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Abstract

Conformal prediction (CP) is a framework to quan-
tify uncertainty of machine learning classifiers in-
cluding deep neural networks. Given a testing ex-
ample and a trained classifier, CP produces a pre-
diction set of candidate labels with a user-specified
coverage (i.e., true class label is contained with
high probability). Almost all the existing work
on CP assumes clean testing data and there is
not much known about the robustness of CP al-
gorithms w.r.t natural/adversarial perturbations to
testing examples. This paper studies the problem
of probabilistically robust conformal prediction
(PRCP) which ensures robustness to most pertur-
bations around clean input examples. PRCP gen-
eralizes the standard CP (cannot handle perturba-
tions) and adversarially robust CP (ensures robust-
ness w.r.t worst-case perturbations) to achieve bet-
ter trade-offs between nominal performance and
robustness. We propose a novel adaptive PRCP
(aPRCP) algorithm to achieve probabilistically ro-
bust coverage. The key idea behind aPRCP is to
determine two parallel thresholds, one for data
samples and another one for the perturbations
on data (aka “quantile-of-quantile” design). We
provide theoretical analysis to show that aPRCP
algorithm achieves robust coverage. Our experi-
ments on CIFAR-10, CIFAR-100, and ImageNet
datasets using deep neural networks demonstrate
that aPRCP achieves better trade-offs than state-of-
the-art CP and adversarially robust CP algorithms.

1 INTRODUCTION

Deep learning has shown significant success in diverse real-
world applications. However, to deploy these deep models
in safety-critical applications (e.g, autonomous driving and

medical diagnosis), we need uncertainty quantification (UQ)
tools to capture the deviation of the prediction from the
ground-truth output. For example, producing a subset of
candidate labels referred to as prediction set for classifica-
tion tasks. Conformal prediction (CP) [Vovk et al., 1999,
2005, Shafer and Vovk, 2008] is a framework for UQ that
provides formal guarantees for a user-specified coverage:
ground-truth output is contained in the prediction set with a
high probability 1− α (e.g., 90%). There are two key steps
in CP. First, in the prediction step, we use a black-box classi-
fier (e.g., deep neural network) to compute (non-)conformity
scores which measure similarity between calibration exam-
ples and a testing input. Second, in the calibration step, we
use the conformity scores on a set of calibration examples
to find a threshold to construct prediction set which meets
the coverage constraint (e.g., 1−α=90%). The efficiency of
CP [Sadinle et al., 2019] is measured in terms of size of the
prediction set (the smaller the better) which is important for
human-ML collaborative systems [Rastogi et al., 2022].

In spite of the recent successes of CP [Vovk et al., 2005],
there is little known about the robustness of CP to adversar-
ial perturbations of clean inputs. Most CP methods [Cau-
chois et al., 2020, Gibbs and Candes, 2021, Tibshirani et al.,
2019, Podkopaev and Ramdas, 2021, Guan and Tibshirani,
2022] are brittle as they assume clean input examples and
cannot handle any perturbations. The recent work on adver-
sarially robust CP [Gendler et al., 2022] ensures robustness
to all perturbations bounded by a norm ball with radius r.
However, this conservative approach of dealing with worst-
case perturbations can degrade the nominal performance
(evaluation on only clean inputs) of the CP method. For ex-
ample, the prediction set size can be large even for clean and
easy-to-classify inputs, which increases the burden of hu-
man expert in human-ML collaborative systems [Cai et al.,
2019, Rastogi et al., 2022]. The main research question of
this paper is: how can we develop probably correct CP al-
gorithms for ensuring robustness to most perturbations for
(pre-trained) deep classifiers? 1
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Figure 1: Conceptual illustration of the adaptive PRCP setting. The goal is to improve the robustness of the CP framework
to handle perturbations ϵ bounded by r for every input X ∈ X . The robust quantile corresponding to 1-α̃ region (blue circle
around X) is computed by accounting for most of the perturbed data X + ϵ (see (8)). s is a conservativeness parameter for
the robust quantile that can be varied to achieve the target marginal coverage 1− α+ s (see (9)). Adaptive PRCP can find
a trade-off between the marginal coverage on feature space (X,Y ) and the robustness for perturbation ϵ by changing the
value of α̃ and s to achieve probabilistically robust coverage (See Definition 3).

To answer this question, we present a general notion for
probabilistically robust coverage that balances the standard
conformal coverage and the adversarial (worst-case) cover-
age as the fundamental setting. To address this challenge,
we develop the adaptive PRCP algorithm (aPRCP) which
is based on the principle of "quantile-of-quantile" design:
consists of two parallel quantiles as illustrated in Figure 1:
one defined in the perturbed noise space (see (8)), the other
one in the data space (9). Our analysis fixes one quantile
probability as a given hyper-parameter, and finds the other
one to achieve the target probabilistically robust coverage.
We provide theoretical analysis for probabilistic correctness
of aPRCP at the population level and the approximation
error of empirical quantiles as a function of the number of
samples. As a result, aPRCP achieves improved trade-offs
between nominal performance (evaluation on clean inputs)
and robust performance (evaluation on perturbation inputs)
for both probabilistic and worst-case settings as illustrated
in Figure 2, which is analogous to the recent work on proba-
bilistically robust learning Robey et al. [2022].

Contributions. The key contribution of this paper is the
development, theoretical analysis, and empirical evaluation
of the aPRCP algorithm. Our specific contributions include:

• A general notion of probabilistically robust coverage
for conformal prediction against perturbations of clean
input examples.

• Development of the adaptive PRCP algorithm based
on the principle of "quantile-of-quantile" design.

• Theory to show that aPRCP algorithm achieves proba-
bilistically robust coverage for adversarial examples.

• Experimental evaluation of aPRCP method on clas-
sification benchmarks using deep models to demon-
strate its efficacy over prior CP methods on CIFAR-10,
CIFAR-100, and ImageNet.

2 BACKGROUND AND PROBLEM SETUP

We consider the problem of uncertainty quantification (UQ)
of pre-trained deep models for classification tasks in the
presence of adversarial perturbations. Suppose (X,Y ) is
a data sample where X is an input from the space X
and Y ∈ Y is the corresponding ground-truth output. For
classification tasks, Y is a set of C discrete class-labels
{1, 2, · · · , C}. Let ϵ denote the l2-norm bounded noise, i,e,.
Er = {ϵ ∈ X : ∥ϵ∥2 ≤ r} that is independent from data
sample (X,Y ). Let PX,Y and Pϵ denote the underlying
distribution of (X,Y ) and ϵ, respectively. We also define
Z = (X,Y, ϵ) as the joint random variable and the perturbed
input example X̃ = X + ϵ for notational simplicity.

Uncertainty Quantification. Let Dtr and Dcal correspond
to sets of training and calibration examples drawn from a
target distribution PX,Y . We assume the availability of a
pre-trained deep model Fθ : X 7→ Y , where θ stands for
the parameters of the deep model. For a given testing input
X̃ , we want to compute UQ of the deep model Fθ in the
form of a prediction set C(X̃), a subset of candidate class-
labels {1, 2, · · · , C}. The performance of UQ for clean data
samples (i.e., ϵ=0) is measured using two metrics. First, the
(marginal) coverage is defined as the probability that the
ground-truth output Y is contained in C(X) for a testing
example (X,Y ) from the same data distribution PX,Y , i.e.,
P(Y ∈ C(X)). The empirical coverage Cov is measured
over a given set of testing examples Dtest. Second, efficiency,
denoted by Eff, measures the cardinality of the prediction
set C(X). Smaller prediction set means higher efficiency. It
is easy to achieve the desired coverage (say 90%) by always
outputting C(X)=Y at the expense of poor efficiency.

Conformal Prediction (CP). CP is a framework that allows
us to compute UQ for any given predictor through a confor-
malization step. The key element of CP is a score function
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Figure 2: Results on CIFAR100 dataset using a ResNet model to illustrate the trade-offs between nominal performance
(evaluation on clean data) and robust performance (evaluation on adversarial examples) for Vanilla CP, RSCP, and variants
of the aPRCP algorithm. (a) and (c) show the evaluation against clean examples and their corresponding noisy samples
(i.e., X̃ = X + ϵ; ||ϵ||2 ≤ r) w.r.t probabilistic robustness. (b) and (d) show the evaluation against clean examples and their
corresponding bounded adversarial examples. aPRCP(worst-adv) is the variant of aPRCP that works for worst adversarial
data. Vanilla CP fails to achieve coverage for worst-case adversarial data. RSCP achieves a robust coverage much higher than
the target (nominal) coverage, resulting in large prediction sets. aPRCP achieves better results (tighter coverage and smaller
prediction set size) than vanilla CP and RSCP in terms of the joint performance on clean, noisy, and worst-adversarial data.

S that computes the conformity (or non-conformity) score,
measures similarity between labeled examples, which is
used to compare a given testing input to the calibration set
Dcal. Since any non-conformity score can be intuitively con-
verted to a conformity measure [Vovk et al., 2005], we use
non-conformity measure for ease of technical exposition.
Let S(X,Y ) denote the non-conformity score function of
data sample (X,Y ). For a sample (Xi, Yi) from the calibra-
tion set Dcal, we use Si = S(Xi, Yi) as a shorthand notation
of its non-conformity score.

A typical method based on split conformal prediction has a
threshold τ to compute UQ in the form of prediction set for a
given testing input X and deep model Fθ. A small set of cal-
ibration examples Dcal are used to select the threshold t for
achieving the given coverage 1−α (say 90%) empirically on
Dcal. Let Q(α) := min{t : PX,Y {S(X,Y ) ≤ t} ≥ 1− α}
be the true quantile of the conformity score for (X,Y ).
Let Dcal = {(Xi, Yi)}ni=1 denote a calibration set with
n exchangeably drawn random samples from the under-
lying distribution PX,Y . We denote the (1 − α)-quantile
derived from {Si}ni=1 by Q(α; {Si}ni=1) = S(⌈(1−α)(n+1)⌉).
The prediction set for a new testing input X is given by
C(X)={y : S(X, y) ≤ τ} using a threshold τ . CP provides
valid guarantees that C(X) has coverage 1 − α on future
examples drawn from the same distribution PX,Y .

For classification, several non-conformity scores can be
employed. The homogeneous prediction sets (HPS) score is
defined [Vovk et al., 2005, Lei et al., 2013] as follows:

SHPS(X, y) = 1− Fθ(X)y, (1)

where Fθ(X)y ∈ [0, 1] is the probability corresponding to
the true class y using the deep model Fθ. Recent work has
proposed the adaptive prediction sets (APS) [Romano et al.,
2020b] score that is based on ordered probabilities. The

score function of APS is defined as follows:

SAPS(X, y) =
∑
y′∈Y

Fθ(X)y′1
{
Fθ(X)y′ > Fθ(X)y

}
+ u.Fθ(X)y, (2)

where u is a random variable uniformly distributed over
[0, 1] and 1 is the indicator function.

Problem Definition. The high-level goal of this paper is
to study methods to improve the robustness of the standard
CP framework to adversarial/noisy examples of the form
X̃ = X + ϵ, where ϵ is the additive perturbation from
Er = {ϵ ∈ Rd : ∥ϵ∥p ≤ r}. Specifically, we propose a
novel adaptive probabilistically robust conformal prediction
(aPRCP) algorithm which accounts for (1− α̃) (see α̃ for
robust quantile in (8)) fraction of perturbations in Er for
each data (X,Y ). Setting α̃ = 0 as an extreme case makes
aPRCP handle all perturbations (i.e., worst-case), similar to
RSCP [Gendler et al., 2022]. We theoretically and empir-
ically analyze aPRCP to demonstrate improved trade-offs
between nominal performance (evaluation on clean inputs)
and robust performance (evaluation on perturbation inputs).
Figure 1 conceptually illustrates the PRCP problem setting.

3 ROBUST CONFORMAL PREDICTION

This section describes our proposed adaptive probabilisti-
cally robust conformal prediction (aPRCP) algorithm. First,
we introduce the notion of adversarially robust coverage
and extend it to probabilistically robust coverage. Next, we
motivate the significance of aPRCP algorithm and study the
theoretical connection between aPRCP and adversarially
robust CP setting [Gendler et al., 2022] in terms of proba-
bilistically robust coverage and prediction set size. Finally,
we analyze the gap between empirical and population level
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quantiles in terms of the number of data samples.

3.1 PROBABILISTICALLY ROBUST COVERAGE

This section introduces the expanded notation of inflation
condition on the conformity scoring function from the worst-
case adversarial robustness setting to the more general prob-
abilistic robustness setting. We start with the following defi-
nitions that are originally introduced for the ARCP setting
[Gendler et al., 2022] and capture the inflation property of
the score function for deriving adversarial robustness.

Definition 1. (Adversarially robust coverage) A prediction
set C(X̃) provides (1− α)-adversarially robust coverage if
for a desired coverage probability 1− α ∈ (0, 1):

PX,Y {Y ∈ C(X̃ = X + ϵ),∀ϵ ∈ Er} ≥ 1− α. (3)

Definition 2. (Mr-adversarially inflated score function)
S : X × Y → R is an Mr-adversarially inflated score
function if the following inequality holds:

S(X + ϵ, Y ) ≤ S(X,Y ) +Mr,

∀X ∈ X , Y ∈ Y and ϵ ∈ Er. (4)

The strategy of RSCP algorithm [Gendler et al., 2022] for
the ARCP setting is to directly add an inflated quantity Mr

to the quantile determined from the clean data (X,Y ),

τAR(α) := Q(α) +Mr, (5)

and construct a prediction set with CAR(X) = {y ∈ Y :
S(X + ϵ, y) ≤ τAR(α)}. To this end, since Q(α) provides
(1 − α) marginal coverage on clean data (X,Y ), τAR(α)
thus guarantees (1 − α)-adversarially robust coverage on
adversarial data (X + ϵ, Y ). This result is summarized in
the following proposition.

Proposition 1. (Adversarially robust coverage of RSCP,
Theorem 1 in [Gendler et al., 2022]) Assume the score func-
tion S is Mr-adversarially inflated. Let CAR(X̃) = {y ∈
Y : S(X̃, y) ≤ τAR(α)} be the prediction set for a testing
sample X̃ . Then RSCP achieves (1−α)-adversarially robust
coverage.

Now we extend the notion of adversarially robust coverage
to the more general and relaxed condition, i.e., probabilisti-
cally robust coverage, by introducing the definition below.

Definition 3. (Probabilistically robust coverage) A predic-
tion set C(X̃) provides (1− α)-probabilistically robust cov-
erage if for a desired coverage probability 1− α ∈ (0, 1):

PX,Y,ϵ{Y ∈ C(X̃ = X + ϵ)} ≥ 1− α. (6)

We highlight that the key difference between adversarially
robust coverage (Definition 1) and probabilistically robust

coverage (Definition 3) is whether the distribution of the
perturbation ϵ is involved in the comparison with the target
probability 1 − α: probabilistically robust coverage goes
though the joint distribution involving ϵ, i.e., PX,Y,ϵ{·} in
(6) instead of PX,Y {·,∀ϵ ∈ Er} in (3). Based on this under-
standing, we can see that a conformal prediction method
can achieve (1− α)-probabilistically robust coverage if it
can satisfy (1 − α)-adversarially robust coverage. For the
same target probability (1− α), adversarially robust cover-
age is more difficult to achieve than probabilistically robust
coverage. Hence, the notion of probabilistic robustness for
CP is more general and relaxed.

Naturally, we now extend the definition of the uniform in-
flated score function (Definition 2) to the following one.

Definition 4. (Mr,η-probabilistically inflated score func-
tion) S : X × Y → R is an Mr,η-probabilistically in-
flated score function if the following inequality holds for
η ∈ [0, α]:

PZ

{
S(X + ϵ, Y ) ≤ S(X,Y ) +Mr,η

}
≥ 1− η. (7)

The above definition regarding the inflation of the score
function is general and includes (4) given in Definition 2 as
a special case: By simply setting η = 0, we get PZ{S(X +
ϵ, Y ) ≤ S(X,Y ) + Mr,0} ≥ 1, i.e., Mr,0 = Mr. Again,
we highlight that the above condition involves the joint
distribution on Z, as in Definition 3.

Based on the extension from adversarial to probabilistic
robustness setting, it is easy to develop a similar principle on
the inflated score function to derive probabilistically robust
coverage, which we refer to as inflated probabilistically
robust conformal prediction (iPRCP). To this end, let

τ iPR(α; η) := Q(α∗
iPR) +Mr,η,

where α∗
iPR = 1−(1−α)/(1−η). τ iPR(α; η) is the threshold

determined by iPRCP that treats η from probabilistically
inflated score function as a hyper-parameter. We use α∗

iPR as
the probability for deriving the quantile on clean data, as (5)
in ARCP.

Proposition 2. (Probabilistically robust coverage of
iPRCP) Assume the score function S is an Mr,η-
probabilistically inflated. Let C iPR(X̃) = {y ∈ Y :

S(X̃, y) ≤ τ iPR(α; η)} be the prediction set for a test-
ing sample X̃ = X + ϵ. Then iPRCP achieves (1 − α)-
probabilistically robust coverage.

This result shows that we can guarantee the (1 − α)-
probabilistically robust coverage if we use τ iPR(α; η) to
construct the prediction set C iPR. While the idea is simple
and follows the inflation quantile used in the ARCP setting,
it implies that we have to know Mr,η, the inflated quantity
on the clean quantile. This requires us to know the score
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Algorithm 1 adaptive PRCP (aPRCP)

1: Input: target probability α ∈ (0, 1); the hyper-
parameter s; set α̃ = 1− 1−α

1−α+s ; split data into disjoint
training set Dtr and calibration set Dcal with |Dcal| = n.

2: Train a classifier Fθ on Dtr.
3: Draw ϵij ∼ Pϵ where i ∈ {1, · · · , n} and j ∈

{1, · · · ,m} denote the indices of data (Xi, Yi) and its
m perturbations.

4: Compute scores: Sij = S(Xi + ϵij , Yi), ∀i, j.
5: Compute empirical robust quantiles:

Q̂rob
i = Q̂rob(Xi, Yi; α̃) = Q(α̃, {Sij}mj=1) via (8), ∀i.

6: Determine threshold τ aPR(α; s) = Q̂rob
(⌈(n+1)(1−α+s)⌉)

from empirical robust quantiles according to (9).
7: Receive X̃n+1 and construct prediction set:

C(X̃n+1) = {y ∈ Y : S(X̃n+1, y) ≤ τ aPR(α; s)}.

function very well. Otherwise, we have to design a score
function that satisfies the desired condition, similar to how
the randomly smoothed score function was designed by
RSCP algorithm to work for the ARCP setting [Gendler
et al., 2022]. It was carefully designed to offer a uniform
Lipschitz continuity with the requirement of an additional
set of Gaussian random samples. This design may intro-
duce additional restrictions, since extra samples are required
every time the score function is applied, including each cal-
ibration and testing sample. Therefore, we would like to
address the following question: Can we design an adaptive
algorithm to fit the underlying distribution without any prior
knowledge or special design of the score function?

3.2 ADAPTIVE PRCP ALGORITHM

This section presents our adaptive algorithm for achieving
probabilistically robust coverage (aPRCP). We summarize
it in Algorithm 1 and elaborate it below. First, we define the
(1− α̃)-robust quantile for a given X as follows

Qrob(X,Y ; α̃)

:= min{t : Pϵ{S(X̃, Y ) ≤ t} ≥ 1− α̃}. (8)

Given (X,Y ) and α̃, Qrob(X,Y ; α̃) returns the quantile
from all randomly perturbed X̃ = X + ϵ over ϵ ∈ Er. It
acquires the inflated quantity from a local region of X as α̃
indicates how conservative this inflation can be. We denote
the empirical robust quantile (in Line 5 of Algorithm 1) by
Q̂rob.

Next, we define the threshold of the proposed adaptive
PRCP (aPRCP) for a hyper-parameter s ∈ [0, α] as follows.

τ aPR(α; s) = min{t :
PX,Y {Qrob(X,Y ;α∗

aPR) ≤ t} ≥ 1− α+ s}, (9)

where α∗
aPR = 1 − (1 − α)/(1 − α + s) is a conservative-

ness parameter for the robust quantile in (8) that depends

on the target probability α and the hyper-parameter s. In
practice, the empirical threshold τ̂ aPR = Q̂rob

(⌈(n+1)(1−α+s)⌉)

is selected from empirical robust quantiles {Q̂rob
i }ni=1 (in

Line 6 of Algorithm 1). Our aPRCP algorithm is adaptive
since it finds α∗

aPR that is adaptive to the underlying dis-
tribution of (X,Y ) as long as α and s are fixed apriori.
The following formal result guarantees the probabilistically
robust coverage for the aPRCP algorithm.

Theorem 1. (Probabilistically robust coverage of aPRCP)
Let CaPR(X̃ = X + ϵ) = {y ∈ Y : S(X̃, y) ≤ τ aPR(α; s)}
be the prediction set for a testing sample X̃ . Then aPRCP
achieves (1− α)-probabilistically robust coverage.

Remark 1. In fact, τ aPR(α; s) is the (1−α+ s)-th quantile
(going through (X,Y )) of the (1− α∗

aPR)-robust quantiles
(going through ϵ). One benefit of aPRCP is the transfer
of the inflation from the score function to the specified
probability (i.e., an s increase in probability). Therefore, it
is not required to have a prior knowledge of either Mr as in
ARCP or Mr,η as in iPRCP. Instead, aPRCP requires finding
a feasible and a good value for α∗

aPR by treating s as a hyper-
parameter, though it inflates the specified probability, i.e.,
1− α+ s ≥ 1− α, and 1− α∗

aPR ≥ 1− α.

Theorem 2. (Probabilistically robust coverage of aPRCP
for cross-domain noise) Let Ptest

ϵ and Pcal
ϵ denote different

distributions of ϵ during the testing and calibration phases,
respectively. Assume Pϵ∼Pcal

ϵ
{ϵ}−Pϵ∼Ptest

ϵ
{ϵ} ≤ d for all

∥ϵ∥ ≤ r. Set α∗
aPR = 1 − d − (1 − α)/(1 − α + s) in (9).

Let CaPR(X̃ = X + ϵ) = {y ∈ Y : S(X̃, y) ≤ τ aPR(α; s)}
be the prediction set for a testing sample X̃ . Then aPRCP
achieves (1− α)-probabilistically robust coverage.

Remark 2. The key assumption we make is Pϵ∼Pcal
ϵ

{ϵ} −
Pϵ∼Ptest

ϵ
{ϵ} ≤ d, which is analogous to L1-distance used

in the domain adaptation literature [Redko et al., 2020, Ben-
David et al., 2006]. One can interpret it as the maximal gap
of the density probability between the calibration and testing
distributions when fixing ϵ. As per our analysis, when this
gap can be bounded by a sufficiently small constant d, with
an inflated nominated coverage in the robust quantile (i.e.,
setting α∗

aPR = 1− d− (1−α)/(1−α+ s) in (9)), we can
guarantee probabilistically robust coverage for aPRCP.

3.3 CONNECTION BETWEEN ARCP AND PRCP

Although ARCP algorithm can achieve adversarially robust
coverage, we can still connect ARCP and PRCP in the sense
of probabilistically robust coverage and understand their
performance in terms of efficiency. Recall that efficiency
of conformal prediction algorithms refers to the measured
size of prediction sets for testing samples when some de-
sired coverage is achieved. For example, for the same target
probability 1− α, a smaller threshold indicates better effi-
ciency. The following result shows the possibly improved
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efficiency of iPRCP and aPRCP when compared to ARCP
after that their hyper-parameters were tuned properly (i.e.,
η for iPRCP and s for aPRCP).

Corollary 3. To achieve the same (1− α)-probabilistically
robust coverage on Z, the following inequalities hold:

min
η∈[0,α]

τ iPR(α; η) ≤ τAR(α), min
s∈[0,α]

τ aPR(α; s) ≤ τAR(α).

When all three algorithms achieve (1− α)-probabilistically
robust coverage, smaller thresholds yield better efficiency,
i.e., iPRCP and aPRCP. The idea of the above result is to
particularly set η = 0 and s = 0, which makes iPRCP and
aPRCP degenerate to ARCP, resulting in the same threshold.
For aPRCP with s = 0, we have α∗

aPR = 0, i.e., 1-robust
quantile for each (X,Y ) used, which recovers ARCP.

3.4 APPROXIMATION ERROR OF EMPIRICAL
QUANTILES

In the above sections, we presented algorithms and their
analysis directly in the population sense, including the true
quantile Q(α) and Qrob(X;α). However, when executing a
given conformal prediction method on exchangeable sam-
ples Dcal, we employ empirical quantiles in practice. To
close this gap between theory and practice, we additionally
discuss the concentration inequalities for empirical approxi-
mation to these quantities (i.e., the gap between empirical
and true quantiles) as a function of the number of samples.

Proposition 3. (Concentration inequality for quantiles) Let
Q(α) = max{t : PV {V ≤ t} ≥ 1 − α} be the true
quantile of a random variable V given α, and Q̂n(α) =
V(⌈(n+1)(1−α)⌉) be the empirical quantile estimated by n
randomly sampled set {V1, ..., Vn}ni=1. Then with probabil-
ity at least 1− δ, we have Q̂n(α + Õ(1/

√
n)) ≤ Q(α) ≤

Q̂n(α− Õ(1/
√
n)) where Õ hides the logarithmic factor.

The above result shows that more data samples from the un-
derlying distribution for (X,Y ) or ϵ will help in improving
the approximation of empirical quantiles on score function
S at a rate of Õ(1/

√
n), where n is number of samples.

Note that we only use this proposition to fill the gap be-
tween empirical and true quantiles. Some prior work also
studied similar concentration results [Vovk, 2012].

4 EXPERIMENTS AND RESULTS

In this section, we present the empirical evaluation of our
proposed aPRCP algorithm along different dimensions.

4.1 EXPERIMENTAL SETUP

Classification Datasets. We consider three benchmark
datasets for evaluation: CIFAR10 [Krizhevsky et al., 2009],

CIFAR100 [Krizhevsky et al., 2009], and ImageNet [Deng
et al., 2009] using the standard training and test split.

Deep Neural Network Models. We consider ResNet-110
[He et al., 2016] as the main model architecture for CI-
FAR10 and CIFAR100 and ResNet-50 for ImageNet in our
experiments. We provide results on additional deep neural
networks in the Appendix due to space constraints noting
that we find similar patterns. We train each model using two
different approaches : 1) Standard training: The training
is only performed using clean training examples; and 2)
Gaussian augmented training: The training procedure em-
ploys Gaussian augmented examples [Gendler et al., 2022]
parameterized by a given standard deviation σ = 0.125.

Methods and Baselines. We consider two relevant state-
of-the-art CP algorithms as our baselines. First, we employ
Vanilla CP [Romano et al., 2020a] designed for clean in-
put examples. Second, we use randomly smooth conformal
prediction (RSCP) [Gendler et al., 2022] which is designed
to handle worst-case adversarial examples. We employ the
publicly available implementations of Vanilla CP2 and
RSCP3 using the best settings suggested by their authors.

We consider different configurations of our proposed
adaptive probabilistically robust CP (aPRCP) algorithm.
aPRCP(worst-adv) refers to the configuration where the
evaluation of aPRCP is performed over adversarial ex-
amples generated using an adversarial attack algorithm.
aPRCP(α̃) refers to the configuration where the evaluation
is performed over noisy examples with a bounded pertur-
bation on the test data. We provide additional results using
different values for α̃ in the Appendix.

Adversarial Attack Algorithms. To generate adversar-
ial examples, we employ the white-box PGD attack algo-
rithm [Gendler et al., 2022] to evaluate Vanilla CP algo-
rithm. For RSCP and aPRCP(worst-adv), we employ
an adapted PGD algorithm for smoothed classifiers as pro-
posed in Salman et al. [2019]. We provide additional results
using different adversarial algorithms in the Appendix.

Evaluation Methodology. We present all our experimental
results for desired coverage as (1− α)=90%. We report the
average metrics (coverage and prediction set size) over 50
different runs for all datasets. We consider two different
evaluation settings at the inference time as described below.

(a) Probabilistic robustness evaluation: We randomly
sample ns = 128 examples for each clean testing input:
Xj = X + ϵj (j=1 to ns), where ||ϵj ||2 ≤ r = 0.125 for
the CIFAR data and ||ϵj ||2 ≤ r = 0.25 for the ImageNet
data. For a better span during the sampling procedure for
each clean testing input, we sample two perturbations ϵj
for each r(k) in 0 < r(1) < · · · < r(k) ≤ r such that
∥ϵj∥2 = r(k).

2https://github.com/msesia/arc
3https://github.com/Asafgendler/RSCP
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(a) CIFAR10 (b) CIFAR100 (a) ImageNet

Figure 3: Probabilistic robust coverage (top) and prediction set size (bottom) constructed by Vanilla CP, RSCP, and
aPRCP(α̃ = 0.1) using HPS and APS scoring functions (target coverage is 90%). Results are reported over 50 runs.

We define both coverage and prediction set size metrics
to adapt to the probabilistic robustness setting as follows:
Coverage: fraction of examples for which prediction set
contains the ground-truth output.

Coverage =
1

ns

ns∑
j=1

1[Yn+1 ∈ C̃(Xn+1 + ϵj)]. (10)

Efficiency: average prediction set size, small values mean
high efficiency.

Prediction Set Size =
1

ns

ns∑
j=1

|C̃(Xn+1 + ϵj)|, (11)

where ||ϵj ||2 ≤ r = 0.125 for CIFAR dataset, and ||ϵj ||2 ≤
r = 0.25 for the ImageNet dataset. These re-defined metrics
allow us to evaluate aPRCP(α̃) with different values of prob-
ability parameters α̃ for probabilistic robustness. We provide
additional results explaining the impact of the choice of the
sampling distributions in the Appendix.

(b) Worst-case evaluation: We employ adversarial attack
algorithms as mentioned above to create one worst-case
adversarial example (X̃) for each clean testing input (X).
We define both metrics for this setting as follows:

Coverage = 1[Yn+1 ∈ C̃(X̃n+1)]. (12)

Prediction Set Size = |C̃(X̃n+1)|. (13)

4.2 RESULTS AND DISCUSSION

Probabilistic Robust Coverage Performance. Figure 3
shows the probabilistic robustness performance (in terms

of coverage and prediction set size) obtained by Vanilla
CP, RSCP, and aPRCP(α̃ = 0.1) for all three datasets using
standard training. We make the following observations. 1)
Vanilla CP algorithm fails in achieving the target prob-
abilistic robust coverage. 2) RSCP algorithm achieves the
desired probabilistic coverage, but has an empirical cover-
age significantly larger then 90%. This yields very large
prediction sets. Using APS, RSCP yields on average a pre-
diction set of 30 labels for CIFAR100 and 60 for ImageNet.
3) aPRCP(α̃ = 0.1) produces smaller prediction sets by
keeping the actual coverage close to the target coverage.
aPRCP(α̃ = 0.1) reduces the prediction set by an aver-
age of 20 labels for CIFAR100 and ImageNet compared to
RSCP method using any of the two non-conformity scores.

Adversarially Robust Coverage Performance. Figure 4
shows the robust coverage and prediction set size obtained
by Vanilla CP, RSCP, and aPRCP(worst-adv) achieved
on the worst-case examples for three different datasets using
Gaussian augmented training. We observe similar patterns
as the probabilistic robust coverage results. 1) Vanilla
CP fails to achieve the target coverage empirically. For all
datasets, it achieves empirical coverage lower then 80%.
2) Similar to the probabilistic robustness results, RSCP
method achieves an empirical coverage larger then 95%
for all datasets, yielding significantly large prediction sets
for all datasets. 3) aPRCP(worst-adv) produces smaller pre-
diction sets by keeping the actual coverage close to the target
coverage (by a margin of 2%) on worst-case adversarial ex-
amples. aPRCP(worst-adv) reduces the prediction set
by more then 10 labels for CIFAR100 and ImageNet com-
pared to RSCP method using any of the two non-conformity
scores (HPS and APS).
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(a) CIFAR10 (b) CIFAR100 (a) ImageNet

Figure 4: Adversarially robust coverage (top) and prediction set size (bottom) constructed by Vanilla CP, RSCP, and
aPRCP(worst-adv) using HPS and APS scoring functions (target coverage is 90%). Results are reported over 50 runs.

5 RELATED WORK

Conformal Prediction. CP is a general framework for un-
certainty quantification that provides marginal coverage
guarantees without any assumptions on the underlying data
distribution [Shafer and Vovk, 2008]. CP can be used for
regression [Vovk et al., 2018, Lei et al., 2018, Romano et al.,
2019, Izbicki et al., 2019, Guan, 2019, Gupta et al., 2022,
Kivaranovic et al., 2020, Barber et al., 2021, Foygel Barber
et al., 2021] to produce prediction intervals and for clas-
sification [Lei et al., 2013, Sadinle et al., 2019, Romano
et al., 2020b, Angelopoulos et al., 2021, Ghosh et al., 2023]
to produce prediction sets. Prior work has also considered
instantiations of the CP framework to handle the differences
between training and test distributions that is caused by
long-term distribution shift [Gibbs and Candes, 2021], co-
variate shift[Tibshirani et al., 2019], and label-distribution
shift [Podkopaev and Ramdas, 2021]. However, none of
these existing works focus on the robustness setting where
the distributional shift is caused by a bounded adversarial
perturbation. While using adversarial training seems intu-
itive to mitigate this problem, it was shown that vanilla
CP cannot achieve the target coverage on adversarial data
[Gendler et al., 2022].

Robust Conformal Prediction. CP methods for robust cov-
erage due to natural or adversarial perturbations is a new
line of research that requires theoretical and empirical analy-
sis. Very few works have proposed variants of CP to handle
adversarial robust settings. The work on cautious deep learn-
ing [Hechtlinger et al., 2018] proposed a CP-based predic-
tion set construction that accounts for adversarial examples.
However, this method does not provide any theoretical guar-

antees. Recently, randomly smoothed conformal prediction
(RSCP) [Gendler et al., 2022] was proposed as a generaliza-
tion for adversarial examples using randomized smoothing.
This generalization is achieved by introducing a constant
inflation condition that adjusts the CP quantile to adver-
sarial perturbations. This adjustment is proportional to the
potential adversarial perturbations that can affect the test
data. Hence, RSCP is prone to produce large prediction sets
along with high marginal coverage to achieve robustness.

We study the general setting of probabilistically robust CP
and develop probably correct algorithms to achieve im-
proved trade-offs for nominal and robust performance over
vanilla CP and RSCP. The key differences between our
work (aPRCP) and RSCP are: 1) aPRCP uses a quantile-of-
quantile design and does not require finding a score inflation
constant like RSCP. 2) RSCP requires the design of a special-
ized scoring function while aPRCP can employ any existing
score function. 3) aPRCP does not have test-time overhead
unlike RSCP due to the generation of samples.

6 SUMMARY AND FUTURE WORK

This paper studied the novel problem of probabilistic ro-
bustness for conformal prediction (PRCP) based uncertainty
quantification of deep classifiers. We developed the adap-
tive PRCP (aPRCP) algorithm based on the principle of
quantile-of-quantile design and theoretically analyzed its
effectiveness to achieve improved trade-offs between perfor-
mance on clean data and robustness to adversarial examples.
Our experiments on multiple image datasets using deep
classifiers demonstrated the effectiveness of aPRCP over
vanilla CP methods and adversarially robust CP methods.
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Future work should study and analyze end-to-end PRCP
algorithms.

ACKNOWLEDGEMENTS

This research is supported in part by Proofpoint Inc. and
the AgAID AI Institute for Agriculture Decision Support,
supported by the National Science Foundation and United
States Department of Agriculture - National Institute of
Food and Agriculture award #2021-67021-35344. The au-
thors would like to thank the feedback from anonymous
reviewers who provided suggestions to improve the paper.

References

Anastasios Nikolas Angelopoulos, Stephen Bates, Michael
Jordan, and Jitendra Malik. Uncertainty sets for im-
age classifiers using conformal prediction. In Interna-
tional Conference on Learning Representations(ICLR),
2021. URL https://openreview.net/forum?
id=eNdiU_DbM9.

Rina Foygel Barber, Emmanuel J Candes, Aaditya Ramdas,
and Ryan J Tibshirani. Predictive inference with the
jackknife+. The Annals of Statistics, 2021.

Shai Ben-David, John Blitzer, Koby Crammer, and Fer-
nando Pereira. Analysis of representations for domain
adaptation. Advances in neural information processing
systems, 19, 2006.

Carrie J Cai, Emily Reif, Narayan Hegde, Jason Hipp, Been
Kim, Daniel Smilkov, Martin Wattenberg, Fernanda Vie-
gas, Greg S Corrado, Martin C Stumpe, et al. Human-
centered tools for coping with imperfect algorithms dur-
ing medical decision-making. In Proceedings of the 2019
chi conference on human factors in computing systems,
pages 1–14, 2019.

Maxime Cauchois, Suyash Gupta, Alnur Ali, and
John C Duchi. Robust validation: Confident predic-
tions even when distributions shift. arXiv preprint
arXiv:2008.04267, 2020.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and
Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision
and pattern recognition, pages 248–255. Ieee, 2009.

Rina Foygel Barber, Emmanuel J Candes, Aaditya Ramdas,
and Ryan J Tibshirani. The limits of distribution-free con-
ditional predictive inference. Information and Inference:
A Journal of the IMA, 2021.

Asaf Gendler, Tsui-Wei Weng, Luca Daniel, and Yaniv Ro-
mano. Adversarially robust conformal prediction. In
International Conference on Learning Representations,
2022.

Subhankar Ghosh, Taha Belkhouja, Yan Yan, and Janard-
han Rao Doppa. Improving uncertainty quantification
of deep classifiers via neighborhood conformal predic-
tion: Novel algorithm and theoretical analysis. CoRR,
abs/2303.10694, 2023.

Isaac Gibbs and Emmanuel Candes. Adaptive conformal
inference under distribution shift. Advances in Neural
Information Processing Systems, 34:1660–1672, 2021.

Leying Guan. Conformal prediction with localization. arXiv
preprint arXiv:1908.08558, 2019.

Leying Guan and Robert Tibshirani. Prediction and outlier
detection in classification problems. Journal of the Royal
Statistical Society. Series B, Statistical Methodology, 84
(2):524, 2022.

Chirag Gupta, Arun K Kuchibhotla, and Aaditya Ramdas.
Nested conformal prediction and quantile out-of-bag en-
semble methods. Pattern Recognition, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Pro-
ceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

Yotam Hechtlinger, Barnabás Póczos, and Larry Wasserman.
Cautious deep learning. arXiv preprint arXiv:1805.09460,
2018.

Rafael Izbicki, Gilson T Shimizu, and Rafael B Stern. Flex-
ible distribution-free conditional predictive bands using
density estimators. arXiv preprint arXiv:1910.05575,
2019.

Danijel Kivaranovic, Kory D Johnson, and Hannes Leeb.
Adaptive, distribution-free prediction intervals for deep
networks. In International Conference on Artificial Intel-
ligence and Statistics(AISTATS). PMLR, 2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009.

Jing Lei, James Robins, and Larry Wasserman. Distribution-
free prediction sets. Journal of the American Statistical
Association, 108(501):278–287, 2013.

Jing Lei, Max G’Sell, Alessandro Rinaldo, Ryan J Tibshi-
rani, and Larry Wasserman. Distribution-free predictive
inference for regression. Journal of the American Statis-
tical Association, 2018.

Aleksandr Podkopaev and Aaditya Ramdas. Distribution-
free uncertainty quantification for classification under
label shift. In Uncertainty in Artificial Intelligence, pages
844–853. PMLR, 2021.

689

https://openreview.net/forum?id=eNdiU_DbM9
https://openreview.net/forum?id=eNdiU_DbM9


Charvi Rastogi, Liu Leqi, Kenneth Holstein, and Hoda Hei-
dari. A unifying framework for combining complemen-
tary strengths of humans and ml toward better predic-
tive decision-making. arXiv preprint arXiv:2204.10806,
2022.

Ievgen Redko, Emilie Morvant, Amaury Habrard, Marc Seb-
ban, and Younès Bennani. A survey on domain adaptation
theory: learning bounds and theoretical guarantees. arXiv
preprint arXiv:2004.11829, 2020.

Alexander Robey, Luiz FO Chamon, George J Pappas, and
Hamed Hassani. Probabilistically robust learning: Balanc-
ing average-and worst-case performance. arXiv preprint
arXiv:2202.01136, 2022.

Yaniv Romano, Evan Patterson, and Emmanuel Candes.
Conformalized quantile regression. Advances in Neural
Information Processing Systems(NeurIPS), 2019.

Yaniv Romano, Matteo Sesia, and Emmanuel Can-
des. Classification with valid and adaptive cov-
erage. In H. Larochelle, M. Ranzato, R. Hadsell,
M.F. Balcan, and H. Lin, editors, Advances in
Neural Information Processing Systems(NeurIPS),
volume 33, pages 3581–3591. Curran Associates,
Inc., 2020a. URL https://proceedings.
neurips.cc/paper/2020/file/
244edd7e85dc81602b7615cd705545f5-Paper.
pdf.

Yaniv Romano, Matteo Sesia, and Emmanuel Candes. Clas-
sification with valid and adaptive coverage. Advances in
Neural Information Processing Systems, 33:3581–3591,
2020b.

Mauricio Sadinle, Jing Lei, and Larry Wasserman. Least am-
biguous set-valued classifiers with bounded error levels.
Journal of the American Statistical Association, 2019.

Hadi Salman, Jerry Li, Ilya Razenshteyn, Pengchuan Zhang,
Huan Zhang, Sebastien Bubeck, and Greg Yang. Provably
robust deep learning via adversarially trained smoothed
classifiers. Advances in Neural Information Processing
Systems, 32, 2019.

Glenn Shafer and Vladimir Vovk. A tutorial on conformal
prediction. Journal of Machine Learning Research, 2008.

Ryan J Tibshirani, Rina Foygel Barber, Emmanuel Candes,
and Aaditya Ramdas. Conformal prediction under co-
variate shift. Advances in neural information processing
systems, 32, 2019.

Vladimir Vovk. Conditional validity of inductive conformal
predictors. In Asian conference on machine learning,
pages 475–490. PMLR, 2012.

Vladimir Vovk, Alexander Gammerman, and Glenn Shafer.
Algorithmic learning in a random world. Springer Sci-
ence & Business Media, 2005.

Vladimir Vovk, Ilia Nouretdinov, Valery Manokhin, and
Alexander Gammerman. Cross-conformal predictive dis-
tributions. In Conformal and Probabilistic Prediction
and Applications. PMLR, 2018.

Volodya Vovk, Alexander Gammerman, and Craig Saun-
ders. Machine-learning applications of algorithmic ran-
domness. 1999.

690

https://proceedings.neurips.cc/paper/2020/file/244edd7e85dc81602b7615cd705545f5-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/244edd7e85dc81602b7615cd705545f5-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/244edd7e85dc81602b7615cd705545f5-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/244edd7e85dc81602b7615cd705545f5-Paper.pdf

	Introduction
	Background and Problem Setup
	Robust Conformal Prediction
	Probabilistically Robust Coverage
	Adaptive PRCP Algorithm
	 Connection Between ARCP and PRCP 
	Approximation Error of Empirical Quantiles

	Experiments and Results
	Experimental Setup
	Results and Discussion

	Related Work
	Summary and Future Work

