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MATRIX FORM

The Fourier analysis equation is given by:

ĝ(f) =
1√
2n

∑
x∈{0,1}n

g(x)(−1)⟨f,x⟩

Since this transform is linear, it can be represented by ma-
trix multiplication. Let X ∈ {0, 1}2n×n be a matrix that
has the enumeration over all possible n-dimensional binary
sequences ({0, 1}n) in some arbitrary but fixed order as its
rows. Assume g(X) ∈ R2n to be the vector of g evaluated
on the rows of X. We can compute the Fourier spectrum as:

ĝ =
1√
2n

Hng(X)

where Hn ∈ {±1}2n×2n is an orthogonal matrix given
as follows. Each row of Hn corresponds to some fixed
frequency f ∈ {0, 1}n and the elements of that row are
given by (−1)⟨f,x⟩,∀x ∈ {0, 1}n, where the ordering of
the x is the same as the fixed order used in the rows of
X. The ordering of the rows in Hn, i.e. the ordering of the
frequencies considered, is arbitrary and determines the order
of the Fourier coefficients in the Fourier spectrum ĝ.

It is common to define the Hadamard matrix Hn ∈
{±1}2n×2n through the following recursion:

Hn = H2 ⊗Hn−1,

where H2 :=

[
1 1
1 −1

]
, and ⊗ is the Kronecker product.

We use this in our implementation. This definition corre-
sponds to the ordering similar to n-bit binary numbers (e.g.,
[0, 0, 0], [0, 0, 1], [0, 1, 0], ..., [1, 1, 1] for n = 3) for both fre-
quencies and time (input domain).

*These authors contributed equally to this work

Computing the Fourier spectrum of a network using a matrix
multiplication lets us utilize a GPU and efficiently compute
the transform, and its gradient and conveniently apply the
back-propagation algorithm.

B ALGORITHM DETAILS

Let g : {0, 1}n → R be a pseudo-boolean function with
Fourier transform ĝ. In the context of our work, this pseudo-
boolean function is the neural network function. One can
sort the Fourier coefficient of g according to magnitude,
from biggest to smallest, and consider the top k biggest co-
efficients as the most important coefficients. This is because
they capture the most energy in the Fourier domain and by
Parseval’s identity also in the time (original input) domain. It
is important to us that these k coefficients ĝ(f1), . . . , ĝ(fk)
are not hashed into the same bucket. Say for example two
large coefficients ĝ(fi), ĝ(fj), i ̸= j end up in the same
bucket, an event which we call a collision. If they have
different signs, their sum can form a cancellation and the
L1 norm will enforce their sum to be zero. This entails an
approximation error in the neural network: Our goal is to
sparsify the Fourier spectrum of the neural network and
“zero out” the non-important (small-magnitude) coefficients,
not to impose wrong constraints on the important (large
magnitude) coefficients.

With this in mind, we first prove our hashing result Equa-
tion 1 from Section 2.1. Next, we provide guarantees on how
increasing the hashing bucket size reduces collisions. Fur-
thermore, we show how independently sampling the hashing
matrix over different rounds guarantees that each coefficient
does not collide too often. Ideas presented there can also
be found in Alon et al. [1999], Amrollahi et al. [2019]. We
finally review EN-S and showcase the superiority and scal-
ability of our method in terms of computation.
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B.1 PROOF OF EQUATION 1

Let

uσ(x̃) =

√
2n

2b
g(σx̃),∀x̃ ∈ {0, 1}b

as in Section 2.1.

We can compute its Fourier transform ûσ(f̃) as:

ûσ(f̃) =
1√
2b

∑
x̃∈{0,1}b

uσ(x̃)(−1)⟨f̃ ,x̃⟩

=
1√
2b

∑
x̃∈{0,1}b

√
2n

2b
g(σx̃)(−1)⟨f̃ ,x̃⟩

=

√
2n

2b

∑
x̃∈{0,1}b

g(σx̃)(−1)⟨f̃ ,x̃⟩ (1)

Inserting the Fourier expansion of g into Equation (1) we
have:

ûσ(f̃) =
1

2b

∑
x̃∈{0,1}b

(−1)⟨f̃ ,x̃⟩
∑

f∈{0,1}n

ĝ(f)(−1)⟨f,σx̃⟩

=
1

2b

∑
x̃∈{0,1}b

∑
f∈{0,1}n

ĝ(f)(−1)⟨σ
⊤f,x̃⟩(−1)⟨f̃ ,x̃⟩

=
1

2b

∑
f∈{0,1}n

ĝ(f)
∑

x̃∈{0,1}b

(−1)⟨σ
⊤f+f̃ ,x̃⟩

The second summation is always zero unless σ⊤f + f̃ = 0,
i.e., σ⊤f = f̃ , in which case the summation is equal to 2b.
Therefore:

ûσ(f) =
∑

f̃∈{0,1}n: σT f̃=f

ĝ(f)

B.2 COLLISIONS FOR HASHWH

We first review the notion of pairwise independent families
of hash functions introduced by Carter and Wegman [1979].
We compute the expectation of the number of collisions
for this family of hash functions. We then show that uni-
formly sampling σ ∈ {0, 1}n×b in our hashing procedure
(in HASHWH) gives rise to a pairwise independent hashing
scheme.

Definition B.1 (Pairwise independent hashing). Let H ⊆
{h|h ∈ {0, 1}n → {0, 1}b} be a family of hash functions.
Each hash function maps n-dimensional inputs x ∈ {0, 1}n
into a b-dimensional buckets u = h(f) ∈ {0, 1}b and is
picked uniformly at random from H. We call this family
pairwise independent if for any distinct pair of inputs f1 ̸=
f2 ∈ {0, 1}n and an arbitrary pair of buckets u1, u2 ∈
{0, 1}b:

1. P (h(f1) = u1) =
1
2b

2. P ((h(f1) = u1) ∧ (h(f2) = u2)) =
1

22b

(randomness is over the sampling of the hash function from
H)

Assume S = {f1, ..., fk} ⊆ {0, 1}n is a set of k arbitrary el-
ements to be hashed using the hash function h ∈ {0, 1}n →
{0, 1}b which is sampled from a pairwise independent hash-
ing family. Let cij be an indicator random variable for the

collision of fi, fj , i ̸= j, i.e., cij =

{
1 h(fi) = h(fj)

0 h(fi) ̸= h(fj)
,

for i ̸= j ∈ [k].

Lemma B.2. The expectation of the total number of colli-
sions C =

∑
i ̸=j∈[k] cij in a pairwise independent hashing

scheme is given by: E[C] = (k−1)2

2b
.

Proof.

E[C] =
∑

i̸=j∈[k]

E[cij ]

=
∑

i̸=j∈[k]

∑
u∈{0,1}b

P ((h(fi) = u) ∧ (h(fj) = u))

=
(k − 1)2

2b
,

where we have applied the linearity of expectation.

The next Lemma shows that the hashing scheme of
HASHWH introduced in Section 4.1 is also a pairwise inde-
pendent hashing scheme. However, there is one small caveat:
the hash function always maps 0 ∈ {0, 1}n to 0 ∈ {0, 1}b
which violates property 1 of the pairwise independence Def-
inition B.1. If we remove 0 from the domain then it becomes
a pairwise independent hashing scheme.

Lemma B.3. The hash function used in the hashing pro-
cedure of our method HASHWH, i.e., h(.) = σ⊤(.) where
σ ∼ U{0,1}n×b is a hashing matrix whose elements are
sampled independently and uniformly at random (with prob-
ability 1

2 ) from {0, 1}, is pairwise independent if we exclude
f = 0 from the domain.

Proof. Note that for any input f ∈ {0, 1}n, f ̸= 0, its hash
σ⊤f is a linear combination of columns of σ⊤, where f
determines the columns. We denote ith column of σ⊤ by σ⊤

•i.
Let f be non-zero in t ≥ 1 positions (bits) {i1, ..., it} ⊆ [n].
The value of h(f) is equal to the summation of the columns
of σ⊤ that corresponds to those t positions: σ⊤

•i1 , · · · , σ
⊤
•it .

Let u ∈ {0, 1}b be an arbitrary bucket. The probability the
sum of the columns equals u is 1

2b
as all sums are equally

likely i.e.

P (h(x) = u) =
1

2b



Let f1, f2 ̸= 0, f1 ̸= f2 ∈ {0, 1}n be a pair of distinct non-
zero inputs. Since f1 and f2 differ in at least one position
(bit), h(f1) and h(f2) are independent random variables.
Therefore, for any arbitrary u1, u2 ∈ {0, 1}b

P (h(f1) = u1 ∧ h(f2) = u2)

=P (h(f1) = u1)P (h(f2) = u2) =
1

22b

Lemmas B.2 and B.3 imply that the expected total number of
collisions C in hashing frequencies of the top k coefficients
of g in our hashing scheme is also equal to: E[C] = (k−1)2

2b
.

Our guarantee shows that the number of collisions goes
down linearly in the number of buckets 2b.

Finally, let f1 be an important frequency i.e. one with a
large magnitude |ĝ(f1)|. By independently sampling a new
hashing matrix σ at each round of back-prop, we avoid al-
ways hashing this frequency into the same bucket as some
other important frequency. By a union bound on the pair-
wise independence property, the probability that a frequency
f1 collides with any other frequency f2, . . . , fk is upper
bounded by k−1

2b
. Therefore, over T rounds of back-prop the

number of times this frequency collides follows a binomial
distribution with p ≤ k−1

2b
(k−1

2b
< 1 for a large enough b).

We denote the number of times frequency f1 collides over
the T rounds as Cf1 . The expected number of collisions is
µ ≜ Tp which goes down linearly in the number of buckets.
With a Chernoff bound we can say that roughly speaking,
the number of collisions we expect can not be too much
larger than a fraction p of the T rounds.

By a Chernoff’s bound we have:

P (Cf1 ≥ (1 + δ)µ) ≤ e−
δ2µ
2+δ

where µ = Tp as mentioned before

For examples setting δ = 1

P (Cf1 ≥ 2µ) ≤ e−
µ
3

As T → ∞ this probability goes to zero. This means that the
probability that the number of times the frequency collides
during the T rounds to not be more than a fraction (1+δ)p =
2p of the time is, for all practical purposes, essentially zero.
Building on this intuition, we can see that for any fixed
0 < ϵ < 1, setting b = log2(

k−1
ϵ ) guarantees that collision

of a given frequency happens on average a fraction ϵ of the
T rounds and not much more.

B.3 EN-S DETAILS

To avoid computing the exact Fourier spectrum of the net-
work at each back-propagation iteration in FULLWH, Ag-
hazadeh et al. [2021] suggest an iterative regularization

technique to enforce sparsity in the Fourier spectrum of the
network called EN-S.

We first briefly describe the Alternating Direction Method
of Multipliers [Boyd, 2011] (ADMM) which is an algorithm
that is used to solve convex optimization problems. This
algorithm is used to derive EN-S. Finally, we discuss EN-
S itself and highlight the advantages of using our method
HASHWH over it.

ADMM. Consider the following separable optimization
objective:

min
x∈Rn,z∈Rm

f(x) + g(z)

subject to Ax+Bz = c,

where A ∈ Rp×n, B ∈ Rp×m, c ∈ Rp, and f ∈ Rm →
R and g ∈ Rn → R are arbitrary convex functions The
augmented Lagrangian of this objective is formed as:

Lρ(x, z, γ) = f(x) + g(z) + γ⊤(Ax+Bz − c)

+
ρ

2
∥Ax+Bz − c∥22,

where γ ∈ Rp are the dual variables.

Alternating Direction Method of Multipliers [Boyd, 2011],
or in short ADMM, optimizes the augmented Lagrangian by
alternatively minimizing it over the two variables x and z
and applying a dual variable update:

xk+1 = argmin
x∈Rn

Lρ(x, z
k, γk) (x-minimization)

zk+1 = argmin
z∈Rm

Lρ(x
k+1, z, γk) (z-minimization)

γk+1 = γk + ρ(Axk+1 +Bzk+1 − c) (dual var. update)

In a slightly different formulation of ADMM, known as
scaled-dual ADMM, the dual variable can be scaled which
results in a similar optimization scheme:

xk+1 = argmin
x∈Rn

f(x) +
ρ

2
∥Ax+Bzk − c+ γk∥22

zk+1 = argmin
z∈Rm

g(z) +
ρ

2
∥Axk+1 +Bz − c+ γk∥22

γk+1 = γk +Axk+1 +Bzk+1 − c (2)

Using ADMM, one can decouple the joint optimization of
two separable groups of parameters into two alternating
separate optimizations for each individual group.

EN-S. To apply ADMM, Aghazadeh et al. [2021] refor-
mulate the FULLWH loss, by introducing a new variable z
and adding a constraint such that it is equal to the Fourier
spectrum:

LEN−S = Lnet + λ∥z∥1
subject to: z = ĝθ = Hngθ(X)



, where gθ is the neural network parameterized by θ, Hn ∈
{0, 1}2n×2n is the Hadamard matrix, and X ∈ {0, 1}2n×n

is the matrix of the enumeration over all points on the
Boolean cube {0, 1}n.

They use the scaled-dual ADMM (2) followed by a few fur-
ther adjustments to reach the following alternating scheme
for optimization of LEN−S :

θk+1 = argmin
θ

Lnet +
ρ

2
∥gθ(XT )−HTz

k + γk∥22

zk+1 = argmin
z

λ∥z∥0 +
ρ

2
∥gθk+1(XT )−HTz + γk∥22

γk+1 = γk + gθk+1(XT )−HTz
k+1, (3)

where XT ∈ {0, 1}O(2mn)×n is the input enumeration ma-
trix X ∈ {0, 1}2n×n sub-sampled at O(2mn) rows, HT ∈
{0, 1}O(2mn)×n is the Hadamard matrix Hn ∈ {0, 1}2n×2n

subsampled at similar O(2mn) rows, and γ ∈ RO(2mn) is
the dual variable. We will introduce the hash size parameter
m momentarily.

Using the optimization scheme (3), they decouple the opti-
mization of LEN−S into two separate alternating optimiza-
tions: 1) minimizing Lnet by fixing z and optimizing net-
work parameters using SGD for an epoch (θ-minimization),
2) fixing θ and computing a sparse Fourier spectrum ap-
proximation of the network at the end of each epoch and
updating the dual variable (z-minimization).

To approximate the sparse Fourier spectrum of the network
at z-minimization step, they use the “SPRIGHT” algorithm
[Li et al., 2015]. SPRIGHT requires O(2mn) samples from
the network to approximate its Fourier spectrum and runs
with the complexity of O(2mn3), where m is the hash size
used in the algorithm (the equivalent of b in our setting). In
EN-S optimization scheme (3), these O(2mn) inputs are
denoted by the matrix XT ∈ {0, 1}O(2mn)×n, and are fixed
during the whole optimization process. This requires the
computation of the network output on these O(2mn) inputs
at each back-prop iteration in θ-minimization, as well as at
the end of each epoch to run SPRIGHT in z-minimization.

EN-S vs. HASHWH. The hashing done in our method,
HASHWH, is basically the first step of many (if not all)
sparse Walsh-Hadamard transform approximation methods
[Li and Ramchandran, 2015, Scheibler et al., 2015, Li et al.,
2015, Amrollahi et al., 2019], including SPRIGHT [Li
et al., 2015] that is used in EN-S. In the task of sparse
Fourier spectrum approximation, further, extra steps are
done to infer the exact frequencies of the support and their
associated Fourier coefficients. These steps are usually com-
putationally expensive. Here, since we are only interested in
the L1-norm of the Fourier spectrum of the network and are
not necessarily interested in retrieving the exact frequencies
in its support, we found the idea of approximating it with
the L1-norm of the Fourier spectrum of our hash function
compelling. This is the core idea behind HASHWH which

lets us stick to the FULLWH formulation using a scalable
approximation of the L1-norm of the network’s Fourier
spectrum.

From the mere computational cost perspective, EN-S re-
quires a rather expensive sparse Fourier spectrum approxi-
mation of the network at the end of each epoch. We realized,
one bottleneck of their algorithm was the evaluation of the
neural network on the required time samples of their sparse
Fourier approximation algorithm. We re-implemented this
part on a GPU to make it substantially faster. Still, we em-
pirically observe that more than half of the run time of each
EN-S epoch is spent on the Fourier transform approxima-
tion. Furthermore, in EN-S, the network output needs to be
computed for Ω(2mn) samples at each back-prop iteration.

On the contrary, in HASHWH, the network Fourier trans-
form approximation is not needed anymore. We only com-
pute the network output on precisely 2b samples at each
round of back-propagation to compute the Fourier spectrum
of our sub-sampled neural network. Remember that our b
is roughly equivalent to their m. Since the very first step
in their sparse Fourier approximation step is a hashing step
into 2m buckets.

Let us compare our method with EN-S more concretely. For
the sake of simplicity, we ignore the network sparse Fourier
approximation step (z-minimization) that happens at the end
of each epoch for EN-S and assume their computational
complexity is only dominated by the Ω(2mn) evaluations
made during back-prop. In order to use the same number
of samples as EN-S, we can set our hashing size to b =
m + log(n) + c, where c is a constant which we found
in practice to be at least c ≥ 3. In the case of our avGFP
experiment, this would be for instance b ≥ 18 in HASHWH
for EN-S with m = 7. There, we outperformed EN-S using
b ∈ {7, 10, 13, 16} in terms of R2-score. Note that even
with b = 18 we are still at least two times faster than EN-S
as we do not go the extra mile of approximating the Fourier
spectrum of the network at each epoch.

C DATASETS

We list all the datasets used in the real dataset Section 5.2.

Entacmaea quadricolor fluorescent protein. (Entac-
maea) Poelwijk et al. [2019] study the fluorescence bright-
ness of all 213 distinct variants of the Entacmaea quadricolor
fluorescent protein, mutated at 13 different sites. They exam-
ine the goodness of fit (R2-score) when only using a limited
set of frequencies of the highest amplitude. They report that
only 1% of the frequencies are enough to describe data with
a high goodness of fit (R2 = 0.96), among which multiple
high-degree frequencies exist.



GPU kernel performance (SGEMM). Nugteren and Co-
dreanu [2015] measures the running time of a matrix prod-
uct using a parameterizable SGEMM GPU kernel, con-
figured with different parameter combinations. The input
has 14 categorical features that we one-hot encode into 40-
dimensional binary vectors.

Immunoglobulin-binding domain of protein G (GB1).
Wu et al. [2016] study the “fitness” of variants of protein
GB1, that are mutated at four different sites. Fitness, in
this work, is a quantitative measure of the stability and
functionality of a protein variant. Given the 20 possible
amino acids at each site, they report the fitness for 204 =
160, 000 possible variants, which we represent with one-hot
encoded 80-dimensional binary vectors. In a noise reduction
step, they included 149, 361 data points as is and replaced
the rest with imputed fitness values. We use the former, the
untouched portion, for our study.

Green fluorescent protein from Aequorea victoria
(avGFP). Sarkisyan et al. [2016] estimate the fluores-
cence brightness of random mutations over the green flu-
orescent protein sequence of Aequorea victoria (avGFP)
at 236 amino acid sites. We transform the data into the
boolean space of the absence or presence of a mutation at
each amino acid site by averaging the brightness for the mu-
tations with similar binary representations. This converts the
original 54, 024 distinct amino acid mutations into 49, 089
236-dimensional binary data points.

D IMPLEMENTATION TECHNICAL
DETAILS

Neural network architecture and training We used a 5-
layer fully connected neural network including both weights
and biases and LeakyReLu as activations in all settings. For
training, we used MSE loss as the loss of the network in
all settings. We always initialized the networks with Xavier
uniform distribution. We fixed 5 random seeds in order to
make sure the initialization was the same over different
settings. The Adam optimizer with a learning rate of 0.01
was used for training all models. We always used a single
Nvidia GeForce RTX 3090 to train each model to be able
to fairly compare the runtime of different methods. We did
not utilize other regularization techniques such as Batch
Normalization or Dropout to limit our studies to analyze
the mere effect of Fourier spectrum sparsification. We use
networks of different widths in different experiments which
we detail in the following:

• Fourier spectrum evolution: The architecture of the
network is 10× 100× 100× 10× 1.

• High-dimensional synthetic data: For each n ∈
{25, 50, 100}, the architecture of the network is n ×
2n× 2n× n× 1.

• Real data: Assuming n to be the dimensionality of
the input space, we used the network architecture of
n× 10n× 10n× n× 1 for all the experiments except
avGFP. For avGFP with n = 236, we had to down-size
the network to n×n×n×n×1 to be able to run EN-S
on GPU as it requires a significant amount of samples
to compute the Fourier transform at each epoch in this
dimension scale.

Data splits In the Fourier spectrum evolution experiment,
where we do not report R2 of the predictions, we split the
data into training and validation sets (used for hyperparame-
ter tuning). For the rest of the experiments, we split the data
into three splits training, validation, and test sets. We use
the validation set for the hyperparameter tuning (mainly the
regularizer multiplier λ and details to be explained later) and
early stopping. We stop each training after 10 consecutive
epochs without any improvements over the best validation
loss achieved and use the epoch with the lowest loss for
testing the model. All the R2s reported are the performance
of the model on the (hold-out) test set.

For each experiment, we used different training dataset sizes
that are explicitly mentioned in the main body of the paper.
Here we list the validation and test dataset sizes:

• Fourier spectrum evolution: Given that n = 10 and the
Boolean cube is of size 2n = 1024, we always use the
whole data and split it into training and validation sets.
For example, for the training set of size 200, we use
the rest of the 824 data points as the validation set.

• High-dimensional synthetic data: For each training set,
we use validation and test sets of five times the size of
the training set. That is, for a training set of size c ·25n,
both of our validation and test sets are of size c · 125n.

• Real data: After taking out the training points from the
dataset, we split the remaining points into two sets of
equal sizes one for validation and one for test.

Hyper-parameter tuning. In all experiments, we hand-
picked candidates for important hyper-parameters of each
method studied and tested every combination of them,
and picked the version with the best performance on
the validation set. This includes testing different λ ∈
{0.0001, 0.001, 0.01, 0.1} for HashWH, λ ∈ {0.01, 0.1, 1}
and ρ ∈ {0.001, 0.01, 0.1} for EN-S, and λ ∈
{0.01, 0.1, 1} for FULLWH. Furthermore, we also used the
following hyper-parameters for the individual experiments:

• Fourier spectrum evolution: We used b ∈ {5, 7, 8} for
HashWH and m = 5 for the EN-S. We did not tune
b for HashWH as we reported all the results in order
to show the graceful dependence with increasing the
hashing matrix size.

• High-dimensional synthetic data: We used b ∈
{7, 10, 13} for HashWH and m = 7 for the EN-S.



We did not tune b for HashWH as we reported each
individually.

• Real data: We used b ∈ {7, 10, 13} for HashWH
and m = 7 for EN-S in the Entacmaea, SGEMM,
and GB1 experiments. Furthermore, for avGFP,
we also considered b = 16 for HashWH. Unlike
the synthetic experiments, where we reported
results for each b individually, we treated b as
a hyper-parameter in real data experiments. For
Lasso, we tested different L1 norm coefficients
of λ ∈ {10−5, 10−4, 10−3, 10−2, 10−1, 1}. For
Random Forest, we tested different numbers of
estimators nestimators ∈ {100, 200, 500, 1000},
and different maximum depths of estimators
maxdepth ∈ {5, 10, 15} for Entacmaea experiments
and maxdepth ∈ {10, 20, 30, 40, 50} for the rest of ex-
periments. We tested the exact same hyper-parameter
candidates we considered for Random Forest in our
XGBoost models.

Like common practice, we always picked the hyper-
parameter combination resulting in the minimum loss on
the validation set, and reported the model’s performance on
the test (hold-out) dataset.

Code repositories. All the implementations for the meth-
ods as well as the experiments are publicly accessible
through https://github.com/agorji/WHRegularizer.

For EN-S and FULLWH regularizers, we used the imple-
mentation shared by Aghazadeh et al. [2021]1. We applied
minor changes so to compute samples needed for the Fourier
transform approximation in EN-S on GPU, making it run
faster and fairer to compare our method with.

We used the python implementation of scikit-learn2

for our Lasso and Random Forest experiments. We also used
the XGBoost3 python library for our XGBoost experiments.

E ABLATION STUDY DETAILS

To study the effect of the low-degree simplicity bias on
generalization on the real-data distribution, we conduct an
ablation study by fitting a sparse Fourier transform to two
of our datasets. To this end, we fit Random Forest mod-
els on Entecamaa and SGEMM datasets, such that they
achieve test R2 of nearly 1 on an independent test set not
used in the training. Then, we compute the exact sparse
Fourier transform of each Random Forest model, which
essentially results in a sparse Fourier function that has been
fitted to the training dataset. In our ablation study, finally, we
remove frequencies based on two distinct regimes of lower-
amplitudes-first and higher-degrees-first and show that the

1https://github.com/amirmohan/epistatic-net
2https://scikit-learn.org
3https://xgboost.readthedocs.io

former harms the generalization more. This is against the
assumption of simplicity bias being always helpful.

In the next two subsections, we provide the details on how
to compute the exact sparse Fourier transform of a Random
Forest model as well as finer details of the study setup.

E.1 FOURIER TRANSFORM OF (ENSEMBLES)
OF DECISION TREES

A decision tree, in our context, is a rooted binary tree whose
nodes can have either zero or two children. Each leaf node
is assigned a real number. Each non-leaf node corresponds
to one of n binary features. The tree defines a function
t : {0, 1}n → R in the following way: To compute t(x) we
look at the root, corresponding to, say, feature i ∈ [n]. Next,
we check the value of the variable xi. If the value of the
variable is equal to 0 we look at the left child. If it is equal
to 1 we look at the right child. Then we repeat this process
until we reach a leaf. The value of the function t evaluated at
x is the real number assigned to that leaf. In all that follows,
when referring to decision trees, we will denote them by the
function t : {0, 1}n → R.

Given a decision tree, we can compute its Fourier transform
recursively. Let i ∈ [n] denote the feature corresponding to
its root. Then the tree can be represented as follows:

t(x) =
1 + (−1)⟨ei,x⟩

2
tleft(x) +

1− (−1)⟨ei,x⟩

2
tright(x)

(4)

Hereby, tleft : {0, 1}n−1 → R and tright : {0, 1}n−1 → R
are the left and right sub-trees respectively. Therefore, one
can recursively compute the Fourier transform of a decision
tree.

This also portrays why a decision tree of depth d is a func-
tion of degree d. Moreover, for each tree t, if |supp(tleft)| =
kleft and |supp(tright)| = kright, then |supp(t)| ≤ 2(kleft +
kright). This implies that a decision tree is k-sparse with
k = O(4d). However, in many cases, when the decision tree
is not complete or cancellations occur, the Fourier transform
is even sparser.

Finally, we can also compute the Fourier transform of an en-
semble of trees such as one produced by the random forest
and XGBoost algorithms. In the case of regression, the en-
semble just predicts the average prediction of its constituent
trees. Therefore its Fourier transform is the (normalized)
sum of the Fourier transforms of its trees as well. If a random
forest model consists of T different trees then its Fourier
transform is k = O(T4d)-sparse and of degree equal to its
maximum depth.

https://github.com/agorji/WHRegularizer


E.2 ABLATION STUDY SETUP

For the Entacmae dataset, we used a training set of size
5, 000 and a test set of size 2, 000, for which we trained a
Random Forest model with 100 trees with maximum depths
of 7. For the SGEMM dataset, we used a training set of size
100, 000 and a test set of size 5, 000, for which we trained
a Random Forest model with 100 trees with a maximum
depth of 10.

F EXTENDED EXPERIMENT RESULTS

Here, we report the extended experiment results containing
variations not reported in the main body of the paper.

F.1 FOURIER SPECTRUM EVOLUTION

We randomly generated five synthetic target functions g∗ ∈
{0, 1}10 of degree d = 5, each having a single frequency
of each degree in its support (the randomness is over the
choice of support). We create a dataset by randomly sam-
pling the Boolean cube. Figure 6 shows the evolution of
the Fourier spectrum of the learned neural network function
for different methods over training on datasets of multiple
sizes (100, 200, 300, 400) limited to the target support. This
is the extended version of Figure 1a, where we only reported
results for the train size of 200. We observe that, quite un-
surprisingly, each method shows better performance when
trained on a larger training set in terms of converging at
earlier epochs and also converging to the true Fourier am-
plitude it is supposed to. It can also be observed that the
Fourier-sparsity-inducing (regularized) methods are always
better than the standard neural network in picking up the
higher-degree frequencies, regardless of the training size.

Figure 7 goes a step further and shows the evolution of the
full Fourier spectrum (not just the target frequencies) over
the course of training. Here, unlike the previous isolated
setting where we were able to aggregate the results from
different target functions (because of always having a single
frequency of each degree in the support), we have to separate
the results for each target function g∗ ∈ {0, 1}10, as each
has a unique set of frequencies in its support. In Figure 1a,
we reported the results for one version of the target function
g∗ and Figure 7 shows the Fourier spectrum evolution for
the other four. We observe that in addition to the spotted
inability of the standard neural network in learning higher-
degree frequencies, it seems to start picking up erroneous
low-degree frequencies as well.

To quantitatively validate our findings, in Figure 9, we show
the evolution of Spectral Approximation Error (SAE) dur-
ing training on both target support and the whole Fourier
spectrum. This is an extended version of Figure 2, where
we report the results for the train size of 200. Here we also

include results when using training datasets of three other
train sizes {100, 300, 400}. We observe that even though the
standard neural network exhibits comparable performance
to HASHWH on the target support when the training dataset
size is 100 and 400, it is always underperforming HASHWH
when broadening our view to the whole Fourier spectrum,
regardless of the train size and the hashing size.

From a more fine-grained perspective, in Figure 8, we cate-
gorize the frequencies into subsets of the same degree and
show the evolution of SAE and energy on each individual
degree. This is an extended version of Figure 3, where we re-
ported the results for the training dataset size of 200. Firstly,
we observe that using more data aids the standard neural
network to eventually put more energy on higher-degree fre-
quencies. But it is still incapable of appropriately learning
higher-degree frequencies. Fourier-sparsity inducing meth-
ods, including ours, show significantly higher energy in the
higher degrees. Secondly, No matter the train size, we note
that the SAE on low-degree frequencies first decreases and
then increases and the standard neural network starts to over-
fit. This validates our previous conclusion that the standard
neural network learns erroneous low-degree frequencies.
Our regularizer prevents overfitting in lower degrees. Its
performance of which can be scaled using the hashing size
parameter b.

F.2 HIGH-DIMENSIONAL SYNTHETIC DATA

Figure 10 shows the generalization performance of different
methods in learning a synthetic degree d = 5 function
g∗ ∈ {0, 1}n → R, for n ∈ {25, 50, 100}, using train
sets of different sizes (c · 25n, c ∈ [8]). For each n we
sample three different draws of g∗. This is the extended
version of Figure 4a, where we only reported the results
for the first draw of g∗ for each input dimension n. Our
regularization method, HASHWH, outperforms the standard
network and EN-S in all possible combinations of input
dimension and dataset sizes, regardless of the draw of g∗.
We observe that increasing b in HASHWH, i.e. increasing
the number of hashing buckets, almost always improves the
generalization performance. EN-S, on the other hand, does
not show significant superiority over the standard neural
network rather than marginally outperforming it in a few
cases when n = 25. This does not match its performance in
the previous section and conveys that it is not able to perform
well when increasing the input dimension, i.e., having more
features in the data.

To both showcase the computational scalability of our
method, HASHWH, and compare it to EN-S, we show the
achievable performance by the number of training epochs
and training time in Figures 11 to 13, for all train set sizes
and input dimensions individually and limited to the first
draw of g∗ for each input dimension. This is the extended
version of Figure 4b where we only reported it for n = 50



and the sample size multiplier c = 5. We consistently see
that the trade-off between the generalization performance
and the training time can be directly controlled in HASHWH
using the parameter b. Furthermore, HASHWH is able to
always exhibit a significantly better generalization perfor-
mance in remarkably less time, in all versions of b tested.
This emphasizes the advantage of our method in not directly
computing the approximate Fourier spectrum of the network,
which resulted in this gap with EN-S in the run time, that
increases as the input dimension n grows.

F.3 REAL DATA

Figure 14 shows the generalization performance and the
training time of different methods, including relevant ma-
chine learning benchmarks, in learning four real datasets.
It is the extended version of Figure 5, where we only re-
ported the generalization performance and not the training
time. The training time for neural nets is considered to be
the time until overfitting occurs i.e. we do early stopping.
In addition to superior generalization performance of our
method, HASHWH, in most settings, again, we see that it
is able to achieve it in significantly less time than EN-S.
LASSO is the fastest among the methods but usually shows
poor generalization performance.
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Figure 6: Evolution of the Fourier spectrum during training limited to the target support, using training sets of different sizes.
All synthetic functions have single frequencies of each degree in their support that are all given the amplitude of 1. This
is an extended version of Figure 1a, where we only reported the results for the train set size 200. It can be observed that
the Fourier-sparsity-inducing (regularized) methods are always better than the standard neural network in picking up the
higher-degree frequencies, regardless of the training size. Each method shows better performance when trained on a larger
training set in terms of converging at earlier epochs and also converging to the true Fourier amplitude it is supposed to.



Figure 7: Evolution of the Fourier spectrum in learning a synthetic function g∗ ∈ {0, 1}10 of degree 5 during training,
categorized by frequency degree. All synthetic functions used have single frequencies of each degree in their support that are
all given the amplitude of 1. We reported the results for one draw of g∗ in Figure 1b and the four others here, for the training
dataset size of 200. In addition to the incapability of the standard neural network in learning high-degree frequencies, they
tend to consistently pick up wrong low-degree frequencies. Both of the problems are remedied through our regularizer.
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Figure 8: Evolution of the Spectral Approximation Error (SAE) and energy of the network during training, categorized by
frequency degree (continued in the next page).
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Figure 8: Evolution of the Spectral Approximation Error (SAE) and energy of the network during training, categorized by
frequency degree. This is an extended version of Figure 3, where we only reported results for training dataset size 200.
Firstly, in a standard neural network, the energy is mostly put on low-degree frequencies as compared to the high-degree
frequencies. The energy slightly shifts towards high-degree frequencies when increasing the training dataset size. Our
regularizer facilitates the learning of higher degrees in all cases. Secondly, over the lower-degree and regardless of the train
size, the standard neural network’s energy continues to increase while the SAE first decreases then reverts and increases.
This shows that the standard neural network emphasizes energy on erroneous low-degree frequencies and overfits. Our
regularizer prevents overfitting in lower degrees.
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Figure 9: Evolution of the spectral approximation error (SAE) during training. The left plot limits the error to the target
support, while the right one considers the whole Fourier spectrum. This is an extended version of Figure 2, where we
only reported results for train size 200. The standard neural network is able to achieve a lower (better) (train size 100) or
somewhat similar (train size 400) SAE on the target support compared to our method. However, our method always achieves
lower SAE on the whole Fourier spectrum, regardless of b used. This shows how our regularisation method is effective in
preventing the network from learning the wrong frequencies that are not in the support.
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(e) n = 50, second draw of g∗
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(f) n = 50, third draw of g∗
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(h) n = 100, second draw of g∗
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(i) n = 100, third draw of g∗

Figure 10: Generalization performance R2 on a hold-out test set, in learning a synthetic degree 5 function g∗ ∈ {0, 1}n for
n ∈ {25, 50, 100}, using datasets of size c · 25n. We report the results of the first draws of g∗ for each input dimension in
Figure 4a and the extended version for all three draws of g∗ of different dimensions here. Our method, HASHWH, always
outperforms the standard neural network and EN-S. We are capable of significantly increasing the outperformance margin
by increasing b. EN-S, however, does not show improvement over the standard network in most cases which indicates its
diminishing effectiveness as the size of the input dimension grows, i.e., the number of features increases.
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(b) n = 25, c = 2
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(c) n = 25, c = 3
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(d) n = 25, c = 4
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(e) n = 25, c = 5
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(f) n = 25, c = 6
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(g) n = 25, c = 7
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(h) n = 25, c = 8

Figure 11: Best achievable generalization performance R2 up to a certain epoch or training time (seconds), in learning a
synthetic degree 5 function g∗ ∈ {0, 1}n, using datasets of size c · 25n. This figure is an extended version of Figure 4b,
where we reported similar plots for n = 50 and c = 5. Here we report the results for the first draw of g∗ with n = 25. Our
method, HASHWH, always outperforms EN-S R2 score in significantly less time. HASHWH can also be scaled by the
choice of b to achieve better generalization performance at th price of higher training times.
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(b) n = 50, c = 2
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(c) n = 50, c = 3
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(d) n = 50, c = 4
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(e) n = 50, c = 5
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(f) n = 50, c = 6
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(g) n = 50, c = 7
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(h) n = 50, c = 8

Figure 12: Best achievable generalization performance R2 up to a certain epoch or training time (seconds), in learning a
synthetic degree 5 function g∗ ∈ {0, 1}n, using datasets of size c · 25n. This figure is an extended version of Figure 4b,
where we reported similar plots for n = 50 and c = 5. Here we report the results for the first draw of g∗ with n = 50. Our
method, HASHWH, always outperforms EN-S R2 score in significantly less time. HASHWH can also be scaled by the
choice of b to achieve better generalization performance athe price of higher training times.
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(a) n = 100, c = 1
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(b) n = 100, c = 2
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(c) n = 100, c = 3
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(d) n = 100, c = 4
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(e) n = 100, c = 5
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(f) n = 100, c = 6
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(g) n = 100, c = 7

0 25 50 75
Epoch

0.1

0.2

0.3

0.4

HashWH (b=13)
HashWH (b=10)
HashWH (b=7)
EN-S
standard

100 101 102

Training time (s)
100 101 102

Training time (s)

Be
st

 T
es

t R
2

(h) n = 100, c = 8

Figure 13: Best achievable generalization performance R2 up to a certain epoch or training time (seconds), in learning a
synthetic degree 5 function g∗ ∈ {0, 1}n, using datasets of size c · 25n. This figure is an extended version of Figure 4b,
where we reported similar plots for n = 50 and c = 5. Here we report the results for the first draw of g∗ with n = 100. Our
method, HASHWH, always outperforms EN-S R2 score in significantly less time. HASHWH can also be scaled by the
choice of b to achieve better generalization performance at the price of higher training times.
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(a) Entacmaea (n=13)
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(b) SGEMM (n=40)
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(c) GB1 (n=80)
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(d) avGFP (n=236)

Figure 14: Generalization performance of standard/regularized neural networks and benchmark ML models on four real
datasets. This figure is an extended version of Figure 5. It also includes the training times (logarithmically scaled in the plot).
Our method is able to achieve the best test R2s while always training significantly faster than EN-S.
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