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Abstract

Despite the capacity of neural nets to learn arbi-
trary functions, models trained through gradient
descent often exhibit a bias towards “simpler” func-
tions. Various notions of simplicity have been intro-
duced to characterize this behavior. Here, we focus
on the case of neural networks with discrete (zero-
one), high-dimensional, inputs through the lens of
their Fourier (Walsh-Hadamard) transforms, where
the notion of simplicity can be captured through
the degree of the Fourier coefficients. We empiri-
cally show that neural networks have a tendency to
learn lower-degree frequencies. We show how this
spectral bias towards low-degree frequencies can
in fact hurt the neural network’s generalization on
real-world datasets. To remedy this we propose
a new scalable functional regularization scheme
that aids the neural network to learn higher degree
frequencies. Our regularizer also helps avoid
erroneous identification of low-degree frequencies,
which further improves generalization. We
extensively evaluate our regularizer on synthetic
datasets to gain insights into its behavior. Finally,
we show significantly improved generalization
on four different datasets compared to standard
neural networks and other relevant baselines.

1 INTRODUCTION

Classical work on neural networks shows that deep fully
connected neural networks have the capacity to approximate
arbitrary functions [Hornik et al., 1989, Cybenko, 1989].
However, in practice, neural networks trained through
(stochastic) gradient descent have a “simplicity” bias. This
notion of simplicity is not agreed upon and works such

*These authors contributed equally to this work

as [Arpit et al., 2017, Nakkiran et al., 2019, Valle-Perez
et al., 2019, Kalimeris et al., 2019] each introduce a
different notion of “simplicity”. The simplicity bias can
also be studied by considering the function the neural
net represents (function space view) and modeling it as
Gaussian processes (GP)[Rasmussen, 2004]. Daniely et al.
[2016], Lee et al. [2018] show that a wide, randomly
initialized, neural network in function space is a sample
from a GP with a kernel called the “Conjugate Kernel”
[Daniely, 2017]. Moreover, the evolution of gradient
descent on a randomly initialized neural network can be
described through the “Neural Tangent Kernel” Jacot et al.
[2018], Lee et al. [2019]. These works open up the road for
analyzing the simplicity bias of neural nets in terms of a
spectral bias in Fourier space. Rahaman et al. [2019] show
empirically that neural networks tend to learn sinusoids of
lower frequencies earlier on in the training phase compared
to those of higher frequencies. Through the GP perspective
introduced by Jacot et al. [2018], Lee et al. [2019], among
others, Ronen et al. [2019], Basri et al. [2020] were able
to prove these empirical findings. These results focus on
continuous domains and mainly emphasize the case where
the input and output are both one-dimensional.

Here, we focus on discrete domains where the input is a
high-dimensional zero-one vector and we analyze the func-
tion learned by the neural network in terms of the amount
of interactions among its input features in a quantitative
manner. Our work is complementary to the majority of the
aforementioned work that has been done on the spectral
bias of neural networks in the setting of continuous, one-
dimensional inputs [Ronen et al., 2019, Basri et al., 2020,
Rahaman et al., 2019]. Yang and Salman [2020], Valle-Perez
et al. [2019] are the first to provide spectral bias results for
the discrete, higher dimensional, setting (our setting). By
viewing a fully connected neural network as a function that
maps zero-one vectors to real values, one can expand this
function in terms of the Fourier –a.k.a Walsh-Hadamard –
basis functions. The Walsh-Hadamard basis functions have
a natural ordering in terms of their complexity called their
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degree. The degree specifies how many features each basis
function is dependent upon. For example, the zero-degree
basis function is the constant function and the degree-one
basis functions are functions that depend on exactly one
feature. Through analysis of the NTK gram matrix on the
Boolean cube, Yang and Salman [2020] theoretically show
that, roughly speaking, neural networks learn the lower de-
gree basis functions earlier in training.

This tendency to prioritize simpler functions in neural
networks has been suggested as a cardinal reason for
their remarkable generalization ability despite their over-
parameterized nature [Neyshabur et al., 2017, Arpit et al.,
2017, Kalimeris et al., 2019, Poggio et al., 2018]. However,
much less attention has been given to the case where the
simplicity bias can hurt generalization [Tancik et al., 2020,
Shah et al., 2020]. Tancik et al. [2020] show how transform-
ing the features with random Fourier features embedding
helps the neural network overcome its spectral bias and
achieve better performance in a variety of tasks. They were
able to explain, in a unified way, many empirical findings in
computer vision research such as sinusoidal positional em-
beddings through the lens of overcoming the spectral bias.
In the same spirit as these works, we show that the spectral
bias towards low-degree functions can hurt generalization
and how to remedy this through our proposed regularizer.

In more recent lines of work, regularization schemes have
been proposed to directly impose priors on the function the
neural network represents [Benjamin et al., 2019, Sun et al.,
2019, Wang et al., 2019]. This is in contrast to other methods
such as dropout, batch normalization, or other methods that
regularize the weight space. In this work, we also regular-
ize neural networks in function space by imposing sparsity
constraints on their Walsh-Hadamard transform. Closest to
ours is the work of Aghazadeh et al. [2021]. Inspired by
studies showing that biological landscapes are sparse and
contain high-degree frequencies [Sailer and Harms, 2017,
Yang et al., 2019, Brookes et al., 2022, Ballal et al., 2020,
Poelwijk et al., 2019], they propose a functional regular-
izer to enforce sparsity in the Fourier domain and report
improvements in generalization scores.

Our contributions:

• We analyze the spectral behavior of a simple MLP during
training through extensive experiments. We show that
the standard (unregularized) network not only is unable
to learn (more complex) high-degree frequencies but it
also starts learning erroneous low-degree frequencies and
hence overfitting on this part of the spectrum.

• We propose a novel regularizer – HASHWH (Hashed
Walsh Hadamard) – to remedy the aforementioned
phenomenon. The regularizer acts as a “sparsifier” on
the Fourier (Walsh-Hadamard) basis. In the most extreme
cases, it reduces to simply imposing an L1-norm on the
Fourier transform of the neural network. Since computing

the exact Fourier transform of the neural net is intractable,
our regularizer hashes the Fourier coefficients to buckets
and imposes an L1 norm on the buckets. By controlling
the number of hash buckets, it offers a smooth trade-off
between computational complexity and the quality of
regularization.

• We empirically show that HASHWH aids the neural
network in avoiding erroneous low-degree frequencies
and also learning relevant high-degree frequencies. The
regularizer guides the training procedure to allocate more
energy to the high-frequency part of the spectrum when
needed and allocate less energy to the lower frequencies
when they are not present in the dataset.

• We show on real-world datasets that, contrary to popular
belief of simplicity biases for neural networks, fitting a
low degree function does not imply better generalization.
Rather, what is more important, is keeping the higher
amplitude coefficients regardless of their degree. We use
our regularizer on four real-world datasets and provide
state of the art results in terms of R2 score compared to
standard neural networks and other baseline ML models,
especially for the low-data regime.

2 BACKGROUND

In this section, we first review Walsh Hadamard transforms,
and notions of degree and sparsity in the Fourier (Walsh-
Hadamard) domain [O’Donnell, 2014]. Next, we review the
notion of simplicity biases in neural networks and discuss
why they are spectrally biased toward low-degree functions.

2.1 WALSH HADAMARD TRANSFORMS

Let g : {0, 1}n → R be a function mapping Boolean
zero-one vectors to the real numbers, also known as a
“pseudo-boolean” function. The family of 2n functions
{Ψf : {0, 1}n → R |f ∈ {0, 1}n} defined below consists
of the Fourier basis functions. This family forms a basis
over the vector space of all pseudo-boolean functions:

Ψf (x) =
1√
2n

(−1)〈f,x〉, f, x ∈ {0, 1}n

where 〈f, x〉 =
∑
i fixi. Here, f ∈ {0, 1}n is called the fre-

quency of the basis function. For any frequency f ∈ {0, 1}n
we denote its degree by deg(f) which is defined as the num-
ber of non-zero elements. For example, f1 = [0, 0, 0, 0, 0]
and f2 = [0, 0, 1, 0, 1] have degrees deg(f1) = 0 and
deg(f2) = 2, respectively. One can think of the degree
as a measure of the complexity of basis functions. For exam-
ple, Ψ0(x) is constant, and Ψei(x) where ei is a standard
basis vector (deg(ei) = 1) only depends on feature i of the
input. It is equal to +1 when feature i is zero and equal to
−1 when feature i is one. More generally, a degree d basis
function depends on exactly d input features.

724



Since the Fourier basis functions form a basis for the vector
space of all pseudo-boolean functions, any function g :
{0, 1}n → R can be written as a unique linear combination
of these basis functions:

g(x) =
1√
2n

∑
f∈{0,1}n

ĝ(f)(−1)〈f,x〉

The (unique) coefficients ĝ(f) are called the “Fourier co-
efficients” or “Fourier amplitudes” and are computed as
ĝ(f) = 1√

2n

∑
x∈{0,1}n

g(x)(−1)〈f,x〉. The Fourier spectrum

of g is the vector consisting of all of its 2n Fourier co-
efficients, which we denote by the bold symbol ĝ ∈ R2n .
Assume X ∈ {0, 1}2n×n to be the matrix of an enumeration
over all possible n-dimensional binary sequences ({0, 1}n),
and g(X) ∈ R2n to be the vector of g evaluated on the
rows of X. We can compute the Fourier spectrum using
Walsh-Hadamard transform as ĝ = 1√

2n
Hng(X), where

Hn ∈ {±1}2n×2n is the orthogonal Hadamard matrix (see
Appendix A).

Lastly, we define the support of g as the set of frequen-
cies with non-zero Fourier amplitudes supp(g) := {f ∈
{0, 1}n|ĝ(f) 6= 0}. The function g is called k-sparse if
|supp(g)| ≤ k. The function g is called of degree d if all
frequencies in its support have degree at most d.

2.2 SPECTRAL BIAS THEORY

The function that a ReLU neural network represents at ini-
tialization can be seen as a sample from a GP N(0,K)
in the infinite width limit [Daniely et al., 2016, Lee et al.,
2018] (randomness is over the initialization of the weights
and biases). The kernel K of the GP is called the “Con-
jugate Kernel” [Daniely et al., 2016] or the “nn-GP ker-
nel” [Lee et al., 2018]. Let the kernel Gram matrix K be
formed by evaluating the kernel on the Boolean cube i.e.
{0, 1}n and let K have the following spectral decomposi-

tion: K =
2n∑
i=1

λiuiu
>
i , where we assume that the eigenval-

ues λ1 ≥ · · · ≥ λ2n are in decreasing order. Each sample

of the GP can be obtained as
2n∑
i=1

λiwiui,wi ∼ N (0, 1).

Say that λ1 �
∑
i≥2 λi. Then a sample from the GP will,

roughly speaking, look very much like u1.

Let uf , f ∈ {0, 1}n be obtained by evaluating the Fourier
basis function Ψf at the 2n possible inputs on {0, 1}n. Yang
and Salman [2020] show that uf is a eigenvector for K.
Moreover, they show (weak) spectral bias results in terms
of the degree of f . Namely, the eigenvalues correspond-
ing to higher degrees have smaller values 1. The result is

1To be more precise, they show that the eigenvalues corre-
sponding to even and odd degree frequencies form decreasing
sequences. That is, even and odd degrees are considered sepa-

weak as they do not provide a rate as to which the eigen-
values decrease with increasing degrees. Their results show
that neural networks are similar to low-degree functions at
initialization.

Other works show that in infinite-width neural networks
weights after training via (stochastic) gradient descent do
not end up too far from the initialization [Chizat et al., 2019,
Jacot et al., 2018, Du et al., 2019, Allen-Zhu et al., 2019a,b],
referred to as “lazy training” by Chizat et al. [2019]. Lee
et al. [2018, 2019] show that training the last layer of a
randomly initialized neural network via full batch gradient
descent for an infinite amount of time corresponds to GP
posterior inference with the kernel K. Jacot et al. [2018],
Lee et al. [2019] proved that when training all the layers of
a neural network (not just the final layer), the evolution can
be described by a kernel called the “Neural Tangent Kernel”
and the trained network yields the mean prediction of GP
N(0,KNTK) [Yang and Salman, 2020] after an infinite
amount of time. Yang and Salman [2020] again show that uf
are eigenvectors and weak spectral bias holds. Furthermore,
Yang and Salman [2020] provides empirical results for the
generalization of neural nets of different depths on datasets
arising from k = 1-sparse functions of varying degrees.

3 LOW-DEGREE SPECTRAL BIAS

In this section, we conduct experiments on synthetically
generated datasets to show neural networks’ spectral bias
and their preference toward learning lower-degree functions
over higher-degree ones. Firstly, we show that the neural
network is not able to pick up the high-degree frequency
components. Secondly, it can learn erroneous lower-degree
frequency components. To address these issues, in Section
4, we introduce our regularization scheme called HASHWH
(Hashed Walsh Hadamard) and demonstrate how it can rem-
edy both problems.

3.1 FOURIER SPECTRUM EVOLUTION

We analyze the evolution of the function learned by neu-
ral networks during training. We train a neural network
on a dataset arising from a synthetically generated sparse
function with a low-dimensional input domain. Since the
input is low-dimensional it allows us to calculate the Fourier
spectrum of the network (exactly) at the end of each epoch.

Setup. Let g∗ : {0, 1}10 → R be a synthetic function
with five frequencies in its support with degrees 1 to 5
(supp(g∗) = {f1, f2, f3, f4, f5}, deg(fi) = i), all having
equal Fourier amplitudes of ĝ∗(fi) = 1. Each fi is sampled
uniformly at random from all possible frequencies of degree
i. The training set is formed by drawing uniform samples
from the Boolean cube x ∼ U{0,1}10 and evaluating g∗(x).

rately.
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Figure 1: Evolution of the Fourier spectrum during training. STANDARD is the unregularized neural network. FULLWH im-
poses L1-norm regularization on the exact Fourier spectrum and is intractable. EN-S alternates between computing a sparse
Fourier approximation (computationally very expensive) and regularization. HASHWH (ours) imposes L1 regularization on
the hashed spectrum. Figure (a) is limited to the target support. The standard neural network is unable to learn higher degree
frequencies. Our regularizer fixes this. Figure (b) is on the whole spectrum. The standard neural network picks up erroneous
low-degree frequencies while not being able to learn the higher-degree frequencies. Our regularizer fixes both problems.

We draw five such target functions g∗ (with random sup-
port frequencies). For each draw of the target function, we
create five different datasets all with 200 training points
and sampled uniformly from the input domain but with dif-
ferent random seeds. We then train a standard five-layer
fully connected neural network using five different random
seeds for the randomness in the training procedure (such as
initialization weights and SGD). We aggregate the results
over the 125 experiments by averaging. We experiment the
same setting with three other training set sizes. Results with
training set size other than 200 and further setup details are
reported in Appendices F.1 and D, respectively.

Results. We first inspect the evolution of the learned Fourier
spectrum over different epochs and limited to the target
support (supp(g∗)). Figure 1a shows the learned amplitudes
for frequencies in the target support at each training epoch.
Aligned with the literature on simplicity bias [Valle-Perez
et al., 2019, Yang and Salman, 2020], we observe that neu-
ral networks learn the low-degree frequencies earlier in the
epochs. Moreover, we can see in the left-most figure in Fig-
ure 1a that despite eventually learning low-degree frequen-
cies, the standard network is unable to learn high-degree
frequencies.

Next, we expand the investigation to the whole Fourier
spectrum instead of just focusing on the support frequencies.

The first row of Figure 1b shows the evolution of the Fourier
spectrum during training and compares it to the spectrum
of the target function on the bottom row. We average the
spectrum linked to one of the five target synthetic functions
(over the randomness of the dataset sampling and training
procedure) and report the other four in Appendix F.1. We
observe that in addition to the network not being able to
learn the high-degree frequencies, the standard network is
prone to learning incorrect low-degree frequencies as well.

4 OVERCOMING THE SPECTRAL BIAS
VIA REGULARIZATION

Now, we introduce our regularization scheme HASHWH
(Hashed Walsh-Hadamard). Our regularizer is essentially
a “sparsifier” in the Fourier domain. That is, it guides the
neural network to have a sparse Fourier spectrum. We empir-
ically show later how sparsifying the Fourier spectrum can
both stop the network from learning erroneous low-degree
frequencies and aid it in learning the higher-degree ones,
hence remedying the two aforementioned problems.

Assume Lnet is the loss function that a standard neural
network minimizes, e.g., the MSE loss in the above case.
We modify it by adding a regularization term λLsparsity.
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Hence the total loss is given by: L = Lnet + λLsparsity.

The most intuitive choice is Lsparsity = ‖ĝN‖0, where
ĝN is the Fourier spectrum of the neural network function
gN : {0, 1}n → R. Since the L0-penalty’s derivative is
zero almost everywhere, one can use its tightest convex
relaxation, the L1-norm, which is also sparsity-inducing, as
a surrogate loss. Aghazadeh et al. [2021] use this idea and
name it as Epistatic-Net or “EN” regularization: LEN :=
Lnet + λ‖ĝN‖1. In this work, we call this regularization
FULLWH (Full Walsh Hadamard transform).

FULLWH requires the evaluation of the network output on
all 2n possible inputs at each iteration of back-prop. There-
fore, the computational complexity grows exponentially
with the number of dimensions n, making it computationally
intractable for n > 20 in all settings of practical importance.

Aghazadeh et al. [2021] also suggest a more scalable version
of FULLWH, called “EN-S”, which roughly speaking, al-
ternates between computing the sparse approximate Fourier
transform of the network at the end of each epoch and doing
normal back-prop, as opposed to the exact computation of
the exact Fourier spectrum when back-propagating the gra-
dients. In our experiments, we show EN-S can be computa-
tionally expensive because the sparse Fourier approximation
primitive can be time-consuming. For a comprehensive
comparison see Appendix B.3. Later, we show that empiri-
cally, it is also less effective in overcoming the spectral bias
as measured by achievable final generalization error.

4.1 HASHWH

We avoid the exponentially complex burden of comput-
ing the exact Fourier spectrum of the network by em-
ploying a hashing technique to approximate the regular-
ization term λ‖ĝN‖1. Let g : {0, 1}n → R be a pseudo-
boolean function. We define the lower dimensional func-
tion uσ : {0, 1}b → R, where b � n, by sub-sampling g

on its domain: uσ(x̃) ,
√

2n

2b
g(σx̃), x̃ ∈ {0, 1}b where

σ ∈ {0, 1}n×b is some matrix which we call the hashing
matrix. The matrix-vector multiplication σx̃is taken modulo
2. uσ is defined by sub-sampling g on all the points lying
on the (at most) b-dimensional subspace spanned by the
columns of the hashing matrix σ. The special property of
sub-sampling the input space from this subspace is in the
arising Fourier transform of uσ which we will explain next.

The Fourier transform of uσ can be derived as (see Ap-
pendix B.1):

ûσ(f̃) =
∑

f∈{0,1}n: σ>f=f̃

ĝ(f), f̃ ∈ {0, 1}b (1)

One can view ûσ(f̃) as a “bucket” containing the sum of all
Fourier coefficients ĝ(f̃) that are “hashed” (mapped) into
it by the linear hashing function h(f) = σ>f . There are 2b

such buckets and each bucket contains frequencies lying in
the kernel (null space) of the hashing map plus some shift.

In practice, we let σ ∼ U{0,1}n×b be a uniformly sampled
hash matrix that is re-sampled after each iteration of back-
prop. Let Xb ∈ {0, 1}2

b×b be a matrix containing as rows
the enumeration over all points on the Boolean cube {0, 1}b.
Our regularization term approximates (4) and is given by:

LHASHWH , Lnet+λ‖HbgN(Xbσ
T )‖1 = Lnet+λ‖ûσ‖1

That is, instead of imposing the L1-norm directly on the
whole spectrum, this procedure imposes the norm on the
“bucketed” (or partitioned) spectrum where each bucket
(partition) contains sums of coefficients mapped to it. The
larger b is the more partitions we have and the finer-grained
the sparsity-inducing procedure is. Therefore, the quality
of the approximation can be controlled by the choice of
b. Larger b allows for a finer-grained regularization but,
of course, comes at a higher computational cost because
a Walsh-Hadamard transform is computed for a higher
dimensional sub-sampled function u. Note that b = n
corresponds to hashing to 2n buckets. As long as the
hashing matrix is invertible, this precisely is the case of
FULLWH regularization.

The problem with the above procedure arises when, for
example, two “important” frequencies f1 and f2 are hashed
into the same bucket, i.e., σ>f1 = σ>f2, an event which
we call a “collision”. This can be problematic when the
absolute values |ĝ(f1)| and |ĝ(f2)| are large (hence they
are important frequencies) but their sum can cancel out
due to differing signs. In this case, the hashing procedure
can zero out the sum of these coefficients. We can reduce
the probability of a collision by increasing the number of
buckets, i.e., increasing b [Alon et al., 1999].

In Appendix B.2 we show that the expected number of
collisions C is given by: E[C] = (k−1)2

2b
which decreases

linearly with the number of buckets 2b. Furthermore, we
can upper bound the probability p that a given important
frequency fi collides with any other of the k − 1 important
frequencies in one round of hashing. Since we are indepen-
dently sampling a new hashing matrix σ at each round of
back-prop, the number of collisions of a given frequency
over the different rounds has a binomial distribution. In Ap-
pendix B.2 we show that picking b ≥ log2(k−1ε ), ε > 0
guarantees that collision of a given frequency happens ap-
prox. an ε-fraction of the T rounds, and not much more.

Fourier spectrum evolution of different regularization
methods. We analyze the effect of regularizing the network
with various Fourier sparsity regularizers in the setting of the
previous section. Our regularizers of interest are FULLWH,
EN-S with m = 5 (2m is the number of buckets their
sparse Fourier approximation algorithm hashes into), and
HASHWH with b ∈ {5, 7, 8}.

Returning to Figure 1a, we see that despite the inability of
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Figure 2: Evolution of the spectral approximation error
during training. The left plot limits the error to the target
support, while the right one considers the whole Fourier
spectrum. For the standard neural network, the SAE is
considerably worse on the full spectrum which shows the
importance of eliminating the erroneous frequencies that
are not in the support of the target function. We also see
the graceful scaling of SAE of HASHWH (ours) with the
hashing matrix size.

the standard neural network in picking up the high-degree
frequencies, all sparsity-inducing regularization methods
display the capacity for learning them. FULLWH is capable
of perfectly learning the entire target support. It can also
be seen that increasing the size of the hashing matrix in
HASHWH (ours) boosts the learning of high-degree fre-
quencies. Furthermore, Figure 1b shows that in addition to
the better performance of the sparsity-inducing methods in
learning the target support, they are also better at filtering
out non-relevant low-degree frequencies.

We define a notion of approximation error which is basically
the normalized energy of the error in the learned Fourier
spectrum on an arbitrary subset of frequencies.

Metric 4.1 (Spectral Approximation Error (SAE)). Let
gN : {0, 1}n → R be an approximation of the target func-
tion g∗ : {0, 1}n → R. Consider a subset of frequencies
S ⊆ {0, 1}n, and assume ĝNS and ĝ∗S to be the vector
of Fourier coefficients of frequencies in S, for gN and g∗

respectively. As a measure of the distance between gN and
g on the subset of frequencies S, we define Spectral Approx-
imation Error as: SAE =

‖ĝNS−ĝ∗S‖
2
2

‖ĝ∗S‖22

Figure 2 shows the SAE of the trained network using dif-
ferent regularization methods over epochs, for both when
S is target support as well as when S = {0, 1}n (whole
Fourier spectrum). The standard network displays a signifi-
cantly higher (worse) SAE on the whole Fourier spectrum
compared to the target support, while Walsh-Hadamard reg-
ularizers exhibit consistent performance across both. This
shows the importance of enforcing the neural network to
have zero Fourier coefficients on the non-target frequencies.
Moreover, we can see HASHWH (ours) leads to a reduction
in SAE that can be smoothly controlled by the size of its
hashing matrix.

To gain more insight, we split the frequencies into subsets
S consisting of frequencies with the same degree. We vi-
sualize the evolution of SAE and also the Fourier energy
of the network defined as ‖ĝNS‖22 in Figure 3. Firstly, the
energy of high-degree frequencies is essentially zero for
the standard neural network when compared to the low-
degree frequencies, which further substantiates the claim
that standard neural network training does not learn any
high-degree frequencies. We can see that our HASHWH
regularization scheme helps the neural network learn higher
degree frequencies as there is more energy in the high degree
components. Secondly, looking at the lower degrees 2 and
3 we can see that the standard neural network reduces the
SAE up to some point but then starts overfitting. Looking
at the energy plot one can attribute the overfitting to pick-
ing up irrelevant degree 2 and 3 frequencies. We see that
the regularization scheme helps prevent the neural net from
overfitting on the low-degree frequencies and their SAE
reduces roughly monotonously. We observe that HASHWH
(ours) with a big enough hashing matrix size exhibits the
best performance among tractable methods in terms of SAE
on all degrees. Finally, we can see HASHWH is distributing
the energy to where it should be for this dataset: less in the
low-degree and more in the high-degree frequencies.

Finally, it is worth noting that our regularizer makes the
neural network behave more like a decision tree. It is well
known that ensembles of decision tree models have a sparse
and low-degree Fourier transform [Kushilevitz and Man-
sour, 1991]. Namely, let g : {0, 1}n → R be a function
that can be represented as an ensemble of T trees each of
depth at most d. Then g is k = O(T · 4d)-sparse and of
degree at most d (Appendix E.1). Importantly, their spec-
trum is exactly sparse and unlike standard neural networks,
which seem to “fill up” the spectrum on the low-degree end,
i.e., learn irrelevant low-degree coefficients, decision trees
avoid this. Decision trees are well-known to be effective
on discrete/tabular data [Arik and Pfister, 2021], and our
regularizer prunes the spectrum of the neural network so it
behaves similarly.

5 EXPERIMENTS

In this section, we first evaluate our regularization method
on higher dimensional input spaces (higher n) on syntheti-
cally generated datasets. In this setting, FULLWH is not ap-
plicable due to its exponential runtime in n. In addition, we
allow varying training set sizes to showcase the efficacy of
the regularizer in improving generalization at varying levels
in terms of the number of training points in the dataset and
especially in the low-data sample regime. Next, we move
on to four real-world datasets. We first show the efficacy of
our proposed regularizer HASHWH on real-world datasets
in terms of achieving better generalization errors, especially
in the low-data sample regimes. Finally, using an ablation
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Figure 3: Evolution of the Spectral Approximation Error (SAE) and energy of the network during training, split by frequency
degree. Firstly, in a standard neural network, the energy of high-degree frequencies is essentially zero compared to low-degree
frequencies. Secondly, for low degrees (2 and 3) the energy continues to increase while the SAE exhibits overfitting behavior.
This implies the neural network starts learning erroneous low-degree frequencies after some epochs. Our regularizer prevents
overfitting in lower degrees and enforces higher energy on higher-degree frequencies. Regularized networks show lower
energies for lower degrees and higher energy for higher degrees when compared to the standard neural network.

study, we experimentally convey that the low-degree bias
does not result in lower generalization error.

5.1 SYNTHETIC DATA

Setup. Again, we consider a synthetic pseudo-boolean tar-
get function g∗ : {0, 1}n → R, which has 25 frequencies
in its support |supp(g∗)| = 25, with the degree of maxi-
mum five, i.e., ∀f ∈ supp(g∗) : deg(f) ≤ 5. To draw a
g∗, we sample each of its support frequencies fi by first
uniformly sampling its degree d ∼ U{1,2,3,4,5}, based on
which we then sample fi ∼ {f ∈ {0, 1}n|deg(f) = d} and
its corresponding amplitude uniformly ĝ∗(fi) ∼ U[−1,1].

We draw g∗ as above for different input dimensions n ∈
{25, 50, 100}. We pick points uniformly at random from the
input domain {0, 1}n and evaluate g∗ to generate datasets
of various sizes: we generate five independently sampled
datasets of size c·25n, for different multipliers c ∈ {1, .., 8}
(40 datasets for each g∗). We train a 5-layer fully-connected
neural network on each dataset using five different random
seeds to account for the randomness in the training proce-
dure. Therefore, for each g∗ and dataset size, we train and
average over 25 models to capture variance arising from the
dataset generation, and also the training procedure.

Results. Figure 4a shows the generalization performance
of different methods in terms of their R2 score on a hold-
out dataset (details of dataset splits in Appendix D) for
different dataset sizes. Our regularization method, HashWH,
outperforms the standard network and EN-S in all possible
combinations of input dimension, and dataset size. Here,
EN-S does not show any significant improvements over the

standard neural network, while HASHWH (ours) improves
generalization by a large margin. Moreover, its performance
is tunable via the hashing matrix size b.

To stress the computational scalability of HASHWH (ours),
Figure 4b shows the achievable R2-score by the number
of training epochs and training time for different methods,
when n = 50 and c = 5 (see Appendix F.2 for other set-
tings). The trade-off between the training time and gener-
alization can be directly controlled with the choice of the
hashing size b. More importantly, comparing HASHWH
with EN-S, we see that for any given R2 we have runtimes
that are orders of magnitude smaller. This is primarily due
to the very time-consuming approximation of the Fourier
transform of the network at each epoch in EN-S.

5.2 REAL DATA

Next, we assess the performance of our regularization
method on four different real-world datasets of varying
nature and dimensionality. For baselines, we include not
only standard neural networks and EN-S regularization, but
also other popular machine learning methods that work well
on discrete data, such as ensembles of trees. Three of our
datasets are related to protein landscapes [Poelwijk et al.,
2019, Sarkisyan et al., 2016, Wu et al., 2016] which are
identical to the ones used by the proposers of EN-S [Ag-
hazadeh et al., 2021], and one is a GPU-tuning [Nugteren
and Codreanu, 2015] dataset. See Appendix C for dataset
details.

Results. Figure 5a displays the generalization performance
of different models in learning the four datasets mentioned,
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Figure 5: (a) Generalization performance of standard and regularized neural networks and benchmark ML models on four
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frequencies in Entacmaea’s top 100 Fourier coefficients. This shows high-degree components constitute a non-negligible
portion of the energy of the function.

using training sets of small sizes. For each given dataset size
we randomly sample the original dataset with five different
random seeds to account for the randomness of the dataset
sub-sampling. Next, we fit five models with different ran-
dom seeds to account for the randomness of the training
procedure. One standard deviation error bars and averages

are plotted accordingly over the 25 runs. It can be seen that
our regularization method significantly outperforms the stan-
dard neural network as well as popular baseline methods on
nearly all datasets and dataset sizes. The margin, however,
is somewhat smaller than on the synthetic experiments in
some cases. This may be partially explained by the distribu-
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tion of energy in a real dataset (Figure 5d), compared to the
uniform distribution of energy over different degrees in our
synthetic setting.

To highlight the importance of higher degree frequencies,
we compute the exact Fourier spectrum of the Entacmaea
dataset (which is possible, since all possible input combi-
nations are evaluated in the dataset). Figure 5d shows the
energy of 100 frequencies with the highest amplitude (out
of 8192 total frequencies) categorized into varying degrees.
This shows that the energy of the higher degree frequencies
3 and 4 is comparable to frequencies of degree 1. How-
ever, as we showed in the previous section, the standard
neural network may not be able to pick up the higher degree
frequencies due to its simplicity bias (while also learning
erroneous low-degree frequencies).

We also study the relationship between the low-degree spec-
tral bias and generalization in Figure 5c. The study is con-
ducted on the two datasets “Entacmaea” and “SGEMM”.
We first fit a sparse Fourier function to our training data
(see Appendix E). We then start deleting coefficients once
according to their degree (highest to lowest and ties are
broken randomly) and in another setting according to their
amplitude (lowest to highest). To assess generalization, we
evaluate the R2 of the resulting function on a hold-out (test)
dataset. This study shows that among functions of equal
complexity (in terms of size of support), functions that keep
the higher amplitude frequencies as opposed to ones that
keep the low-degree ones exhibit better generalization. This
might seem evident according to Parseval’s identity, which
states that time energy and Fourier energy of a function are
equal. However, considering the fact that the dataset distri-
bution is not necessarily uniform, there is no reason for this
to hold in practice. Furthermore, it shows the importance
of our regularization scheme: deviating from low-degree
functions and instead aiding the neural network to learn
higher amplitude coefficients regardless of the degree.

Conclusion We showed through extensive experiments how
neural networks have a tendency to not learn high-degree
frequencies and overfit in the low-degree part of the spec-
trum. We proposed a computationally efficient regularizer
that aids the network in not overfitting in the low-degree
frequencies and also picking up the high-degree frequencies.
Finally, we exhibited significant improvements in terms of
R2 score on four real-world datasets compared to various
popular models in the low-data regime.
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