Figure 3: (a) Plots of αi(x, xi)ρ(x, xi) for R-BP and AR-BP for ρ0 ∈ {0.5, 0.7, 0.95} ( , , ) with new
observation xi ( ). Note that ρ(x, xi) = ρ0 for R-BP, and ` = 1 for AR-BP. (b) Density plots for R-BP and
AR-BP trained on 4 sequential data points ( ). Both figures show that the update of R-BP, unlike AR-BP, is not
centred around the new datum.

sharing inspired by NADE, an AR neural network de-
signed for density estimation [Larochelle and Murray,
2011]. More advanced properties like the permutation
invariance of MADE [Papamakarios et al., 2017] cre-
ate an additional overhead that cannot be used in
the copula formulation as the predictive update is not
permutation-invariant. We refer to Bayesian predictive
densities estimated using AR neural networks as ARnet
Bayesian predictives (ARnet-BP).

Tuning the bandwidth function Recall that the
bandwidths ρi(·, ·) are parameterised by ρ0 and the
parameters of the chosen covariance functions or neural
embedders. For AR-BP, these are the length scales ` of
the RBF covariance function, while for ARnet-BP, these
are the parameters w of the AR neural network. We fit
these tunable parameters in a data-driven approach by
maximising the prequential [Dawid, 1997] log-likelihood∑n
i=1 log pi−1(xi) which is analogous to the Bayesian

marginal likelihood – the tractable predictive density
allows us to compute this exactly, and this approach
is analogous to empirical Bayes. Specifically, we use
gradient descent optimisation with Adam, sampling a
different random permutation of the training data at
each optimisation step (Supplement B.3).

4 RELATED WORK

Our work falls into the broad area of multivariate den-
sity estimation [Scott, 2015]. While AR networks have
been previously used directly for the task of density
estimation [Bengio and Bengio, 1999, Germain et al.,
2015, Larochelle and Murray, 2011], we use them to
elicit a data-dependent bandwidth in the predictive
update to mitigate the smoothing effect observed in
AR-BP. Neural network based approaches, however,
often underperform in small-data regimes. Deep learn-
ing approaches that do target few-shot density estima-

tion require complex meta-learning and pre-training
pipelines [Gu et al., 2020, Reed et al., 2017].

Our work directly extends the contributions of Hahn
et al. [2018] and Fong et al. [2021] through an alterna-
tive specification of the nonparametric Bayesian model
in the recursive predictive update scheme. R-BP has
recently been used for nonparametric solvency risk
prediction [Hong and Martin, 2019], and survival anal-
ysis [Fong and Lehmann, 2022]. Berti et al. [2021a,b,
2004] also focus on univariate predictive updates in the
Bayesian nonparametric paradigm, specifically explor-
ing the use of the conditionally identically distributed
condition as a relaxation of the standard exchange-
ability assumption. Other studies have investigated
quasi-Bayesian updates in the special case of the mix-
ing distribution in nonparametric mixture models [Dixit
and Martin, 2022, Fortini and Petrone, 2020, Martin,
2018, Tokdar et al., 2009], though these typically fo-
cus on univariate or low-dimensional spaces. See also
Martin [2021] for a survey.

Finally, copulas are a well-studied tool for modelling the
correlations in multivariate data (see e.g. Kauermann
et al. [2013], Ling et al. [2020], Nelsen [2007]). Copula
density estimation aims to construct density estimates
whose univariate marginals are uniform [Gijbels and
Mielniczuk, 1990], and often focus on modelling strong
tail dependencies [Wiese et al., 2019]. In contrast, we
employ bivariate copulas for generic multivariate den-
sity estimation as a tool to model the correlations be-
tween subsequent subjective predictive densities, rather
than across the data dimensions directly.

5 EXPERIMENTS

We demonstrate the benefits of AR-BP, ARd-BP and
ARnet-BP for density estimation and prediction tasks
in an experimental study with five baseline approaches

663



Table 1: Average NLL with standard error over five runs on data sets analysed by Fong et al. [2021].

WINE BREAST PARKIN IONO BOSTON
n/d 89/12 97/14 97/16 175/30 506/13
KDE 13.69±0.00 10.45±0.24 12.83±0.27 32.06±0.00 8.34±0.00
DPMM (Diag) 17.46±0.6 16.26±0.71 22.28±0.66 35.30±1.28 7.64±0.09
DPMM (Full) 32.88±0.82 26.67±1.32 39.95±1.56 86.18±10.22 9.45±0.43
MAF 39.60±1.41 10.13±0.40 11.76±0.45 140.09±4.03 56.01±27.74
RQ-NSF 38.34±0.63 26.41±0.57 31.26±0.31 54.49±0.65 −2.20±0.11
R-BP 13.57±0.04 7.45±0.02 9.15±0.04 21.15±0.04 4.56±0.04
Rd-BP 13.32±0.01 6.12±0.05 7.52±0.05 19.82±0.08 −13.50±0.59
AR-BP 13.45±0.05 6.18±0.05 8.29±0.11 17.16±0.25 −0.45±0.77
ARd-BP 13.22±0.04 6.11±0.04 7.21±0.12 16.48±0.26 −14.75±0.89
ARnet-BP 14.41±0.11 6.87±0.23 8.29±0.17 15.32±0.35 −5.71±0.62
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Figure 4: Average NLL and standard errors over 10 runs for training sets of different size. Our models outperform
neural methods for data sets up to 10,000 samples.

and 13 different data sets. The code and data is
available at https://github.com/sghalebikesabi/
autoregressive-bayesian-predictives. See Sup-
plement C for additional experimental details and re-
sults, including a sensitivity study, an ablation study,
further illustrative examples, a preliminary investiga-
tion into image examples, and an empirical study of the
computational complexity of the proposed methods.

5.1 DENSITY ESTIMATION

We compared our models against KDEs [Parzen, 1962],
DPMMs [Rasmussen, 1999], MAFs [Papamakarios
et al., 2017] and RQ-NSFs [Durkan et al., 2019]. The
hyperparameters of the baselines were tuned with cross-
validation. Unless otherwise specified, we use respec-
tively 10 permutations over samples and features to
average the quasi-Bayesian estimates. We did not see
substantial improvements with more permutations. We
use the same few hyperparameters (initialisation of
ρ0, l1, . . . , ld, number of permutations, neural network
architecture, and learning rate) on all data sets as our
method is robust to their choice. See Supplement C.1
for further information.

Data sets analysed by Fong et al. [2021] See
Table 1 for the negative log-likelihood (NLL) estimated
on five UCI data sets [Asuncion and Newman, 2007]
of small size with up to 506 samples, as investigated
by Fong et al. [2021]. Our proposed methods display
highly competitive performance: ARd-BP achieved the
best test NLL on four of the data sets, while ARnet-BP

prevailed on ionosphere.

Data sets analysed by Papamakarios et al. [2017]
A number of UCI data sets have become the standard
evaluation benchmark for deep AR models [Durkan
et al., 2019, Huang et al., 2018, Papamakarios et al.,
2017]. These include low-dimensional data sets with
up to 63 features, but at least 29,000 with up to 106

samples. In many circumstances, data sets of such a
data size are not available. To investigate performance
as a function of sample size, we trained the models
on subsets of the full data set. We do not report re-
sults for the KDEs and the DPMM estimators here
as these estimators performed significantly worse than
the other approaches. Similarly, we do not report deep
learning results for sample sizes smaller than 102. See
Supplement C.2 for complete results.

In the small-data regime, we observe that the R-BP
methods significantly outperform the neural density
estimators (Figure 4). As the sample size increases, the
gap in performance decreases until eventually the neu-
ral density estimators outcompete the R-BP methods.
The performance between the R-BP methods and our
proposed AR extensions is largely similar, though we
note that the AR-BP methods were generally more
effective on the GAS dataset.

5.2 SUPERVISED LEARNING

R-BP methods, including AR-BP, can be used for pre-
diction tasks such as regression and classification [Fong
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Table 2: Average NLL over five runs reported with standard error for supervised tasks

Regression Classification
BOSTON CONCR DIAB IONO PARKIN MNIST01

n/d 506/13 1,030/8 442/10 351/33 195/22 12,031/784
Linear 0.87±0.03 0.99±0.01 1.07±0.01 0.33±0.01 0.38±0.01 0.003±0.000
GP 0.42±0.08 0.36±0.02 1.06±0.02 0.30±0.02 0.42±0.02 0.035±0.000
MLP 1.42±1.01 2.01±0.98 3.32±4.05 0.26±0.05 0.31±0.02 0.003±0.000
R-BP 0.76±0.09 0.87±0.03 1.05±0.03 0.26±0.01 0.37±0.01 0.015±0.001
Rd-BP 0.40±0.03 0.42±0.00 1.00±0.02 0.34±0.02 0.27±0.03 0.018±0.001
AR-BP 0.52±0.13 0.42±0.01 1.06±0.02 0.21±0.02 0.29±0.02 0.015±0.001
ARd-BP 0.37±0.10 0.39±0.01 0.99±0.02 0.20±0.02 0.28±0.03 0.017±0.001
ARnet-BP 0.45±0.11 −0.03±0.00 1.41±0.07 0.24±0.04 0.26±0.04 0.014±0.001

et al., 2021]. In short, this is achieved by estimating
the conditional predictive density pn(y|x) of the labels
y directly by assuming a dependent Dirichlet process
likelihood. See Supplement B.2 for details. Again, we
follow the experimental set-up of Fong et al. [2021],
and additionally report results on the MNIST data
set, restricted to digits of class 0 and 1. We report the
conditional test NLL − 1

n′

∑
i log pn(y∗i |x∗i ) for a test

set {(x∗1, y∗1), . . . , (x∗n′ , y∗n′)}. We compared our models
against a GP, a linear Bayesian model (Linear), and
a one-hidden-layer multilayer perceptron (MLP) on
several classification and regression tasks. To get a dis-
tribution over the predicted outcome in the regression
case, we trained an ensemble over 10 MLPs. Our pro-
posed methods were again highly competitive (Table 2).
ARd-BP performed best on two regression tasks and
one classification task. ARnet-BP was substantially
better than the remaining methods on CONCR and
also performed best on the PARKIN. On the other
hand, the MLP model was best on MNIST.

6 DISCUSSION

Although Bayesian methods generally perform well in
the small sample setting, the conventional Bayesian
approach to density estimation, i.e. DPMM estimation
via the posterior predictive, is computationally inten-
sive. Here, we set out to propose a computationally
efficient density estimator as an alternative to DPMM
density estimation. We recommend its use for tabular
data sets of up to 63 features, and 10,000 observations.
Such data set sizes are ubiquitous in healthcare, finance,
hyperparameter tuning, and survey data applications.

We expand upon the tractable recursive copula updates
of Fong et al. [2021], Hahn et al. [2018] by incorporat-
ing regression methods, such as kernels and neural net-
works. This introduces a data-dependent bandwidth,
thus increasing the flexibility of this class of models,
with little computational overhead compared to R-BP.
More generally, it would be of interest to integrate
other machine learning methods with recursive copula
updates. Furthermore, other Bayesian nonparametric
models may inspire other recursive copula updates–see

Appendix A.2 for an example based on GPs.

An appealing feature of AR-BP is that it requires no
manual hyperparameter tuning. Further, on small data
sets, AR-BP shows state-of-the-art generalization and
is faster than competing deep learning models. It signif-
icantly increases the modelling capacity of the baseline
R-BP via a data-dependent bandwidth. Additionally,
ARnet-BP provides a useful illustration of how pow-
erful neural network models can be incorporated into
R-BP methods to improve density estimation. Future
work can investigate alternative architectures for struc-
tured data. Our work adds to the rich body of density
estimators and thus we do not anticipate any additional
negative societal impact arising from our proposal.

This strong performance of AR-BP (and other copula
methods) in the small data regime is likely due to its
Bayesian-like regularization towards an initial density
p0, as shown in the weighted sum in (8). Its weaker
performance in the large data regime may be due to
the importance of the sequence αi which governs how
regularization decays, but further theoretical work is
needed to understand AR-BP’s asymptotic behaviour.
A limitation of R-BP methods, including AR-BP, is
the quadratic time dependence on the number of train-
ing observations. Subsampling techniques thus offer
a particularly promising avenue to reduce the overall
computational cost and warrant further investigation.
Although the recursive updates depend on the sample
and covariate ordering, it is possible to alleviate this de-
pendence though by estimating the R-BP over multiple
permutations in parallel, as we have done in the above
experiments. Nevertheless, the algorithm is relatively
fast: with a single GPU, we were able to train models
with 100,000 observations in less than an hour.

The use of a GP prior greatly increases the flexibility of
our framework. Moreover, it opens the door to future
research to incorporate ideas from the vast GP litera-
ture to further boost performance in high-dimensional
settings. Our use of the RBF kernel was illustrative;
other kernels are discussed in Appendix C.2 where we
find that the RBF kernel performs best. For example,
we anticipate that the use of recent advances in convo-
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lutional kernels [Van der Wilk et al., 2017] would be
particularly suited for computer vision tasks.
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