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A TIGHTNESS OF PROPOSED APPROXIMATE UPPER BOUND

The key contribution within this work is the proposal of a new generic and data-dependent thinning method to approximately
sample event times from within PDMP samplers. The quality of this thinning method relies on two key components; the
tightness of the envelope and its ability to provide a strict upper bound. We want the envelope used to be able to be as
close to the true event rate as possible without reducing below it. This enables maximum efficiency of thinning methods by
reducing the likelihood of a proposed event time will be rejected.

Previous works have relied on performing experimentation on simple well-defined models where derivation of a strict and
exact upper boundBouchard-Côté et al. [2018], Bierkens et al. [2019, 2020], Wu and Robert [2017]. Derivation for a strict
upper bound is infeasible for neural networks, though we can assess the quality of our event thinning method by analysing
the acceptance ratio in Equation 8 from the body of the paper. We want this ratio to be as close to one as possible without
exceeding it, otherwise, the envelope section used to propose the time is below the true event rate. We assess the distribution
of these acceptance ratios for varying values of α from Equation 12 in the body of the paper in Figure 1 and we illustrate
the result on predictive performance and computational load in Table 1. We can see that with α = 1.0, we see frequent
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Figure 1: Distribution of acceptance ratios for event thinning across the different PDMP samplers used within this work for
varying levels of α. All models are fit on the MNIST data set as described in Section 5.2.

occurrences of the proposed envelope being below that of the true event rate, though as we increase the value of α, the
likelihood of the approximate envelope being a strict upper bound increases. In practice, setting this scaling parameter can
be achieved through the use of a small warm-up phase at the start of sampling to find a ratio that satisfies a users willingness
to mitigate bias that may be induced due to the violation of the upper bound assumption. To mitigate potential bias, the
value of α may be increased at the expense of a small increase in the computational demands of the thinning method as seen
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Table 1: Summary of predictive performance with and timings as the scaling value of α is increased for the PDMP samplers
demonstrated within. All models are fit to the MNIST dataset using the Lenet5 architecture.

α Inference ACC NLL ECC Time

α = 1.0
BPS 0.9914 1.4227 74.752 71
σBPS 0.9908 0.0375 1.0445 121
Boomerang 0.9919 0.0230 0.139 77

α = 1.2
BPS 0.9906 1.0778 64.4556 75
σBPS 0.9900 0.2141 16.4637 130
Boomerang 0.9925 0.0234 0.1736 82

α = 1.5
BPS 0.9909 1.0907 64.8491 80
σBPS 0.991 0.8527 56.0289 143
Boomerang 0.9922 0.0232 0.1651 86

in Table 1.

B ADDITIONAL REGRESSION AND BINARY CLASSIFICATION EXAMPLES

To further validate the predictive performance of PDMP samplers using the proposed event thinning method, we provide
additional examples on easy to visualise regression tasks in Figure. 2 and Figure 3 which are compared with Stochastic
Gradient Langevin Dynamics (SGLD) with a decreasing learning rate as required, and a constant learning rate with no decay
as is typically done in practice (SGLD-ND). For both regression and binary classification models, SGLD experiments are
run with a learning rate starting at 1e−5 and decays to zero linearly. For SGLD-ND, the learning rate of regression models
is set to the largest value found that would avoid divergences, resulting in 1e−5 for regression models and 1e3 for binary
classification.

From these results, we further validate the predictive performance of these samplers and their ability to yield informative
uncertainty information for out-of-distribution data when compared to SGLD with a decaying learning rate and a constant
learning rate. We find that even with a larger value learning rate used for SGLD-ND that the sampler is unable to explore
the posterior sufficiently to provide meaningful uncertainty estimates. This phenomenon has been reported in Brosse et al.
[2018], where they identify that even with a larger and constant learning rate, SGLD dynamics converge to that of regular
SGD.

(a) BPS (b) σBPS (c) Boomerang (d) SGLD (e) SGLD-ND

Figure 2: Exampled of predictive posteriors for BNN regression models across synthetic data sets. Training samples are
shown in blue dots, and draws from the predictive distrubtion shown with black lines.
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(b) σBPS
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(c) Boomerang
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(d) SGLD
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(e) SGLD-ND

Figure 3: Examples of predictive distributions for synthetic binary classification task. Top row indicates predictive mean and
bottom row illustrates variance in predictions. Best viewed on a computer screen in colour.

C MIXING PERFORMANCE

In Section 5.2, experiments to investigate the mixing capabilities of the PDMP samplers were conducted using PCA to
reduce the dimensionality of the samples generated from the different samplers for a single network. We extend this analysis
here for all models in Figures 4, 5 and 6 for the first, second, and last principal components respectively. From this these
figures we can verify that the Boomerang sampler provided the greatest mixing across the different models and datasets,
whilst SGLD consistently converges to a single solution. We further investigate this here by comparing just the two samplers
for raw parameter traces within different parts of the networks used for the MNIST and SVHN datasets. These results are
shown in Figure 7, and confirms the pathology of SGLD quickly converging to a single steady-state solution, whilst the
Boomerang sample is able to explore the posterior at all stages in the networks. From this, we can verify that SGLD is
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Figure 4: Plots summarising samples from tested samples projected onto first principal component. Top row represents the
ACF plot, and the bottom shows the coordinate trace plot for the first principal component. Best viewed on a computer
screen.

converging to a steady-state solution, whilst the Boomerang sampler consistently explores the posterior space and provide
improved mixing. Given the requirement for SGLD to maintain a small learning rate that approaches 0 to target the posterior
Nagapetyan et al. [2017], Brosse et al. [2018], Welling and Teh [2011], these results are expected. The theoretic ability of
SGLD to maintain the posterior as its invariant distribution comes at the expense mixing efficiency.
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Figure 5: Plots summarising samples from tested samples projected onto second principal component. Top row represents
the ACF plot, and the bottom shows the coordinate trace plot for the first principal component. Best viewed on a computer
screen.
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Figure 6: Plots summarising samples from tested samples projected onto last principal component. Top row represents the
ACF plot, and the bottom shows the coordinate trace plot for the last principal component. Best viewed on a computer
screen.

D SENSITIVITY TO HYPER-PARAMETERS

D.1 SENSITIVITY TO VELOCITY DISTRIBUTION

As noted in Section 6, we discuss the sensitivity of these PDMP Samplers for BNNs with respect to the distribution assigned
to the auxiliary velocity variable. Given that the aim of this velocity variable is to guide the dynamics of the system to
efficiently explore the parameter space, it needs to be set appropriately. We demonstrate this here through experimentation
to highlight how poorly specified velocity distribution can corrupt inference.

Figure 8 illustrates the predictive distribution for poorly specified velocity distributions for the Boomerang sampler, though
similar effects are seen amoungst the other PDMP samplers when the variance for the velocity distribution is incorrectly
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Figure 7: Trace plots comparing mixing of SGLD and the Boomerang sampler for individual weight parameters within
different networks at different locations.

specified. We see that the scale of the velocity component proportionately controls the mixing capabilities of the model.
When variance is too low, the sampler is unable to explore beyond the MAP solution, and when too large the predictive
performance can suffer. With better approximations to the diagonal of Hessian of the negative log-likelihood, the effects of
this may be mitigated for the Boomerang Sampler. We highlight these behaviours of PDMP samplers applied to BNNs to
show the limitations and to provide insight into the importance of setting these parameters correctly, and areas of future
research.

D.2 SENSITIVITY TO REFRESH EVENT RATE

MCMC samplers such as HMC Neal et al. [2011] and NUTS Hoffman et al. [2014] have step size parameters that can be
adjusted and tuned for individual models. With a small step size, exploration of the posterior can be limited, and if too large
then divergences in the posterior trajectory can be encountered and corrupting inference Betancourt [2017]. The step size
parameter is typically tuned during a warm-up phase before sampling is commenced to find an optimal value to maximise
exploration and minimise the risk of encountering these divergences.

The PDMP samplers within here do not have an equivalent parameter that can be tuned to guide simulation. The Trajectory
of these samplers is defined solely on the transition kernel to update velocity parameters and the event rate that determines
when these events occur. We can however yield a similar effect to adjusting the step size of a traditional MCMC model
through our choice of event rate for our refreshment process PP(λref ).

Recall from Section 2.4 that the final event time is given by,

τevent = min(τ, τref ) (1)



(a) Small velocity distribution γ = 1 (b) Large velocity distribution γ = 1000

Figure 8: Effect of scale in velocity reference measure for PDMP samplers applied to BNNs.

Where τ ∼ PP(λ(ω(t),v(t))), and τref ∼ PP(λref ). Setting the value for τref can implicitly control the level of exploration
within our samplers. For large λref , we will encounter smaller proposed refresh times and thus will refresh more frequently.
Similarly, for larger λref , our sampled refresh times will be larger, and τevent will equal τ more frequently, and further
exploration of the posterior space with these dynamics will be possible. We illustrate this in Figure 9, where we show the
effects for large and smaller values of λref .

(a) λref = 0.01 (b) λref = 10.0

Figure 9: Effect of λref on PDMP models applied to BNNs. Shown here is the predictive distribution found with the BPS
using the proposed event rate thinning method.

We can see that the refresh rate can have a considerable impact on the inference quality of our model. With λref too
large, our exploration is limited and we perform excessive refreshments instead of accepting those provided by the PDMP
kernel. When is too small, we can accept larger event times as specified by the PDMP sampler and can diverge away from
meaningful inferences.

E SUMMARY OF MODELS USED

E.1 REGRESSION AND BINARY CLASSIFICATION MODELS FOR SYNTHETIC DATA

Regression models used within this work consist of fully-connected networks with two hidden layers, each with 25 and 10
units respectively. Tanh non-linear activations are applied after each hidden layer, and a Normal likelihood with a variance



of σ2 = 0.01 is used. MAP estimates for these networks are found with 10,000 iterations using the Adam optimiser Kingma
and Ba [2015], with each sampler initialised from the same MAP estimate.

For binary classification models, the networks consist of a fully-connected network with three hidden layers, each with
100 units. ReLU non-linear activations are applied within the network, and a Bernoulli likelihood is used. Similar to the
regression tasks, MAP estimate is found with Adam.

E.2 ADDITONAL UCI-DATASET RESULTS

We provide here additional results on datasets from the UCI repositoryNewman et al. [1998]. For each dataset, a simple
MLP network with a single hidden layer with 50 hidden units is used, along with a Tanh activation. MAP estimates are
found similar to , followed by 2,000 samples generated by each method. Each experiment is run 5 times with means results
and standard deviations reported. We further include ESS as measured on from the smallest principle component of samples.
Results from these experiments reflect that seen in Section 5.1.1; where SGLD is able to provide an almost negligible
improvement in MSE and NLL, though is unable to provide efficient posterior exploration. The Boomerang sampler is
able to consistently outperform other sampling methods, with other samplers only able to match sample efficiency for the
smallest principal components where exploration is smallest.

Table 2: Results on UCI-Naval Dataset

Inference NLL MSE ESS-First ESS-Last

BPS 1681.66 ± 0.64 0.01 ± 0.00 2.73 ± 0.02 2000.00 ± 0.00
σBPS 1685.43 ± 4.97 0.01 ± 0.00 2.71 ± 0.02 2000.00 ± 0.00
Boomerang 1680.55 ± 0.08 0.01 ± 0.00 1777.57 ± 156.57 1804.77 ± 219.12
SGLD 1680.47 ± 0.00 0.01 ± 0.00 2.88 ± 0.03 156.24 ± 72.36
SGHMC 1689.88 ± 7.88 0.01 ± 0.00 2.72 ± 0.01 2000.00 ± 0.00

Table 3: Results on UCI Energy Dataset

Inference NLL MSE ESS-First ESS-Last

BPS 74.09 ± 0.10 2.96 ± 0.04 2.70 ± 0.01 1795.50 ± 49.44
σBPS 74.09 ± 0.08 2.97 ± 0.04 2.69 ± 0.03 1527.35 ± 115.94
Boomerang 74.20 ± 0.03 3.01 ± 0.01 1981.29 ± 25.87 1880.46 ± 178.71
SGLD 74.06 ± 0.00 2.96 ± 0.00 2.87 ± 0.00 272.34 ± 247.11
SGHMC 74.36 ± 0.18 3.08 ± 0.08 2.72 ± 0.02 1992.02 ± 17.84

Table 4: Results on UCI Yacht Dataset

Inference NLL MSE ESS-First ESS-Last

BPS 32.34 ± 0.03 7.55 ± 0.03 2.72 ± 0.02 1467.26 ± 11.96
σBPS 32.33 ± 0.08 7.54 ± 0.07 2.72 ± 0.03 1291.29 ± 52.81
Boomerang 32.41 ± 0.11 7.62 ± 0.11 2000.00 ± 0.00 1945.22 ± 61.12
SGLD 32.32 ± 0.00 7.53 ± 0.00 2.87 ± 0.00 3.29 ± 0.58
SGHMC 32.27 ± 0.17 7.48 ± 0.17 2.73 ± 0.02 1652.04 ± 30.10

E.3 CONVOLUTIONAL MODELS

For the σBPS, an initial warm-up stage is again required, which is identical to that in Section 5.1. For MNIST and Fashion-
MNIST, a batch size of 1024 is used, whilst a batch size of 512 is used for the remaining models. MAP estimates for MNIST
and Fashion-MNIST datasets were found with the Adam optimiser Kingma and Ba [2015] for 10,000 iterations. SVHN and



Table 5: Results on UCI Concrete Dataset

Inference NLL MSE ESS-First ESS-Last

BPS 111.51 ± 0.12 9.55 ± 0.03 2.72 ± 0.03 1777.00 ± 112.52
σBPS 111.60 ± 0.27 9.58 ± 0.08 2.72 ± 0.02 1503.21 ± 36.08
Boomerang 111.95 ± 0.35 9.68 ± 0.10 1975.76 ± 54.21 1982.03 ± 24.85
SGLD 111.47 ± 0.00 9.54 ± 0.00 2.87 ± 0.00 88.94 ± 118.56
SGHMC 112.18 ± 0.61 9.74 ± 0.17 2.72 ± 0.02 1906.15 ± 128.18

CIFAR-10 used SGD with momentum of 0.1 and 0.9 respectively for 25,000 iterations, where for CIFAR-100, required
128,000 iterations and a momentum of 0.2.
With the potential sensitivities to both refreshment rates and choice of velocity distribution Φ(v) identified in D, we deem
it important to report the values used for fitting each model. We report these values in Table 6 alongside full predictive
performance measurements and sample efficiency metrics. Within Table 6, we represent the choice of velocity distribution
with the γ parameter. For Bouncy Particle Sampler (BPS) and σBPS, γ describes the standard deviation of the velocity
distribution chosen such that,

Φ(v) = N (0, γ2). (2)

For the Boomerang sampler, γ represents the scaling factor as found in Equation 5 from the body of the paper. Included
in these results is the Effective Sample Size (ESS) when projecting the samples onto the first, second, and last principal
components. We see from these results that the Boomerang Sampler can generate independent samples across all components,
whilst other samplers are only able to offer this independence as the amount of information (or variance) in the projection of
these samples decreases.

F HOW WELL ARE WE REALLY EXPLORING THE POSTERIOR?

In Radford Neals influential thesis Neal [2012], he states that “Bayesian neural network users may have difficulty claiming
with a straight face that their models and priors are selected because they are just what is needed to capture their prior beliefs
about the problem” 1. In a similar vein, we would state that any Bayesian neural network user would have a difficult time
honestly saying their inference strategy has sufficiently explored the posterior, including the work proposed here. Previous
research has investigated gold-standard MCMC methods for larger networks Izmailov et al. [2021], though were unable
to obtain a sufficient number of samples to maintain confidence in the levels of exploration. Although the metrics in the
previous section may show sufficient results for a machine learning application, from a statistical perspective we need to
further investigate the quality of our inference to justify whether we have satisfied our goal of sampling from the posterior
distribution.

Previous papers for PDMP methods for MCMC have shown favourable performance in terms of mixing and sampling
efficiency Bouchard-Côté et al. [2018], Bierkens et al. [2019], Wu and Robert [2017], Bierkens et al. [2020] and has similarly
outperformed methods such as SGLD. Most studies have been restricted to well-defined models; where prior information
can be suitably provided and sufficient prior studies with gold standard methods such as HMC and NUTS have confirmed the
general geometry of the posteriors in question and the existence of a central limit theorem. Inference in BNNs is challenged
by a posterior with strong multi-modality, making exploration of any sampler more difficult. This is further challenged by
the comparatively large dimensional space over which we need to explore. The favourable Gaussian Process and functional
properties seen by networks with infinite width Neal [2012] encourage the use of large models, whilst also narrowing the
typical set in which we wish to explore Betancourt [2017].

Another limitation is the computational complexity added with sampling-based schemes. This complexity not only includes
the cost of sampling, but the increase in memory consumption. The popular ResNet-50 model contains more than 23 million
parameters. To perform inference on ImageNet with a ResNet50 model using a mini-batch size of 100 samples, more than 10
thousand samples would be needed to iterate over the entire data set of over one million images. With single-point precision,

1Although much important work has been conducted to establish suitable priors and model design Hafner et al. [2018], Sun et al.
[2019], Vladimirova et al. [2019], this statement largely remains true today.

1The commonly used variant of ImageNet is from the 2012 Large Scale Visual Recognition Challenge, which contains 1,281,167
samples Russakovsky et al. [2015]



Table 6: Summary of hyperparameters used for samplers within this work.

Dataset Inference λref γ Time

MNIST

SGD - - 74
SGLD - - 87
SGLD-ND - - 87
BPS 1.0 0.001 145
σBPS 1.0 0.25 197
Boomerang 0.1 0.01 151

Fashion-
MNIST

SGD - - 74
SGLD - - 87
SGLD-ND - - 87
BPS 1.0 0.001 144
σBPS 0.1 0.001 192
Boomerang 0.1 0.01 156

SVHN

SGD - - 3465
SGLD - - 3653
SGLD-ND - - 3653
BPS 1.0 0.001 4125
σBPS 0.1 0.0001 4535
Boomerang 1.0 0.0001 4375

CIFAR 10

SGD - - 4905
SGLD - - 5075
SGLD-ND - - 5074
BPS 1.0 0.001 5614
σBPS 0.1 0.0001 6053
Boomerang 0.1 0.001 5868

CIFAR
100

SGD - - 9811
SGLD - - 9985
SGLD-ND - - 9985
BPS 1.0 0.001 10478
σBPS 0.1 0.001 10808
Boomerang 0.1 0.001 10783

these samples for a single complete iteration of the dataset would require more than 9.2GB of memory. These constraints
currently limit the applicability of such methods, as evaluating predictive posteriors will require a large number of samples
and many operations to read sampled values from non-volatile storage.

These limitations offer insights into areas of future research relating to sampling schemes for BNNs. The geometry of
the joint posterior distribution could be improved by investigating non-local methods for preconditioning the gradients,
similar to that done in Riemannian HMC Girolami and Calderhead [2011]. As seen in this work through the efficacy of the
Boomerang sampler, exploitation of this geometry can considerably improve exploration of the posterior space. Finally and
perhaps most importantly, bespoke design of model architecture that respects the data and includes priors that appropriately
reflect domain expertise could yield posteriors that are more easily traversed and explored.

G IN AND OUT OF DISTRIBUTION DATA

We investigate here the performance of the different sampling methods for in and out-of-distribution (OOD) data in terms
of predictive classification entropy. We have demonstrated that PDMP sampling methods present meaningful epistemic
uncertainty in predictions. It is important to identify uncertainty in the final predictions that are made. Within this work,
predictions are made by taking the argmax of the mean for the predictive posterior,

t = argmax
y∗∈Y

Ey∗

[
p(y∗|x∗,D)

]
(3)

Where p(y∗|x∗,D) is our predictive posterior. Entropy within this categorical probability vector given by this expectation
can be viewed as an approximate measure for aleatoric uncertainty within our model Smith and Gal [2018] to accompany



the epistemic uncertainty given by our Bayesian models. To assess this, we compute the entropy of the expectation within
Equation 3 for in-distribution data and OOD data. It is desirable to have a lower entropy for in-distribution data indicating
lower predictive aleatoric uncertainty, and a larger entropy for OOD data to represent an increase in uncertainty. Figure
10 illustrates this for the models used within this work. From Figure 10, we see the BPS provides increased entropy for
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Figure 10: Entropy within the final predictive categorical vector obtained from the tested sampling methods for the different
datasets used. Blue histograms indicate in-data-distribution entropy and red for OOD data. Each column represents the
predictive entropy for the corresponding labelled sampler and each row for a different dataset. From top to bottom, each row
is for models fit on the MNIST, Fashion MNIST, SVHN, and CIFAR-10 data respectively. MNIST and Fashion MNIST
datasets are used to model in and OOD datasets for the applicable models, and similarly SVHN and CIFAR-10 to model in
and OOD for respective models.

OOD data though is unable to provide a small entropy for in-distribution data. Results from the σBPS, Boomerang, and
SGLD samplers all provide similar trends and provide increased uncertainty for OOD data, however for in-distribution
data, the Boomerang sampler provides a reduction in epistemic uncertainty. A low predictive entropy for in-distribution
data could indicate overconfidence and should not be used in isolation to evaluate calibration. Combining these results
with the improved ECE calibration scores obtained with predictions from the Boomerang sampler indicate favourable
predictive performance; predictions from these results are well-calibrated for in-distribution and showing appropriately
reduced aleatoric uncertainty, whilst providing comparable or improved predictive uncertainty for OOD data.

H EXAMPLES OF DIFFICULT TO CLASSIFY SAMPLES

Given the increasing desire to apply deep learning models in practice, the ability for them to reliably communicate
uncertainty information is crucial. We expect our models to encounter difficult-to-understand scenarios. We need to be
able to identify when these challenging scenarios occur and to incorporate the uncertainty encountered into final decisions.
Figure 11 illustrates examples of misclassified samples from the datasets evaluated within this work, and illustrates the
predictive probabilities of these models. We see that all PDMP samplers provide meaningful uncertainty information for



difficult-to-classify instances within each data set.
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(a) ‘Two‘ from MNIST misclassified as ‘Seven‘
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(b) ‘Four‘ from MNIST missclassified as ‘Six‘
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(c) ‘Cat‘ from CIFAR-10 misclassified as ‘Deer‘
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(d) ‘Dog‘ from CIFAR-10 misclassified as ‘Horse‘
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(e) ‘Three‘ from SVHN missclassified as ‘Nine‘
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(f) ‘Nine‘ from SVHN missclassified as ‘five‘

Figure 11: Examples of difficult-to-classify images from the different image data sets used. Below each image is the
predictive mean for each class represented by the dot, and error bars to represent the 95% credible intervals. MNIST results
fit with BPS, CIFAR-10 with σBPS, and SVHN with Boomerang sampler using the proposed event thinning method. Best
viewed on a computer screen.
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