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A CONDITIONAL GOODNESS-OF-FIT: GENERAL OPERATOR-VALUED KERNEL

Assume that

• kernel l ∈ C2(Y × Y,R),

• densities P|x ∈ C1(Y,R) for P(X)-almost all x, and that

• E(x,y)∼P(X,Y )

∥∥KP|xξP|x(y, ·)
∥∥
FK

<∞.

Due to the Bochner integrability of (x, y) 7→ KP|xξP|x(y, ·) expectation and inner product commute [see Andreas Christ-
mann, 2008, Definition A.5.20], and hence we have

CP|·(P) =
∥∥E(x,y)∼P(X,Y )

[
KP|xξP|x(y, ·)

]∥∥2

FK

=

〈
E(x,y)∼P(X,Y )

[
KP|xξP|x(y, ·)

]
,E(x′,y′)∼P(X,Y )

[
KP|x′ ξP|x′ (y

′, ·)
]〉
FK

= E(x,y)∼P(X,Y ) E(x′,y′)∼P(X,Y )

〈
KP|xξP|x(y, ·),KP|x′ ξP|x′ (y

′, ·)
〉
FK

= E(x,y)∼P(X,Y ) E(x′,y′)∼P(X,Y )

〈
K∗P|x′KP|xξP|x(y, ·), ξP|x′ (y

′, ·)
〉
Fdy

l

,

where K∗P|x′ is the adjoint of KP|x′ . The reproducing property implies K∗P|x′KP|x = K(P|x, P|x′), and therefore we get

CP|·(P) = E(x,y)∼P(X,Y ) E(x′,y′)∼P(X,Y )

〈
K(P|x, P|x′)ξP|x(y, ·), ξP|x′ (y

′, ·)
〉
Fdy

l

= E(x,y)∼P(X,Y ) E(x′,y′)∼P(X,Y )H((P|x, y), (P|x′ , y
′))

where

H((p, y), (p′, y′)) :=

〈
K(p, p′)ξp(y, ·), ξp′(y′, ·)

〉
Fdy

l

=

〈
K(p, p′)ξp(y, ·), l(y′, ·)∇y′ log fp′(y

′) +∇y′ l(y′, ·)
〉
Fdy

l

.

Submitted to the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023). To be used for reviewing only.



For i ∈ {1, . . . , dy}, let proji : F
dy
l → Fl be the projection map to the ith subspace of the product space Fdyl , and similarly

let ιi : Fl → F
dy
l be the embedding of Fl in the ith subspace of Fdyl via x 7→ (0, . . . , 0, x, 0, . . . , 0). Then we can write

H((p, y), (p′, y′)) =

dy∑
i=1

〈
projiK(p, p′)ξp(y, ·), l(y′, ·)

∂

∂y′i
log fp′(y

′) +
∂

∂y′i
l(y′, ·)

〉
Fl

=

dy∑
i=1

[
(projiK(p, p′)ξp(y, ·))(y′)

∂

∂y′i
log fp′(y

′) +
∂

∂y′i
(projiK(p, p′)ξp(y, ·))(y′)

]
.

Since K(p, p′) ∈ L(Fdyl ) is a linear operator, we have

K(p, p′)ξp(y, ·) = K(p, p′)(l(y, ·)∇y log fp(y)) +K(p, p′)∇yl(y, ·).

For 1 ≤ i, j ≤ dy , define Ki,j(p, p
′) : Fl → Fl as the continuous linear operator

Ki,j(p, p
′) := projiK(p, p′)ιj .

Thus we have

projiK(p, p′)ξp(y, ·) =

dy∑
j=1

[
∂

∂yj
log fp(y)

]
Ki,j(p, p

′)l(y, ·) +

dy∑
j=1

∂

∂yj
Ki,j(p, p

′)l(y, ·),

and therefore

(projiK(p, p′)ξp(y, ·))(y′) =

dy∑
j=1

[
∂

∂yj
log p(y)

]
(Ki,j(p, p

′)l(y, ·))(y′) +

dy∑
j=1

∂

∂yj
(Ki,j(p, p

′)l(y, ·))(y′).

Due to the differentiability of kernel l we can interchange inner product and differentiation [Andreas Christmann, 2008,
Lemma 4.34], and thus we obtain

H((p, y), (p′, y′)) =

dy∑
i,j=1

[
∂

∂yj
log fp(y)

] [
∂

∂y′i
log fp′(y

′)

]
(Ki,j(p, p

′)l(y, ·))(y′)

+

dy∑
i,j=1

[
∂

∂y′i
log fp′(y

′)

]
∂

∂yj
(Ki,j(p, p

′)l(y, ·))(y′)

+

dy∑
i,j=1

[
∂

∂yj
log fp(y)

]
∂

∂y′i
(Ki,j(p, p

′)l(y, ·))(y′)

+

dy∑
i,j=1

∂

∂y′i

∂

∂yj
(Ki,j(p, p

′)l(y, ·))(y′),

Define A : (P|X × Y)2 → Rdy×dy by

[A((p, y), (p′, y′))]i,j := (Ki,j(p, p
′)l(y, ·))(y′) (1 ≤ i, j ≤ dy).

Thus we obtain
H((p, y), (p′, y′)) = (sp′(y

′) +∇y′)>A((p, y), (p′, y′))(sp(y) +∇y), (A.1)

where for x, x′ ∈ Rd,M(x, x′) ∈ Rd×d we use the notation

∇>xM(x, x′) =
[
∇>x [M(x, x′)]:,1 · · · ∇>x [M(x, x′)]:,d

]
=
[
divx[M(x, x′)]:,1 · · · divx[M(x, x′)]:,d

]
,

and similarly

M(x, x′)∇x′ =
(
∇>x′M(x, x′)>

)>
=
[
divx′ [M(x, x′)]1,: · · · divx′ [M(x, x′)]d,:

]>
2



and

∇>xM(x, x′)∇x′ = ∇>x (M(x, x′)∇>x′) =

d∑
i,j=1

∂2

∂xi∂x′j
[M(x, x′)]i,j .

Thus, given samples {(P|xi , yi)}ni=1
i.i.d.∼ P(P|X , Y ), an unbiased estimator of statistic CP|·(P) is

ĈP|· =
2

n(n− 1)

∑
1≤i<j≤n

H((P|xi , yi), (P|xj , yj)),

where H is given by Equation (A.1).

If kernel K is of the form in ??, we recover the simpler formula in ??. In this case A((p, y), (p′, y′)) = k(p, p′)l(y, y′)Idy ∈
Rdy×dy , i.e., A is a scaled identity matrix.

B KCCSD AS A SPECIAL CASE OF SKCE

We prove the following general lemma that establishes the KCSD as a special case of the MMD. Then ?? follows immediately
by considering random variables Z = P|X and Y , and models Q|z = z = P|x.

Lemma B.1 (KCSD as a special case of the MMD). Let Q|z be models of the conditional distributions P(Y ∈ · |Z = z).
Moreover, we assume that

• Q|z has a density fQ|z ∈ C1(Y,R) for P(Z)-almost all z,

• kernel l ∈ C2(Y × Y,R),

• E(z,y)∼P(Z,Y )

∥∥KzξQ|z (y, ·)
∥∥
FK

<∞, and

•
∮
∂Y l(y, y

′)fQ|z (y)n(y) dS(y′) = 0 and
∮
∂Y ∇yl(y, y

′)fQ|z (y′)n(y′) dS(y′) = 0 for P(Z)-almost all z,

where n(y) is the unit vector normal to the boundary ∂Y of Y at y ∈ Y .1

Then
DQ|·(P) = MMD2

kQ|·
(P(Z, Y ),PQ|·(Z, Y ))

where we define distribution PQ|· by

PQ|·(Z ∈ A, Y ∈ B) :=

∫
A

Q|z(Y ∈ B)P(Z ∈ dz)

and kernel kQ|· : (Z × Y)× (Z × Y)→ R as

kQ|·((z, y), (z′, y′)) := (sQ|z′ (y
′) +∇y′)TA((z, y), (z′, y′))(sQ|z (y) +∇y),

using the same notation as in Appendix A and similarly defining A((z, y), (z′, y′)) ∈ Rdy×dy by

[A((z, y), (z′, y′))]i,j := (Ki,j(z, z
′)l(y, ·))(y′) (1 ≤ i, j ≤ dy).

If K is of the form k(·, ·)IFdy
l

, function A simplifies to

A((z, y), (z′, y′)) = k(z, z′)l(y, y′)Idy

and kernel kQ|· is given by

kQ|·((z, y), (z′, y′))

= k(z, z′)

l(y, y′)sQ|z (y)TsQ|z′ (y
′) + sQ|z (y)T∇y′ l(y, y′) + sQ|z′ (y

′)T∇yl(y, y′) +

dy∑
i=1

∂2

∂yi∂y′i
l(y, y′)

 .
1These assumptions are not restrictive in practice since they are satisfied if the conditions of [Jitkrittum et al., 2020, Theorem 1] hold

which are required to ensure that DQ|·(P) = 0 if and only if Q|Z(·) = P(Y ∈ ·|Z) P(Z)-almost surely.
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Proof. From a similar calculation as in Appendix A [cf. Jitkrittum et al., 2020, Section A.2] we obtain that

kQ|·((z, y), (z′, y′)) =

〈
KzξQ|z (y, ·),Kz′ξQ|z′ (y

′, ·)
〉
FK

.

Thus kQ|· is an inner product of the features of (z, y) and (z′, y′) given by the feature map (z, y) 7→ KzξQ|z (y, ·) ∈ FK ,
and therefore kQ|· is a positive-definite kernel. Moreover, from our assumption we obtain

E(z,y)∼P(Z,Y ) |kQ|·((z, y), (z, y))|1/2 = E(z,y)∼P(Z,Y )

∥∥KzξQ|z (y, ·)
∥∥
FK

<∞.

Thus the mean embedding µP(Z,Y ) ∈ FK of P(Z, Y ) exists [Gretton et al., 2012, Lemma 3].

Due to the Bochner integrability of (z, y) 7→ KzξQ|z (y, ·) expectation and inner product commute [see Andreas Christmann,
2008, Definition A.5.20], and hence we have

E(z,y)∼PQ|· (Z,Y ) E(z′,y′)∼PQ|· (Z,Y ) kQ|·((z, y), (z′, y′)) =
∥∥∥E(z,y)∼PQ|· (Z,Y )KzξQ|z (y, ·)

∥∥∥2

FK

=
∥∥Ez∼P(Z) Ey∼Q|z KzξQ|z (y, ·)

∥∥2

FK

=
∥∥Ez∼P(Z)Kz Ey∼Q|z ξQ|z (y, ·)

∥∥2

FK
.

Due to the last assumption [Chwialkowski et al., 2016, Lemma 5.1] we know that

Ey∼Q|z ξQ|z (y, ·) = 0,

which implies
E(z,y)∼PQ|· (Z,Y ) E(z′,y′)∼PQ|· (Z,Y ) kQ|·((z, y), (z′, y′)) = 0.

Thus the mean embedding µPQ|· (Z,Y ) ∈ FK of PQ|·(Z,Y ) exists and satisfies ‖µPQ|· (Z,Y )‖2FK
= 0, and hence µPQ|·(Z,Y ) =

0. We obtain [Gretton et al., 2012, Lemma 4] that

MMD2
kQ|·

(P(Z, Y ),PQ|·(Z, Y )) = ‖µP(Z,Y ) − µPQ|· (Z,Y )‖2FK

= ‖µP(Z,Y )‖2FK

= E(z,y)∼P(Z,Y ) E(z′,y′)∼P(Z,Y ) kQ|·((z, y), (z′, y′))

= E(z,y)∼P(Z,Y ) E(z′,y′)∼P(Z,Y )

〈
KzξQ|z (y, ·),Kz′ξQ|z′ (y

′, ·)
〉
FK

= DQ|·(P),

where the last equality follows from [Jitkrittum et al., 2020, Section A.2].

C CALIBRATION IMPLIES EXPECTED COVERAGE

We show that the sense of calibration employed by our tests implies posterior coverage in the sense of Hermans et al. [2021].
Again let us note P|x(·) for a model of the conditional distribution P(Y ∈ · | X = x). Moreover, we assume that P|x has a
density fP|x for P(X)-almost every x.

For level 1− α ∈ [0, 1], let ΘP|x(1− α) be the highest density region of a probabilistic model P|x with density fP| . It is
defined [see, e.g., Hyndman, 1996] by

ΘP|x(1− α) :=
{
y : fP|x(y) ≥ cP|x(1− α)

}
where

cP|x(1− α) := sup

{
c :

∫
{
ỹ : fP|x (ỹ)≥c

} P|x(dy) ≥ 1− α

}
.
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Hence, by definition [see, e.g., Hermans et al., 2021]

Ey∼P|x 1
{
y ∈ ΘP|x(1− α)

}
=

∫
ΘP|x (1−α)

P|x(dy) ≥ 1− α.

Assume that model P|· is calibrated. By definition, it satisfies

P(Y ∈ · | P|X) = P|X P(X)-almost surely.

Hence, for all α ∈ [0, 1], we obtain

E(x,y)∼P(X,Y ) 1
{
y ∈ ΘP|x(1− α)

}
= E(P|x,y)∼P(P|X ,Y ) 1

{
y ∈ ΘP|x(1− α)

}
= EP|x∼P(P|X) Ey∼P|x 1

{
y ∈ ΘP|x(1− α)

}
≥ EP|x∼P(P|X)

[
1− α

]
= 1− α.

Thus model P|· has expected coverage for all α ∈ [0, 1].

D DIFFUSION-LIMIT AND UNIVERSALITY

D.1 FISHER DIVERGENCE AS A DIFFUSION LIMIT

We recall that for a map f and a measure µ, the push-forward measure of µ by f , noted f#µ, is the measure on the image
space of f which verifies, for any measurable function g∫

g(x) f#µ(dx) =

∫
g(f(x))µ(dx).

To prove the differential inequality linking the MMD and the KGFD, we rely on the following reformulation of the
Fokker-Planck equation:

∂µ(x, t)

∂t
= divx(−µ(x, t)sp(x)) + ∆xµ(x, t)

= divx(−µ(x, t)sp(x)) + divx∇xµ(x, t)

= divx(−µ(x, t)sp(x)) + divx(µ(x, t)∇x logµ(x, t))

= divx(−µ(x, t)(sp(x)−∇x logµ(x, t)).

We remark that since the density µ(x, t) is twice differentiable in x and differentiable in t [Johnson, 2004], this equation
holds in the strong sense, and not only in the sense of distributions. Because of that, one has

∂tµ(x, t) = lim
∆→0

µ(x, t+ ∆)− µ(x, t)

∆
.

Let us consider an RKHSH with kernel k, and let h ∈ H. Let us define mt(x) := m(x, t) := µν,p(x, t)− µν,q(x, t) and
we note MMD(mt) the function given by

MMD(mt) =

[∫∫
k(x, y)mt(x)mt(y) dxdy

]1/2

= MMD(µν,p(·, t), µν,q(·, t)).

To show that limt→0
d
dt MMD(mt) = KGFD(p, q), we first analyze the differential properties of the easier to handle MMD2

and complete the proof using a chain rule argument. The first variation (also called Gateaux Derivative) of m 7→ MMD2(m)
is a linear functional on the space of functions{

f − g
∣∣∣∣ f, g : X × [0,∞)→ R with ∀t ≥ 0:

∫
X
f(x, t) dx =

∫
X
g(x, t) dx = 1

}
,
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given by
δMMD2

δm
: f 7→

∫
2k(x, y)mt(x)f(y) dxdy.

Using the chain rule for Gateaux derivatives, we have that

d MMD2(m)

dt
=

d MMD2

dm
(m)

dm

dt

=

∫
2k(x, y)mt(x)

dm

dt
(y) dxdy.

From the Fokker-Planck Equation, we have that

dm

dt
= ∂tµν,p − ∂tµν,q

= divx(µν,p∇x log
p

µν,p
)− divx(µν,q∇x log

q

µν,q
)

= divx(ν∇x log
p

ν
)− divx(ν∇x log

q

ν
) + o(1)

= divx(ν∇x log
p

q
) + o(1)

Plugging the last equation in the chain rule, we have:

d MMD2(m)

dt
=

∫
2mt(x)divyν(y)∇y log

p

q
(y)k(x, y)dxdy + o(1)

=

∫
2mt(x)

〈
∇yk(x, y), ν(y)∇y log

p

q
(y)

〉
dxdy + o(1).

Similarly, since m0 = µν,p(·, 0)− µν,q(·, 0) = ν − ν = 0, we have mt(x) = t∂tm(x, 0) + ox(t). The calculation follows
as:

d MMD2(m)

dt
=

∫
2t× ∂tm(x, t)

〈
∇yk(x, y), ν(y)∇y log

p

q
(y)

〉
dx dy + o(t)

=

∫
2t× divx ν(x)∇x log

p

q
(x)

〈
∇yk(x, y), ν(y)∇y log

p

q
(y)

〉
dxdy + o(t)

=

∫
2t×

〈
ν(x)∇x log

p

q
(x),∇x

〈
∇yk(x, y), ν(y)∇y log

p

q
(y)

〉〉
dxdy + o(t)

=

∫
2t×

〈
ν(x)∇x log

p

q
(x),∇x∇yk(x, y), ν(y)∇y log

p

q
(y)

〉
dxdy + o(t).

To get rid of the degenerate scaling as t→ 0, we now focus on (the derivative of)
√

MMD2(mt) as t→ 0. Notice that since

MMD(m0) = 0, the derivative of
√

MMD2(mt) does not exist a priori for t = 0: we consider instead d
dt

√
MMD2(mt)

∣∣∣
t=t

,
and extend it by continuity by setting t→ 0. We have:

d
√

MMD2(mt)

dt
=

1

2
√

MMD2(mt)

d MMD2(mt)

dt
.

As
MMD2(mt) =

∫
k(x, y)mt(x)mt(y) dx dy

we obtain through similar calculations that

MMD2(mt) =

∫ ∫
t2
〈
ν(x)∇x log

p

q
(x),∇x∇yk(x, y), ν(y)∇y log

p

q
(y)

〉
dxdy + o(t)
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from which the results follows. Note that the matrix-valued kernel (K(x, y))ij = (∇x∇yk(x, y))ij is positive definite, a
result akin to one of Zhou [2008] but for the matrix-valued case. Indeed, for all x, y ∈ X , z, t ∈ Rd,

zK(x, y)t =

〈
d∑
i=1

zi∂ik(x, ·),
d∑
i=1

ti∂ik(y, ·)

〉
H

where ∂ik(x, ·) ∈ H [Zhou, 2008]. In the following, we write φ(x, y) =
∑d
i=1 yi∂ik(xi, ·). Now, for all sets of {xi}ni=1 ∈ X ,

{yj}ni=1 ∈ Rd, we have
n∑

i,j=1

〈
K(xi, xj)yj , yi

〉
Rd =

n∑
i,j=1

〈
φ(xi, yi), φ(xj , yj)

〉
H

=

〈
n∑
i=1

φ(xi, yi),

n∑
i=1

φ(xi, yi)

〉
H

≥ 0

from which it follows that K is indeed positive definite [Micchelli and Pontil, 2005, Theorem 2.1].

D.2 UNIVERSALITY OF THE EXPONENTIATED-GFD AND EXPONENTIATED-KGFD KERNEL

To prove the universality of Kν and Kν,K under the assumptions discussed in the related propositions, we rely on the
following theorem [Christmann and Steinwart, 2010, Theorem 2.2].

Theorem D.1. On a compact metric space (Z, dZ ) and for a continuous and injective map φ : Z 7→ H , where H is a
separable Hilbert space, the kernel K(z, z′) = e−γ‖φ(z)−φ(z′)‖2H is universal.

We first focus on the universality of Kν . We set as our goal to apply that theorem to our setting, in which Z := PX is a
(sub)set of probability densities, which needs to be associated with a suitably chosen metric in order to make PX to be
compact, and φ continuous. As bounded subsets of differentiable densities, whose elements can be framed as elements of the
Sobolev space of first orderW2,1(ν) [Taylor, 1996]), are not compact a priori, we restrict ourselves to twice-differentiable
densities with bounded Sobolev norm of second order, i.e., toW2,2(ν) with norm ‖p‖2W2,2 := ‖p‖2L2(ν)+

∑d
i=1 ‖∂ip‖2L2(ν)+∑d

i,j=1 ‖∂i∂jp‖2L2(ν). From the Rellich-Kondrachov theorem [Taylor, 1996], we know that when ν has compact support,
the canonical canonical injection I : W2,2(ν)→W2,1(ν) is a compact operator. As a consequence, for any bounded subset
A of PX we thus have that I(A) is compact for ‖f‖2W2,1 := ‖f‖2L2(ν) +

∑d
i=1 ‖∂if‖2L2(ν), which implies that any bounded

subset A of PX is compact for d(z, z′) = ‖z − z′‖W2,1 . To apply the above theorem, it remains to prove the continuity and
injectivity of φ : p 7→ ∇ log p under this metric (in that case the separable Hilbert space H is set to L2(ν)). And indeed,
for such a choice of d, φ and H , φ is continuous. To prove this fact, remark that differentiable densities with full support
on X are bounded away from 0, making the use of a φ : p 7→ ∇ log p = ∇p/p continuous. Moreover, φ is injective as
dW 2,1(p, q) := ‖p− q‖W 2,1 6= 0 implies ‖∇ log p−∇ log q‖L2(ν) 6= 0. Thus, all conditions of [Christmann and Steinwart,
2010, Theorem 2.2] are satisfied, and the result follows as a consequence.

We now move on to prove the universality of Kν,K . The proof follows the same reasoning as the proof of the universality
of Kν , the only difference being the fact that the feature map φ̃ of KK,ν is given by Tν ◦ φ, where φ : p 7→ ∇ log p and
TK,ν : L(X ,Rd)→ HK is given by

TK,ν : f 7→
∫
X
Kxf(x) ν(dx).

However, if ν is a probability measure and K is bounded, then TK,ν is a bounded operator, and thus continuous, making φ̃
continuous. Moreover, if K is characteristic, TK,ν is injective. Thus φ̃ is injective and continuous, from which the result
follows by Christmann and Steinwart [2010].

E BACKGROUND ON STEIN AND FISHER DIVERGENCES

The Fisher Divergence Consider two continuously differentiable densities p and q on Rd. Then the Fisher diver-
gence [Sriperumbudur et al., 2017, Johnson, 2004] between p and q is defined as:

FD(p||q) =

∫
Rd

‖∇ log p(x)−∇ log q(x)‖22 p(x) dx.

7



We refer to Sriperumbudur et al. [2017] for an overview of the properties of the Fisher divergence, including its relative
strength w.r.t. other divergences, and other formulations. The Fisher divergence was used for learning statistical models of
some training data in Hyvärinen [2005], Sriperumbudur et al. [2017], and more recently in Song and Ermon [2019].

Stein Discrepancies Of proximity to the Fisher divergence is the family of Stein discrepancies [Anastasiou et al., 2022].
Stein discrepancies build upon the concept of Stein operators, which are operators AP such that

EQ [APf ] = 0 ⇐⇒ Q = P

for any f within a set G(AP) ⊂ dom(AP) called the Stein class of AP. Following this definition, the AP-stein discrepancy
is defined as

SDAP(P,Q) = sup
f∈G(A)

‖EQAf‖

which satisfies by construction the axioms of a dissimilarity (or divergence) measure between P and Q.

Link Between the Fisher divergence and Diffusion Stein Discrepancies Perhaps the most famous Stein discrepancy is
the one that sets AP to be the infinitesimal generator of the isotropic diffusion process toward P [Gorham et al., 2019]:{

dXt = ∇ log p(Xt) dt+
√

2 dWt

(Ad,Pf)(·) = 〈∇ log p(·),∇f〉+ 〈∇,∇f〉

Recalling that EP [Ad,Pf ] = 0 for all f ∈ G(Ad,P), we obtain the following formulation for the diffusion Stein discrepancy

SDAd,P(P,Q) := sup
f
‖EQAd,Pf‖ = sup

f

∥∥EQ(∇ log p−∇ log q)>∇f
∥∥

= sup
g=∇f

∥∥EQ(∇ log p−∇ log q)>g
∥∥ ,

highlighting the connection between the Fisher divergence and the diffusion Stein discrepancy.

Link Between the Fisher divergence and the Kernelized Stein Discrepancy Given a RKHSH such thatBH⊗d(0H⊗d , 1)
is a Stein class for Ad,P, the kernelized Stein discrepancy [Gorham and Mackey, 2017] is given by

KSD(P,Q) := sup
h=∇f∈H⊗d:‖h‖H⊗d≤1

‖EQ 〈∇ log p(x)−∇ log q(x), h(x)〉‖

= sup
h=∇f∈H⊗d:‖h‖H⊗d≤1

〈h,EQ(∇ log p(x)−∇ log q(x))k(x, ·)〉1/2H⊗d

= ‖EQ [(∇ log p(x)−∇ log q(x))k(x, ·)]‖H⊗d

=
∥∥I?k,Q(∇ log p−∇ log q)

∥∥
H⊗d

where I?k,Q is the adjoint of the canonical injection from H⊗d to (L2(Q))⊗d, also known as the kernel integral operator.
This derivation shows that the KSD can be seen as a kernelized version of the Fisher divergence.

Link between MMD and KSD It is possible [Gorham and Mackey, 2017] to reframe the KSD as an MMD with a specific
kernel. Indeed, given some base kernel k(x, y), define the following “Stein” kernel

k̃(x, y) = 〈∇ log p(x)k(x, ·) +∇k(x, ·),∇ log p(y)k(y, ·) +∇ log k(y, ·)〉H⊗d

which is positive definite as an inner product of a feature map of x. Then Hk̃ = Ad,P(H) and ‖f‖Hk̃
= ‖Af‖H⊗d

k
.

Moreover, we have that EP h̃ = 0 for all h̃ ∈ Hk̃. By the definition of the KSD, we have that

KSD(P,Q) = sup
h∈H⊗d : ‖h‖H⊗d≤1

‖EQAd,Ph‖

= sup
h∈H⊗d : ‖h‖H⊗d≤1

‖EQAd,Ph− EPAd,Ph‖H

= sup
h∈Hk̃ : ‖h‖H

k̃
≤1

‖EQ h− EP h‖Hk̃

= MMDk̃(P,Q).
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Differential Inequalities between the KL and the Fisher Divergence It is well known [Carrillo et al., 2003] that the KL
divergence can be related to the Fisher divergence by considering the evolution of KL(Pt||Q) when Pt evolves according to
the Fokker-Planck equation

∂tpt(x) = div(pt(x)(∇ log qt(x)−∇ log pt(x))), P0 = P. (E.1)

(Two relevant side notes: for any t ≥ 0, Pt is the law at time t of the Markov process (Xt)t≥0 such that X0 ∼ P and
undergoing an isotropic diffusion towards Q. Moreover, Equation (E.1) is also the Wasserstein gradient flow equation
of KL(·||Q) starting from P). Recalling that Equation (E.1) is satisfied in the sense of distributions, and relying on
Gateaux-Derivative formulas for Free Energy-type functionals [see Ambrosio et al., 2005, for more precise statements], we
have:

dKL(Pt||Q)

dt
=
∂KL

dP

∣∣∣∣
Pt

dPt
dt

=

∫
〈∇(log pt(x)− log qt(x)), (∇ log qt −∇ log pt)〉 dPt(x)

= −FD(Pt,Q).

Figure E.1: Relationships between the Fisher divergence, the KL divergence, the MMD, and the KSD [Liu, 2016].
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F EXPERIMENTAL RESULTS

This section contains visualizations of all experiments discussed in ??, including figures contained in the main text. In all
experiments we set the significance level to α = 0.05. Every experiment is repeated for 100 randomly sampled datasets and
with 500 bootstrap iterations for estimating the quantile of the test statistic.

We use Gaussian distributions and compare the KCCSD and the SKCE with different combinations of kernels. For the
KCCSD, for Gaussian distributions all considered test statistics can be evaluated exactly. Alternatively, for the exponentiated
(kernelized) Fisher kernel and the exponentiated MMD kernel one can resort to approximations using samples from the base
measure. For the SKCE, however, the test statistic can be evaluated exactly on in special cases such as Gaussian kernels on
the target space. All approximate evaluations are performed with 10 samples.

F.1 MEAN GAUSSIAN MODEL
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Figure F.1: False rejection rate of the KCCSD for MGM (δ = 0).
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Figure F.2: False rejection rate of the SKCE for MGM (δ = 0).
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Figure F.3: Rejection rate of the KCCSD for MGM (δ = 0.1, c = 1d).
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Figure F.4: Rejection rate of the SKCE for MGM (δ = 0.1, c = 1d).
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Figure F.5: Rejection rate of the KCCSD for MGM (δ = 0.1, c = e1).
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Figure F.6: Rejection rate of the SKCE for MGM (δ = 0.1, c = e1).
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F.2 LINEAR GAUSSIAN MODEL
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Figure F.7: False rejection rate of the KCCSD for LGM (δ = 0).
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Figure F.8: False rejection rate of the SKCE for LGM (δ = 0).

F.3 HETEROSCEDASTIC GAUSSIAN MODEL
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Figure F.9: Rejection rate of the KCCSD for HGM (δ = 1).
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Figure F.10: Rejection rate of the SKCE for HGM (δ = 1).

F.4 QUADRATIC GAUSSIAN MODEL
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Figure F.11: Rejection rate of the KCCSD for QGM (δ = 1).
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Figure F.12: Rejection rate of the SKCE for QGM (δ = 1).
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