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1 TECHNICAL PROOFS

In this section, we prove the theoretical results in the main paper. To make it complete and self-contained, we also include
the proof of Proposition 1, i.e., Theorem 1 in [Gendler et al., 2022], with the framework and notations used in our paper.

Proposition 1. (Proposition 1 restated, adversarially robust coverage of RSCP, Theorem 1 in [Gendler et al., 2022]) Assume
the score function S is Mr-adversarially inflated. Let CAR(X̃) = {y ∈ Y : S(X̃, y) ≤ τAR(α)} be the prediction set for a
testing sample X̃ . Then RSCP achieves (1− α)-adversarially robust coverage.

Proof. (of Proposition 1)

After reviewing the inflated quantile in the adversarial sense, we extend it to the following probabilistic sense.

PZ{S(X + ϵ, Y ) ≤ τAR(α)} ≥PZ{S(X,Y ) +Mr ≤ τAR(α)}
=PZ{S(X,Y ) +Mr ≤ Q(α) +Mr}
=PZ{S(X,Y ) ≤ Q(α)}
=PX,Y {S(X,Y ) ≤ Q(α)} ≥ 1− α,

where the first inequality is due to the condition of Mr-adversarially inflated conformity score function (Definition 2),
the first equality is due to the setting of the inflated threshold τAR(α) = Q(α) +Mr, and the last inequality is due to the
definition of quantile Q(α).

Proposition 2. (Proposition 2 restated, probabilistically robust coverage of iPRCP) Assume the score function S is Mr,η-
probabilistically inflated. Let C iPR(X̃) = {y ∈ Y : S(X̃, y) ≤ τ iPR(α; η)} be the prediction set for a testing sample
X̃ = X + ϵ. Then iPRCP achieves (1− α)-probabilistically robust coverage.

Proof. (of Proposition 2)

Denote Ar,η = {Z ∈ X × Y × Er : S(X + ϵ, Y ) ≤ S(X,Y ) +Mr,η}, which implies PZ{Z ∈ Ar,η} ≥ 1 − η. Recall
τ iPR(α′; η) = Q(α′) +Mr,η for α′ and η.

PZ{S(X + ϵ, Y ) ≤ τ iPR(α′; η)}
=P{Z ∈ Ar,η} · PZ{S(X + ϵ, Y ) ≤ τ iPR(α′; η)|Z ∈ Ar,η}

+ P{Z /∈ Ar,η} · PZ{S(X + ϵ, Y ) ≤ τ iPR(α′; η)|Z /∈ Ar,η}
≥(1− η) · PZ{S(X + ϵ, Y ) ≤ τ iPR(α′; η)|Z ∈ Ar,η}
≥(1− η) · PZ{S(X,Y ) +Mr,η ≤ Q(α′) +Mr,η|Z ∈ Ar,η}
=(1− η) · PX,Y {S(X,Y ) ≤ Q(α′)}
≥(1− η)(1− α′),
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where the first inequality is due to the non-negativity of probability and the definition of Ar,η , and the second inequality is
due to Mr,η-probabilistically inflated score function (7).

In this case, define α∗
iPR(α; η) := max{α′ : (1− η)(1− α′) ≥ 1− α}, and we can use τ iPR(α∗

iPR(α; η); η) as the threshold
to derive (1− α)-probabilistically robust coverage. However, we have to know the conformity score function very well, so
that we access the value of Mr,η given η to determine τ∗iPR(α; η), which is not always possible in practice.

Theorem 1. (Theorem 1 restated, probabilistically robust coverage of aPRCP) Let CaPR(X̃ = X + ϵ) = {y ∈ Y :

S(X̃, y) ≤ τ aPR(α; s)} be the prediction set for a testing sample X̃ . Then aPRCP achieves (1− α)-probabilistically robust
coverage.

Proof. (of Theorem 1)

Denote B = {(X,Y ) ∈ X × Y : Qrob(X,Y ;α∗
aPR) ≤ τ aPR(α; s)}, which implies that

PX,Y {(X,Y ) ∈ B} ≥ 1− α+ s (1)

due to the definition of τ aPR(α; s) in (9). We simply check whether τ aPR(α; s) can give us probabilistically robust coverage
as follows:

PZ{S(X + ϵ, Y ) ≤ τ aPR(α; s)}
=PX,Y {X,Y : Qrob(X,Y ;α∗

aPR) ≤ τ aPR(α; s)} · Pϵ|X,Y {S(X + ϵ, Y ) ≤ τ aPR(α; s)}
+ PX,Y {X : Qrob(X,Y ;α∗

aPR) > τ aPR(α; s)} · Pϵ|X,Y {S(X + ϵ, Y ) ≤ τ aPR(α; s)}
≥PX,Y {X,Y : Qrob(X,Y ;α∗

aPR) ≤ τ aPR(α; s)} · Pϵ|(X,Y )∈B{S(X + ϵ, Y ) ≤ τ aPR(α; s)}
≥PX,Y {(X,Y ) ∈ B} · Pϵ|(X,Y )∈B{S(X + ϵ, Y ) ≤ Qrob(X,Y ;α∗

aPR)}
≥(1− α+ s) · Pϵ|(X,Y )∈B{S(X + ϵ, Y ) ≤ Qrob(X,Y ;α∗

aPR)} (2)
≥(1− α+ s)(1− α∗

aPR),

where the first inequality is due to the non-negativity of probability, the second inequality is due to Qrob(X,Y ;αaPR(α)) ≤
τ aPR(α; s) for (X,Y ) ∈ B, the third inequality is due to (1), and the last inequality is due to the definition of robust quantile
Qrob(X,Y ; α̃) in (8).

Recall α∗
aPR = 1− (1− α)/(1− α+ s), so (1− α+ s)(1− α∗

aPR) = 1− α, which shows

PZ{S(X + ϵ, Y ) ≤ τ aPR(α; s)} ≥ 1− α.

Lemma 1. (Inflated probability for cross domain noise) Assume Pϵ∼Pcal
ϵ

{ϵ} − Pϵ∼Ptest
ϵ

{ϵ} ≤ d for all ∥ϵ∥ ≤ r. Then, for
any threshold τ , the following inequality holds:

Pϵ∼Pcal
ϵ |X,Y {S(X + ϵ, Y ) ≤ τ} − Pϵ∼Ptest

ϵ |X,Y {S(X + ϵ, Y ) ≤ τ} ≤ d. (3)

Proof. (of Lemma 1)

Pϵ∼Pcal
ϵ

{S(X + ϵ, Y ) ≤ τ} − Pϵ∼Ptest
ϵ

{S(X + ϵ, Y ) ≤ τ}
=Eϵ∼Pcal

ϵ
[I[S(X + ϵ, Y ) ≤ τ ]]− Eϵ∼Ptest

ϵ
[I[S(X + ϵ, Y ) ≤ τ ]]

=

∫
ϵ

Pϵ∼Pcal
ϵ

{ϵ} · I[S(X + ϵ, Y ) ≤ τ ]dϵ−
∫
ϵ

Pϵ∼Ptest
ϵ

{ϵ} · I[S(X + ϵ, Y ) ≤ τ ]dϵ

=

∫
ϵ

(
Pϵ∼Pcal

ϵ
{ϵ} − Pϵ∼Ptest

ϵ
{ϵ}
)
· I[S(X + ϵ, Y ) ≤ τ ]dϵ

≤
∫
ϵ

(d · 1)dϵ = d.



Theorem 2. (Theorem 2 restated, probabilistically robust coverage of aPRCP for cross domain noise) Let Ptest
ϵ and Pcal

ϵ

denote different distributions of ϵ during the testing and calibration phase, respectively. Assume Pϵ∼Pcal
ϵ

{ϵ}−Pϵ∼Ptest
ϵ

{ϵ} ≤
d for all ∥ϵ∥ ≤ r. Set α∗

aPR = 1−d− (1−α)/(1−α+s) in (9). Let CaPR(X̃ = X+ ϵ) = {y ∈ Y : S(X̃, y) ≤ τ aPR(α; s)}
be the prediction set for a testing sample X̃ . Then aPRCP achieves (1− α)-probabilistically robust coverage under Ptest

ϵ .

Proof. (of Theorem 2) We start with (2) in the proof of Theorem 2 which only considers the noise ϵ drawn from the same
distribution during calibration and testing as follows.

PX,Y,ϵ∼Ptest
ϵ

{S(X + ϵ, Y ) ≤ τ aPR(α; s)}
≥(1− α+ s) · Pϵ∼Ptest

ϵ |(X,Y )∈B{S(X + ϵ, Y ) ≤ Qrob(X,Y ;α∗
aPR)}

≥(1− α+ s) ·
(
Pϵ∼Pcal

ϵ |(X,Y )∈B{S(X + ϵ, Y ) ≤ Qrob(X,Y ;α∗
aPR)} − d

)
≥(1− α+ s) ·

(
1−

(
1− d− 1− α

1− α+ s

)
− d

)

=(1− α+ s) · 1− α

1− α+ s
= 1− α,

where the first inequality follows (2), the second inequality is due to inequality 3 in Lemma 1, and the third inequality is due
to the definition Qrob(X,Y ;α∗

aPR) in (8) with α∗
aPR = 1− d− (1− α)/(1− α+ s).

Corollary 3. (Corollary 3 restated) To achieve the same (1 − α)-probabilistically robust coverage on Z, the following
inequalities hold:

min
η∈[0,α]

τ iPR(α; η) ≤ τAR(α), min
s∈[0,α]

τ aPR(α; s) ≤ τAR(α).

Proof. (of Corollary 3) For adaptive PRCP, if s = 0, to achieve (1− α)-probabilistically robust coverage over Z, we must
have α∗

aPR = 0. Since α∗
aPR controls how aggressively we derive the robust quantile for (X,Y ), it indicates that we have to

consider 1-robust quantile. This is equivalent to deriving the adversarial S(X + ϵ, Y ) for all (X,Y ).

For inflated PRCP, if η = 0, to achieve (1 − α)-probabilistically robust coverage, we have Mδ,η = Mδ and α∗
iPR = α,

recovering ARCP (adversarially robust conformal prediction). This case is exactly the same with adpative PRCP with s = 0.
Therefore, τAR(α) = τ iPR(α; 0) = τ aPR(α; 0).

Note that mins∈[0,α] τ
aPR(α; s) ≤ τ aPR(α; 0) and minη∈[0,α] τ

iPR(α; η) ≤ τ iPR(α; 0), so by tuning the value of s for aPRCP
and the value of η for iPRCP, to achieve the same probabilistically robust coverage 1 − α, we can have a more efficient
threshold than ARCP.

Proposition 3. (Proposition 3 restated, concentration inequality for quantiles) Let Q(α) = max{t : PV {V ≤ t} ≥ 1− α}
be the true quantile of a random variable V given α, and Q̂n(α) = V(⌈(n+1)(1−α)⌉) be the empirical quantile estimated
by n randomly sampled set {V1, ..., Vn}ni=1. Then with probability at least 1− δ, we have Q̂n(α+ Õ(1/

√
n)) ≤ Q(α) ≤

Q̂n(α− Õ(1/
√
n)) where Õ hides the logarithmic factor.

Proof. (of Proposition 3)

Define Zi = I[Vi ≤ Q(α)] where 1 ≤ i ≤ n and I[·] is an indicator function. Then Zi is a Bernoulli random variable with
P{Zi = 1} = 1− α and P{Zi = 0} = α from the definition of Q(α). Let Ẑ = 1

n

∑n
i=1 Zi and E[Ẑ] = 1− α.

According to Chernoff bound, we know

P

{∣∣∣∣∣ 1n
n∑

i=1

Zi − E[Ẑ]

∣∣∣∣∣ ≥ εE[Ẑ]

}
≤ 2 exp

(
− E[Ẑ]ε2/3

)
= 2 exp

(
− n(1− α)ε2/3

)
.

By setting δ = 2 exp(−n(1− α)ε2/3), i.e., ε =
√
(3 log(2/δ))/((1− α)n), we have with probability at least 1− δ:∣∣∣∣∣ 1n

n∑
i=1

I[Vi ≤ Q(α)]− (1− α)

∣∣∣∣∣ ≤ ε(1− α) =
√
(3(1− α) log(2/δ))/n = Õ(1/

√
n). (4)



Recall the definition of the empirical quantile Q̂n(α) given α:

Q̂n(α) = max

{
t :

1

n

n∑
i=1

I[Vi ≤ t] ≥ 1− α

}
.

Then we know the following upper bound and lower bound for 1− α:

(1− α) ≤ 1

n

n∑
i=1

I[Vi ≤ Q̂n(α)], (1− α) ≥ 1

n

n∑
i=1

I[Vi ≤ Q̂n(α+ 1/n)].

Re-arranging (4) and using the above upper/lower bounds, with probability at least 1− δ, we have

(1− α)(1− ε) ≤ 1

n

n∑
i=1

I[Vi ≤ Q(α)] ≤ (1− α)(1 + ε)

⇔ 1− (1− (1− α)(1− ε)︸ ︷︷ ︸
=α′

) ≤ 1

n

n∑
i=1

I[Vi ≤ Q(α)] ≤ 1− (1− (1− α)(1 + ε)︸ ︷︷ ︸
=α′′

)

⇒ 1

n

n∑
i=1

I[Vi ≤ Q̂n(α
′ + 1/n)] ≤ 1

n

n∑
i=1

I[Vi ≤ Q(α)] ≤ 1

n

n∑
i=1

I[Vi ≤ Q̂n(α
′′)]

⇔ Q̂n(α
′ + 1/n) ≤ Q(α) ≤ Q̂n(α

′′).

Finally, we analyze α′ and α′′ as follows

α′ = 1− (1− α)(1− ε) = α+ ε(1− α) = α+
√
3(1− α) log(2/δ)/n = α+ Õ(1/

√
n),

α′′ = 1− (1− α)(1 + ε) = α− ε(1− α) = α−
√
3(1− α) log(2/δ)/n = α− Õ(1/

√
n).

Therefore, we have

Q̂n(α+ Õ(1/
√
n)) ≤ Q(α) ≤ Q̂n(α− Õ(1/

√
n)).

2 ADDITIONAL EXPERIMENTS AND IMPLEMENTATION DETAILS

Implementation details. Table 1 shows the testing accuracy of the different deep models using both standard training
(σ = 0) and Gaussian augmented training (σ > 0).

Architecture Training CIFAR10 CIFAR100 ImageNet
Clean(%) Adv(%) Clean(%) Adv(%) Clean(%) Adv(%)

ResNet-110 σ = 0.0 89.99 26.71 71.12 12.20 - -
σ = 0.125 81.70 67.80 58.11 42.01 - -

VGG-19 σ = 0.0 93.10 54.96 72.22 23.10 - -
σ = 0.125 86.50 72.10 55.12 40.85 - -

DenseNet-161 σ = 0.0 95.42 23.28 77.10 04.30 - -
σ = 0.125 88.17 73.15 60.32 46.91 - -

ResNet-50 σ = 0.0 - - - - 75.69 19.56
σ = 0.250 - - - - 68.62 56.15

Table 1: Testing accuracy of different deep models on clean and adversarial test examples (generated using the PGD attack
algorithm) for all three data sets.



2.1 CASE OF SIMILAR NOISE DISTRIBUTION FOR BOTH CALIBRATION AND TESTING

Performance evaluation with a fixed s hyper-parameter and varying α̃. We present in Figures 1 and 2 the probabilistic
robust coverage and prediction set size performance of aPRCP using the Uniform distribution as a noise distribution for
both calibration and testing purposes respectively for the CIFAR100 and CIFAR10 datasets with the three different models
that are trained with clean data. Similarly, we present in Figures 3 and 4 the probabilistic robust coverage and prediction
set size performance of aPRCP using the Gaussian distribution as a noise distribution for both calibration and testing
purposes. For calibration, we sample ms = 128 noisy data points from the surrounding of each data point (||ϵ||2 ≤ 0.125).
For testing, we sample ns = 128 data points from the surrounding of each testing point (||ϵ||2 ≤ 0.125). We observe that
the probabilistic robust coverage for noisy data increases monotonically as we increase the quantile robust coverage for
each ball from 1− α̃ = 0.90 to 1− α̃ = 1.0. These observations hold for both conformal scores (HPS and APS) and using
different deep neural network models.

Figure 1: Probabilistic robust coverage (top) and prediction set size (bottom) obtained by aPRCP(α̃ = 0.10), aPRCP(α̃ =
0.03), PRCP(α̃ = 0.06), aPRCP(α̃ = 0.09), and aPRCP(α̃ = 0.00), evaluated on CIFAR100 dataset for three different
deep models. The target coverage is 90%. The results are shown over 50 different runs.

Figure 2: Probabilistic robust coverage (top) and prediction set size (bottom) obtained by aPRCP(α̃ = 0.10), aPRCP(α̃ =
0.03), PRCP(α̃ = 0.06), aPRCP(α̃ = 0.09), and aPRCP(α̃ = 0.00), evaluated on CIFAR10 dataset for three different deep
models. The target coverage is 90%. The results are shown over 50 different runs.



Figure 3: Probabilistic robust coverage(top) and Prediction set size(bottom) obtained by aPRCP(α̃ = 0.10), aPRCP(α̃ =
0.03), PRCP(α̃ = 0.06), aPRCP(α̃ = 0.09), and aPRCP(α̃ = 0.00), evaluated on CIFAR100 dataset for three different
deep models. The target coverage is 90%. The results are shown over 50 different runs.



Figure 4: Probabilistic robust coverage(top) and Prediction set size(bottom) obtained by aPRCP(α̃ = 0.10), aPRCP(α̃ =
0.03), PRCP(α̃ = 0.06), aPRCP(α̃ = 0.09), and aPRCP(α̃ = 0.00), evaluated on CIFAR10 dataset for three different deep
models. The target coverage is 90%. The results are shown over 50 different runs.

Performance evaluation with a fixed α̃ hyper-parameter and varying s.

Figures 5 and 6 show the probabilistic robust coverage and prediction set size respectively for the CIFAR100 and CIFAR10
datasets with three different deep models that are trained using standard training. For calibration, we sample ms = 128
noisy data points using the uniform sampling distribution from the surrounding of each data point (||ϵ||2 ≤ 0.125). For
testing, we sample ns = 128 data points uniformly from the surrounding of each testing point (||ϵ||2 ≤ 0.125). We observe
that the probabilistic robust coverage for noisy data increases as we increase the s parameter value from 0.0 to 0.09. This
observation matches our proposition as a higher s value produces higher coverage. The above observations hold for both
conformal scores (APS and HPS) using different deep neural network models.

Figure 5: Probabilistic robust coverage(top) and Prediction set size(bottom) obtained by aPRCP(α̃ = 0.10) while varying
the s parameter, evaluated on CIFAR100 dataset for three different deep models. The target coverage is 90%. The results are
shown over 50 different runs.

Performance evaluation with fixed s and α̃ hyper-parameter and varying sampling radius (||ϵ||2 ≤ r) around test
samples. Figures 7 and 8 present the probabilistic robust coverage and the prediction set size respectively for the CIFAR10
dataset. Similarly, figures 9 and 10 present probabilistic robust coverage and prediction set size for the CIFAR100 dataset.
We employ three different deep models that are trained with clean data. For calibration, we sample ms = 128 noisy data
points using the uniform sampling distribution from the surrounding of each data point (||ϵ||2 ≤ 0.125), where ϵ is sampled



Figure 6: Probabilistic robust coverage(top) and Prediction set size(bottom) obtained by aPRCP(α̃ = 0.10) while varying
the s parameter, evaluated on CIFAR10 dataset for three different models. The target coverage is 90%. The results are shown
over 50 runs forall three neural network models.

uniformly over the segment [0, 0.125]. For testing, we sample ns = 128 data points uniformly from the surrounding of each
testing point (||ϵ||2 ≤ {1.0, 2.0, 3.0}), where ϵ is uniformly sampled over the segment [0, 1], [0, 2], [0, 3] respectively. We
observe that the probabilistic robust coverage for noisy data decays as we increase the sampling radius. Additionally, we
note that when we set the d parameter to 0.1 (accounting for the change in noise distribution between calibration and testing
as per Theorem 2), we guarantee achieving the target coverage. These observations hold for both conformal scores (APS
and HPS) using different deep neural network models.

Figure 7: Probabilistic robust coverage evaluated on CIFAR10 dataset for three different models. The target coverage is
90%. The results are shown over 50 runs forall three neural network models.



Figure 8: Prediction set size evaluated on CIFAR10 dataset for three different deep models. The results are shown over 50
different runs.

Figure 9: Probabilistic robust coverage evaluated on CIFAR100 dataset for three different deep models. The target coverage
is 90%. The results are shown over 50 different runs.



Figure 10: Prediction set size evaluated on CIFAR100 dataset for three different deep models. The results are shown over 50
different runs.

2.2 CASE OF DISSIMILAR NOISE DISTRIBUTIONS FOR CALIBRATION AND TESTING

Gaussian distribution for Calibration and Uniform distribution for Testing with a fixed s hyper-parameter and
varying α̃. Figures 11 and 12 present probabilistic robust coverage and prediction set size respectively for the CIFAR100 and
CIFAR10 datasets with three different deep models that are trained with clean data. For calibration, we sample ms = 128
data points using the Gaussian sampling distribution from the surrounding of each data point(||ϵ||2 ≤ 0.125). For testing,
we sample ns = 128 data points uniformly from the surrounding of each testing point(||ϵ||2 ≤ 0.125). We observe that the
probabilistic robust coverage increased over the case of using the same distribution for sampling during the testing and
calibration phases.

Uniform distribution for Calibration and Gaussian distribution for Testing with a fixed s hyper-parameter and
varying α̃. Figures 13 and 14 present probabilistic robust coverage and prediction size for CIFAR100 and CIFAR10 datasets
respectively with three different deep models that are trained with clean data. For calibration, we sample ms = 128 data
points using the Uniform sampling distribution from the surrounding of each data point (||ϵ||2 ≤ 0.125). For testing, we
sample ns = 128 data points using Gaussian distribution from the surrounding of each testing point (||ϵ||2 ≤ 0.125). We
observe a slightly different performance of aPRCP compared to the case of using the same distribution for noise during the
testing and calibration phases. This observation corroborate the statement of Theorem 2 and Remark 2 explaining the relation
between the gap of the density probability between the calibration and testing noise distributions with the probabilistic
robust coverage for aPRCP.



Figure 11: Probabilistic robust coverage(top) and Prediction set size(bottom) obtained by aPRCP(α̃ = 0.10), aPRCP(α̃ =
0.03), PRCP(α̃ = 0.06), aPRCP(α̃ = 0.09), and aPRCP(α̃ = 0.00), evaluated on CIFAR100 dataset for three different
deep models. The target coverage is 90%. The results are shown over 50 different runs.

Figure 12: Probabilistic robust coverage(top) and Prediction set size(bottom) obtained by aPRCP(α̃ = 0.10), aPRCP(α̃ =
0.03), PRCP(α̃ = 0.06), aPRCP(α̃ = 0.09), and aPRCP(α̃ = 0.00), evaluated on CIFAR10 dataset for three different deep
models. The target coverage is 90%. The results are shown over 50 different runs.



Figure 13: Probabilistic robust coverage(top) and Prediction set size(bottom) obtained by aPRCP(α̃ = 0.10), aPRCP(α̃ =
0.03), PRCP(α̃ = 0.06), aPRCP(α̃ = 0.09), and aPRCP(α̃ = 0.00), evaluated on CIFAR100 dataset for three different
deep models. The target coverage is 90%. The results are shown over 50 different runs.

Figure 14: Probabilistic robust coverage(top) and Prediction set size(bottom) obtained by aPRCP(α̃ = 0.10), aPRCP(α̃ =
0.03), PRCP(α̃ = 0.06), aPRCP(α̃ = 0.09), and aPRCP(α̃ = 0.00), evaluated on CIFAR10 dataset for three different deep
models. The target coverage is 90%. The results are shown over 50 different runs.



2.3 PERFORMANCE OF APRCP(WORST-ADV) WITH VARYING ms

Figures 15 and 16 show the performance of aPRCP with three different deep models when varying ms (number of noisy
samples for calibration) for CIFAR10 and CIFAR100 datasets respectively. We show the robust coverage and prediction set
size for both APS and HPS conformity scores. Both figures show that the aPRCP(worst-adv) reported performance is
consistent for different values of ms.

We show in Figure 17 the comparison of the prediction set size and the coverage between RSCP and aPRCP(worst-adv)
using both APS and HPS. We employ ResNet110 model trained with Gaussian augmented data (σ = 0.125). We observe
that RSCP is more conservative compared to our method aPRCP(worst-adv) for both APS and HPS conformity scores.

We show in Figure 18 and 19 the comparison of the prediction set size and coverage between RSCP and
aPRCP(worst-adv) for two different deep models trained with Gaussian augmented data (σ = 0.0625 and σ = 0.125).
We observe that aPRCP(worst-adv) produces smaller prediction sets than RSCP.

Figure 15: Robust coverage (top) and prediction set size (bottom) performance of two conformity scores (APS and HPS) for
different deep models with varying ms samples on calibration data for CIFAR10 dataset. The results are reported over 50
different runs. We use all models trained with Gaussian augmented data using standard deviation σ = 0.25.



Figure 16: Robust coverage (top) and prediction set size (bottom) performance of two scores for different deep models with
varying ms samples on calibration data for CIFAR100 dataset. The results are reported over 50 different runs. We use all
models trained with Gaussian augmented data with standard deviation σ = 0.25.

Figure 17: Robust coverage (top) and prediction set size (bottom) performance of two methods, namely, aPRCP(worst-adv)
and RSCP, with varying ms samples on calibration data for CIFAR100 dataset. The results are reported over 50 different
runs. We use all models trained with Gaussian augmented data of standard deviation σ = 0.125.



Figure 18: Robust coverage (top) and prediction set size (bottom) performance of two different models trained with Gaussian
augmented data using standard deviation σ = 0.0625 and σ = 0.125 with varying ms samples on calibration data for
CIFAR10 dataset. The results are reported over 50 different runs.

Figure 19: Robust coverage (top) and prediction set size (bottom) performance of two different models trained with Gaussian
augmented data using standard deviation σ = 0.0625 and σ = 0.125 with varying ms samples on calibration data for
CIFAR100 dataset. The results are reported over 50 different runs.



2.4 THE EFFECT OF VARYING ||ϵ||2 ≤ r DURING CALIBRATION

We show in Figure 20 the robust coverage and the prediction set size achieved by aPRCP(worst-adv) on CIFAR100
with a ResNet model that is trained with Gaussian augmented data (σ = 0.125). For calibration, we sample ms = 128
noisy data points using the uniform sampling distribution from the surrounding of each data point (||ϵ||2 ≤ r), where
r = {0.125, 0.250, 1.0}. For testing, we generate data using an adversarial attack algorithm of energy 0.125. We observe
that the effect of the small changes in the sampling radius is negligible.

Figure 20: Robust coverage (left) and prediction set size (bottom) performance of the ResNet model trained with Gaussian
augmented data using standard deviation σ = 0.125 with varying radius of robust quantile balls during calibration for
CIFAR100 dataset. The results are reported over 50 different runs.

2.5 PERFORMANCE OF APRCP(WORST-ADV) WITH DIFFERENT DEEP MODELS

Figure 21 shows the performance of our aPRCP(worst-adv) using DenseNet[Iandola et al., 2014] and VGG[Simonyan and
Zisserman, 2014] models on the CIFAR10 and CIFAR100 datasets. We use the same adversarial attack algorithm for test
examples with a magnitude of r = 0.125. During calibration, we sample ms = 128 noisy samples (r = 0.125) for each
calibration example. We observe that the robust coverage is achieved on all three deep models with small prediction sets.



(a) CIFAR10 (b) CIFAR100

Figure 21: Robust coverage (top) and prediction set size (bottom) constructed by aPRCP(worst-adv) method for
CIFAR10 (left) and CIFAR100 (right) datasets. The neural network models used are trained with Gaussian augmented data
using standard deviation σ = 0.25. The results are reported over 50 different runs. As can be seen, all models guarantee
target coverage and VGG produces larger prediction sizes compared to other models.



2.6 RESULTS ON ADVERSARIAL EXAMPLES GENERATED FROM A PROBABILITY DENSITY
DISTRIBUTION

We evaluate the performance of aPRCP with a different adversarial attack algorithm, namely NATTACK [Li et al., 2019].
This attack algorithm generates a probability density distribution centered around an input from which adversarial examples
can be sampled. We employ this algorithm using an adversarial magnitude ||ϵ||2 ≤ r = 0.125 to generate adversarial
examples for the test data of CIFAR10 and CIFAR100 on three different deep models trained with Gaussian augmented data
(σ = 0.125). In all our experiments, we set T = 1000 as the number of maximum iterations, and a learning rate η = 0.008.

Both Figures 22 and 23 show that aPRCP is the only algorithm that can guarantee the adversarial robust coverage. This can
be explained by the fact that RSCP requires the design of a specialized scoring function to guarantee coverage while aPRCP
uses a quantile-of-quantile design and can employ any existing score function.

Figure 22: Robust coverage (top) and prediction set size (bottom) constructed by three different CP methods. The target
coverage is 90%. The results are reported over 50 different runs for the CIFAR10 data set.

Figure 23: Robust coverage (top) and prediction set size (bottom) constructed by three different CP methods. The target
coverage is 90%. The results are reported over 50 different runs for the CIFAR100 data set.

2.7 IMPORTANCE OF GAUSSIAN AUGMENTED TRAINING

While aPRCP can work without any assumption on the base classifier, Figure 24 shows the importance of the model
robustness to produce smaller prediction sets. Both RSCP and aPRCP(worst-adv) construct prediction sets that are larger
when the base model is not adversarially robust.



Figure 24: Robust coverage (top) and prediction set size (bottom) constructed by three different CP methods. The target
coverage is 90%. The results are reported over 50 different runs for the CIFAR10 data set.

2.8 APRCP NOMINAL PERFORMANCE

Figure 25 shows a comparison of the nominal performance (evaluation on only clean inputs) on CIFAR10 and CIFAR100
datasets. We employ ms = 128 for calibration and standard training to train the base model. We can observe that aPRCP
achieves better trade-off between the nominal performance (evaluation on clean inputs) and the robust performance
(evaluation on perturbed inputs). For both datasets, aPRCP achieves a tighter empirical coverage (closer to 90%) with
smaller prediction sets than RSCP.



(a) CIFAR10 (b) CIFAR100

Figure 25: Robust coverage (top) and prediction set size (bottom) constructed by Vanilla CP, RSCP, and aPRCP(worst-adv)
using HPS and APS conformity scoring functions (target coverage is 90%) for the CIFAR10 and CIFAR100 data sets.
Results are averaged over 50 different runs.
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