
Stochastic Graphical Bandits with Heavy-Tailed Rewards
(Supplementary Material)

Yutian Gou1 Jinfeng Yi2 Lijun Zhang1*

1National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China
2JD AI Research, Beijing 100176, China

1 OMITTED PROOFS FOR SECTION 3.1

In this section, we present the proofs for RUN-TEM, RUNE-TEM and RUNE-MoM omitted in the first section of our main
results.

1.1 TECHNICAL LEMMAS

Lemma 1 (Bernstein’s inequality for bounded distributions [Vershynin, 2018]) Let X1, · · · , Xn be n independent
zero-mean random variables. Suppose |Xi| ≤ K and E[X2

i ] ≤ u for all i ∈ [n]. Then for any t > 0, we have
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, (1)

also,
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and therefore,
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2ut
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3n

]
≤ e−t . (3)

1.2 ANALYSIS FOR RUN-TEM

Proof [of Proposition 1] Here, we follow the same computing process as the proof of Lemma 1 in [Bubeck et al., 2013].
First of all, we will bound E[X2

t I|Xt|≤Bt ] by the following computation

E[X2
t I|Xt|≤Bt ] =

∫
x∼Xt

x2I|x|≤Btdx

=

∫
x∼Xt

|x|1+εI|x|≤Bt |x|
1−εdx

≤ B1−ε
t

∫
|x|≤Bt

|x|1+εdx

≤ B1−ε
t E[|Xt|1+ε] ≤ vB1−ε

t .

(4)
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Also, we can bound E[XtI|Xt|>Bt ] by a similar calculation

E[XtI|Xt|>Bt ] =

∫
x∼Xt

xI|x|>Btdx

=

∫
x∼Xt

|x|1+ε

|x|ε
I|x|>Btdx

<
1

Bεt

∫
|x|>Bt

|x|1+εdx

≤ 1

Bεt
E[|Xt|1+ε] ≤ v

Bεt
.

(5)

Then, by combining (4),(5) with Bernstein’s inequality(3), we have that, with probability at least 1− δ,
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(6)

Finally, substitute Bt = ( vt
log(1/δ) )

1
1+ε (ε ∈ (0, 1]) into the above inequality, we get that, with probability at least 1− δ,
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(7)

where the last inequality use the following summation formula

n∑
t=1

1√
t
≤ 1 +

∫ n

1

1√
x

dx = 2
√
n− 1 . (8)

Now, have finished proving the first part of Proposition 1, and the second part follows the same scheme, so we omit it.

Proof [of Theorem 1] Here, we use a proof sketch similar to [Caron et al., 2012]. First of all, we consider a clique covering
C of G = (V,E) and define the intra-clique regret RC(T ) for any C ∈ C by

RC(T ) =
∑
i∈C

∑
t≤T

∆iI{It=i} . (9)

By Definition 1, we have that V = ∪C∈CC and furthermore RT ≤
∑
C∈C RC(T ). From now on, we will focus on upper

bounding the intra-clique regret for a given clique C ∈ C and abbreviate RC(T ) to RC .

Let TC(t) =
∑
i∈C Ti(t) denote the number of pulls for any arm in clique C up to time t. Then, for any positive integer `C ,



E[RC ] = E

∑
i∈C

∑
t≤T

∆iI{It=i}


=
∑
i∈C

∑
t≤T

∆i Pr[It = i]

=
∑
i∈C

∑
t≤T

∆i Pr[It = i, TC(t− 1) < `C ] +
∑
i∈C

∑
t≤T

∆i Pr[It = i, TC(t− 1) ≥ `C ]

≤ `C∆max
C +

∑
i∈C
t≤T

∆i Pr [It = i, TC(t− 1) ≥ `C ]

︸ ︷︷ ︸
(a)

.

(10)

where ∆max
C := maxi∈C ∆i is the maximum reward gap in clique C.

Now, we analyze term (a) using the similar tricks applied by [Auer et al., 2002]. Let ci(t) = 5v
1

1+ε ( 4 log(t)
Oi(t)

)
ε

1+ε and i? be
the unique optimal arm, then (a) can be computed by

∑
i∈C
t<T

∆i Pr [µ̂i(t) + ci(t) ≥ µ̂i?(t) + ci?(t), TC(t) ≥ `C ] ≤
∑
i∈C
t<T

∆i Pr

[
max

`C≤si≤t
µ̂i(si) + ci(si) ≥ min

0≤s≤t
µ̂i?(s) + ci?(s)

]

≤
∑
i∈C
t<T

t∑
si=`C

t∑
s=0

∆i Pr [µ̂i(si) + ci(si) ≥ µ̂i?(s) + ci?(s)] .

(11)

Next, observe that µ̂i(si) + ci(si) ≥ µ̂i?(s) + ci?(s) implies that at least one of the following three independent events
must hold:

µ̂i(si) ≥ µi + ci(si) , (12)

µ̂i?(s) ≤ µ? − ci?(s) , (13)

µ? < µi + 2ci,si . (14)

Otherwise, assume that all three inequalities are false, we have that

µ̂i(si) + ci(si) < µi + 2ci(si) ≤ µ? < µ̂i?(s) + ci?(s) , (15)

which implies that It 6= i.

If we choose `C = d 40(10v)1/ε log(T )

(∆min
C )(1+ε)/ε

e, where ∆min
C = mini∈C ∆i is the minimum nonzero reward gap in clique C, then for

∀i 6= i? ∈ C and si ≥ `C ,

µ? − µi − 2ci(si) = ∆i − 10v
1

1+ε

(
4 log(T )

si

) ε
1+ε

≥ 0 , (16)

which implies that (14) is always false. Thus, µ̂i(si) + ci(si) ≥ µ̂i?(s) + ci?(s) implies that (12) or (13) must hold.

Next, we can bound the probability of event (12) and (13) by using Proposition 1,

Pr[(12)] = Pr [µ̂i(si) ≥ µi + ci(si)] ≤ 1

t4
,

Pr[(13)] = Pr [µ̂i?(s) ≤ µ? − ci?(s)] ≤ 1

t4
.

(17)



Therefore, by using the union bound, we obtain that

(a) ≤
∑
i∈C
t<T

t∑
si=`C

t∑
s=0

∆i (Pr[(12)] + Pr[(13)])

≤
∑
i∈C
t<T

∆i

(
t∑

si=`C

t∑
s=0

2

t4

)

≤
∑
i∈C
t<T

2∆i

t2
≤ π2

3

∑
i∈C

∆i ,

(18)

substituting into (10) demonstrates that

E[RC(T )] ≤ `C∆max
C +

π2

3

∑
i∈C

∆i

≤ 40(10v)1/ε∆max
C

(∆min
C )(1+ε)/ε

log T +

(
1 +

π2

3

)∑
i∈C

∆i ,

(19)

Finally, summing over all cliques in C and taking the infimum over all possible coverings C yields the aforementioned upper
bound.of RUN-TEM.

1.3 ANALYSIS FOR RUNE-TEM

Proof [of Theorem 2] Firstly, we try to bound the expectation of RC(T ) by using the techniques similar to Hu et al. [2019],
where we use the same symbols as the proof of Theorem 1.

For the sake of the simplicity, we assume i? is the unique optimal arm with without loss of generality. Let ∆max
C =

maxi∈C ∆i,∆
min
C = mini∈C ∆i, NC := maxi∈C |N(i)| 14 . Then, for any positive integer `C , we have

E[RC(T )] =
∑

i∈C\{i?}
t≤T

∆iE[I{It = i}]

=
∑
t≤T

Pr [∃i ∈ C\{i?} s.t. It = i, TC(t− 1) < `C ] ·∆max
C

+
∑
t≤T

Pr [∃i ∈ C\{i?} s.t. It = i, TC(t− 1) ≥ `C ] ·∆max
C

≤ `C∆max
C +

∑
t≤T

Pr [∃i ∈ C\{i?} s.t. It = i, TC(t− 1) ≥ `C ]︸ ︷︷ ︸
(α)

·∆max
C .

(20)

Now, we analyze term (α) by using the similar tricks of Auer et al. [2002]. Let ci(t) = 5v
1

1+ε ( 4 log(|N(i)|1/4t)
Oi(t)

)
ε

1+ε and



c̃i(t) = 5v
1

1+ε ( 4 log(NCt)
Oi(t)

)
ε

1+ε , then

(α) =
∑
t≤T

Pr[∃i ∈ C\{i?} s.t. It = i, TC(t− 1) ≥ `C ]

=
∑
t<T

Pr

[
maxi∈C\{i?} {µ̂i(t) + ci(t)} ≥ µ̂i?(t) + ci?((t),

TC(t) ≥ `C

]

≤
∑
t<T

Pr

[
max

i∈C\{i?}

{
max

`C≤si≤t
µ̂i(si) + ci(si)

}
≥ min

0≤s≤t
µ̂i?(s) + ci?(s)

]

≤
∑
t<T

t∑
si=`C

t∑
s=0

Pr

[
max

i∈C\{i?}
{µ̂i(si) + c̃i(si)} ≥ µ̂i?(s) + ci?(s)

]
.

(21)

Now, let µmax
C = maxi∈C µi, we observe that maxi∈C\{1}{µ̂i(si) + c̃i(si)} ≥ µ̂i?(s) + ci?(s) implies that at least one of

the following must hold:

max
i∈C\{1}

{µ̂i(si)} ≥ µmax
C + c̃i(si) , (22)

µ̂i?(s) ≤ µ? − ci?(s) , (23)

µ? < µmax
C + 2c̃i(si) . (24)

Otherwise, assume that all three inequalities are false, we have

max
i∈C\{1}

{µ̂i(si) + c̃i(si)} < µmax
C + 2c̃i(si) ≤ µ? < µ̂i?(s) + ci?(s) , (25)

which implies that It 6= i.

If we choose `C = d 40(10v)1/ε log(NCT )

(∆min
C )(1+ε)/ε

e, when `C ≤ si ≤ t, then

µ? − µmax
C − 2c̃i(si) = µ? − µmax

C − 10v
1

1+ε

(
4 log(NCt)

si

) ε
1+ε

≥ 0 , (26)

which implies that (24) is always false. Thus, event (22) or event (23) must hold.

Next, we bound the probability of event (22) ,

Pr[(22)] = Pr

[
max

i∈C\{i?}
{µ̂i(si)} ≥ µmax

C + c̃i(si)

]
≤

∑
i∈C\{i?}

Pr [µ̂i(si) ≥ µmax
C + c̃i(si)]

≤
∑

i∈C\{i?}

Pr [µ̂i(si) ≥ µi + c̃i(si)]

≤ |C| · e−4 log(NCt) =
|C|
N4
Ct

4
≤ 1

t4
,

(27)

where the penultimate inequality is induced by Proposition 1 and subsequently a union bound on C. Similarly, we can bound
the probability of (23) directly,

Pr[(23)] = Pr [µ̂i?(s) ≤ µ? − ci?(s)]

≤ e−4 log(|N(i?)|1/4t) =
1

|N(i?)|t4
≤ 1

t4
,

(28)



By further computation, we get that

(α) ≤
∑
t<T

t∑
si=`C

t∑
s=0

Pr

[
max

i∈C\{i?}
{µ̂i(si) + c̃i(si)} ≥ µ̂i?(s) + ci?(s)

]

≤
∑
t<T

t∑
si=`C

t∑
s=0

(Pr[(22)] + Pr[(23)])

≤
∑
t<T

(
t∑

si=`C

t∑
s=0

2

t4

)
≤
∑
t<T

2

t2
≤ π2

3
,

(29)

and furthermore, by (20), we have

E[RC(T )] ≤ `C∆max
C + (α) ·∆max

C

≤ `C∆max
C +

π2

3
∆max
C

≤ 40
(10v)1/ε∆max

C

(∆min
C )(1+ε)/ε

log(NCT ) +

(
1 +

π2

3

)
∆max
C ,

(30)

Finally, summing over all cliques in C and taking the infimum over all possible coverings C yields the aforementioned upper
bound of RUNE-TEM.

1.4 ANALYSIS FOR RUNE-MOM

In this section, we present the proofs for RUNE-MoM and RUNE-TEM omitted in the first section of our main results.
Before starting the proof, we need to state a lemma which has been proved by Bubeck et al. [2013].

Lemma 2 Let X1, · · · , Xn be a real i.i.d. sequence with finite mean µ. We assume that for some ε ∈ (0, 1] and v ≥ 0,
E[|X − µ|1+ε] ≤ v. Let µ̂ be the empirical mean:

µ̂ =
1

n

n∑
t=1

Xt ,

Then, for any η > 0, we have

Pr[µ− µ̂ > η] ≤ 3v

nεη1+ε
, (31)

and also,

Pr[µ̂− µ > η] ≤ 3v

nεη1+ε
. (32)

Proof [of Proposition 2] We follow the same proof scheme as Bubeck et al. [2013]. Let η = (12v)
1

1+ε ( 1
N )

ε
1+ε > 0 and

Yl = Iµ̂l<µ−η for l ∈ [k]. According to equation (31), Yl has a Bernoulli distribution with parameter

p ≤ 3v

N εη1+ε
≤ 1

4
, (33)

which implies that E[Yl] = p ≤ 1
4 . Thus using Hoeffding’s inequality [Hoeffding, 1963] for the tail of a binomial distribution,

we get that

Pr[µ̂M < µ− η] ≤ Pr

[
k∑
l=1

Yl ≥
k

2

]

≤ Pr

[
k∑
l=1

Yl − E

[
k∑
l=1

Yl

]
≥ k

4

]

≤ exp

(
−2(k/4)2

k

)
= exp (−k/8)

(34)



where the first inequality holds because µ̂M < µ− η implies that at least half of µ̂l for l ∈ [k] satisfying µ > µ̂l + η.

Substitute k = d8 log(1/δ)e and N = dn/ke into the formula of η, we have that,

η = (12v)
1

1+ε

(
1

N

) ε
1+ε

≤ (12v)
1

1+ε

(
k

n

) ε
1+ε

≤ (12v)
1

1+ε

(
8 log(e1/8/δ)

n

) ε
1+ε

, (35)

Therefore, with probability at least 1− δ,

µ̂M ≥ µ− (12v)
1

1+ε

(
8 log(e1/8/δ)

n

) ε
1+ε

, (36)

Now, we have finished proving the first part of Proposition 2, and the second part follows the same scheme, so we omit it.

Proof [of Theorem 3] This proof is similar to the analysis of Theorem 2, so we only present some critical steps here.

First of all, we can get the same inequality for E[RC(T )] as (20).

E[RC(T )] ≤ `C∆max
C +

∑
t≤T

Pr [∃i ∈ C\{i?} s.t. It = i, TC(t− 1) ≥ `C ]︸ ︷︷ ︸
(α)

·∆max
C .

(37)

Then, we analyze term (α) by the same computation as (21)

(α) ≤
∑
t<T

t∑
si=`C

t∑
s=0

Pr

[
max

i∈C\{i?}
{µ̂i(si) + c̃i(si)} ≥ µ̂i?(s) + ci?(s)

]
. (38)

where we redefine ci(t) = (12v)
1

1+ε ( 32 log(|N(i)|1/4t)
Oi(t)

)
ε

1+ε and c̃i(t) = (12v)
1

1+ε ( 32 log(NCt)
Oi(t)

)
ε

1+ε .

Now, let µmax
C = maxi∈C µi and `C = d 64(24v)1/ε log(NCT )

(∆min
C )(1+ε)/ε

e, then by using a similar trick to (22)-(24), when `C ≤ si ≤ t,
maxi∈C\{1}{µ̂i(si) + c̃i(si)} ≥ µ̂i?(s) + ci?(s) implies that at least one of the following must hold:

max
i∈C\{1}

{µ̂i(si)} ≥ µmax
C + c̃i(si) , (39)

µ̂i?(s) ≤ µ? − ci?(s) , (40)

where the probabilities can be both bounded by e1/8

t4 by using Proposition 2 and similar analysis to (27) and (28).

By further computation, we get that

(α) ≤
∑
t<T

t∑
si=`C

t∑
s=0

Pr

[
max

i∈C\{i?}
{µ̂i(si) + c̃i(si)} ≥ µ̂i?(s) + ci?(s)

]

≤
∑
t<T

(
t∑

si=`C

t∑
s=0

2e1/8

t4

)
≤
∑
t<T

2e1/8

t2
≤ e1/8π2

3
,

(41)

and furthermore, by (37), we have

E[RC(T )] ≤ `C∆max
C + (α) ·∆max

C

≤ `C∆max
C +

π2

3
∆max
C

≤ 64
(24v)1/ε∆max

C

(∆min
C )(1+ε)/ε

log(NCT ) +

(
1 +

e1/8π2

3

)
∆max
C ,

(42)

Finally, summing over all cliques in C and taking the infimum over all possible coverings C yields the aforementioned upper
bound of RUNE-MoM.



2 OMITTED PROOFS FOR SECTION 3.2

In this section, we present the proofs for RAAE-TEM and RAAE-MoM omitted in the second section of our main results.

2.1 ANALYSIS FOR RAAE-TEM

In order to prove Theorem 4 we need one additional lemma, which is described as following. It shows that, after the active
arm elimination phase of epoch r, the remained arms are at most 4εr-suboptimal with high probability.

Lemma 3 For all epoch r, with probability at least 1− 1/T we have µi ≤ µ? + 4εr for all i ∈ Vr+1.

Proof [of Lemma 3] In each epoch r, the player observed the reward of each arm in Vr for at least nr times. Note that by
Proposition 1 the rewards of the arms are distributed independently from the feedback graphs. Given an epoch r we denote
by Er the event that |µ̂i(t− 1)− µi| ≤ εr holds for all i ∈ Vr and denote E = ∪r≥1Er. Therefore by Proposition 1

Pr[Er] ≥ 1− 1

KT
, (43)

by taking the union bound on each Vr, we have that

Pr[E] ≥ 1− 1

T
. (44)

In the remainder of the proof, we assume that E holds. So for any epoch r and any arm i ∈ Vr, we have |µ̂(i, Oi(t−1))−µi| ≤
εr. As a result, for any epoch r and any two arms i and i′, there must be

|(µ̂i(t− 1)− µ̂i′(t− 1))− (µi − µi′)| ≤ 2εr . (45)

Next, we argue that under E the optimal arm i? is never eliminated. Indeed, for any epoch r, we denote the arm ir =
arg maxi∈Vr µ̂i(t− 1) and µ̂?r = µ̂ir (t− 1), it is obvious to see that

µ̂?r − µ̂i?(t− 1) ≤ |(µ̂ir (t− 1)− µ̂i?(t− 1))− (µir − µi?)| ≤ 2cr , (46)

so the algorithm doesn’t eliminate i?.

Next, we show that under E, in any epoch r the algorithm eliminate all viable arms i with sub-optimal gap ∆i > 4εr. Thus,
since arm i? remains viable, we have that

µ̂i?(t− 1)− µ̂(i, Oi(t− 1)) ≥ µ̂?r − µ̂i(t− 1) ≥ ∆i − 2εr > 2εr , (47)

which means arm i is eliminated by the algorithm. Thus, for all the rest arms i in Vr+1, we have that

µi − µ? ≤ 4εr . (48)

Until now, we have finished the proof of Lemma 3.

Besides, we list the following two lemmas that will be used in the proof of Theorem 4. The first lemma shows that, the
expected regret of the algorithm until the first arm in V (τ) has been eliminated , is bounded by O(log(KT )). Furthermore,
the expected regret of the algorithm after that epoch is also bounded by O(log(KT )). The second lemma shows that the
expected regret of Algorithm 2 after we have eliminated all arms not in V (τ), is at most O(log(KT )).

Lemma 4 Let ∆̄ = maxi∈V (τ) ∆i be the largest gap of arms in V (τ) and r̃ = blog2(4/∆̄)/ε − 1c. Then, the expected
regret of Algorithm 2 up to epoch r̃ is at most

160α(20v)1/ε

∆̄1/ε
log(2KT ). (49)

Also, the expected regret of Algorithm 2 after epoch r̃ is at most∑
i∈V (τ)

160(20v)1/ε

∆
1/ε
i

log(2KT ). (50)



Proof [of Lemma 4] By Lemma 3, the instantaneous regret for each round on epoch r is at most 4εr−1 = 8εr. Note that
each epoch spends at most α rounds. Then, the expected regret up to round r̃ is at most

r̃∑
r=1

α · nr · 8εr ≤ 80α(5v)1/ε log(2KT )

r̃∑
r=1

1

ε
1/ε
r

= 80α(5v)1/ε log(2KT )

r̃∑
r=1

2r+1

≤ 80α(5v)1/ε log(2KT )2r̃+2 ≤ 160α(20v)1/ε log(2KT )

∆̄1/ε
,

(51)

where the last inequality comes from the fact r̃ = blog2(4/∆̄)/ε− 1c.

Let r̃i = blog2(4/∆̄i)/ε− 1c, the number of epochs until arm i is removed from Vr, which means that it takes r̃i + 1 epochs
in order for 4εr̃i+1 = 22−ε(r̃i+2) < ∆̄i. We shall assume that the algorithm finished after r̃u epochs, where u is the arm in
V with the minimum nonzero gap. Note that each epoch spends at most |Vr| rounds after we have eliminated all arms not in
V (τ). Thus, the expected regret for the remaining epochs is at most

r̃u∑
r=r̃+1

|Vr| · nr · 8εr ≤ 80(5v)1/ε log(2KT )

r̃∑
r=1

|Vr|
ε

1/ε
r

= 80(5v)1/ε log(2KT )
∑
i∈V (τ)

r̃i∑
r=r̃+1

1

ε
1/ε
r

≤ 80(5v)1/ε log(2KT )
∑
i∈V (τ)

r̃i∑
r=1

2r+1

≤
∑
i∈V (τ)

160(20v)1/ε log(2KT )

∆
1/ε
i

,

(52)

where the last inequality is induced by the same computation as (51).

Lemma 5 The expected regret of Algorithm 2 after we have eliminated all arms not in V (τ), is at most

∑
i∈V (τ)

160(20v)1/ε

∆
1/ε
i

log(2KT ). (53)

Proof [of Lemma 5] Let r̃i = blog2(4/∆̄i)/ε− 1c, the number of epochs until arm i is removed from Vr, which means that
it takes r̃i + 1 epochs in order for 4εr̃i+1 = 22−ε(r̃i+2) < ∆̄i. We’re going to talk about two categories.

When τ ≤ K − 1, the expected regret of Algorithm 2 after we have eliminated all arms not in V (τ) equals that of Algorithm
2 after epoch r̃, then the conclusion is directly induced by the second part of Lemma 4.

When τ > K − 1, then V (τ) = V \{i?}, the expected regret equals that of the algorithm terminating with Vr = {i?}. We
shall assume that the algorithm finished after r̃u epochs, where u is the arm in V (τ) with the minimum gap. Note that each
epoch spends at most |Vr| rounds after we have eliminated all arms not in V (τ). Thus, the expected regret for the remaining



epochs is at most
r̃u∑
r=1

|Vr| · nr · 8εr ≤ 80(5v)1/ε log(2KT )

r̃∑
r=1

|Vr|
ε

1/ε
r

= 80(5v)1/ε log(2KT )
∑
i∈V (τ)

r̃i∑
r=1

1

ε
1/ε
r

= 80(5v)1/ε log(2KT )
∑
i∈V (τ)

r̃i∑
r=1

2r+1

≤
∑
i∈V (τ)

160(20v)1/ε log(2KT )

∆
1/ε
i

,

(54)

where the last inequality is induced by the same computation as (51).

Proof [of Theorem 4] Here, we use a proof sketch similar to [Cohen et al., 2016]. Firstly, we need to bound R, which is
defined as the total number of epochs that the algorithm runs for. As the fact that the number Tr of rounds elapsed during
epoch r, is lower bounded by nr = d(5(5v)1/ε log(2KT )) · (2(1+ε))r+1e, there must be

T ≥
R∑
r=1

Tr ≥ (5(5v)1/ε log(2KT ))

R∑
r=1

(2(1+ε))r+1 . (55)

Then, by computing the RHS of the above inequality, we can obtain an upper bound

R ≤ r̄ =
1

1 + ε
log2

(
(21+ε − 1)T

20(5v)1/ε4ε log(2KT )
+ 1

)
. (56)

Next, we attempt to bound the expected regret of the algorithm. By Lemma 3 and the union bound, the total failure probability
of the robust mean estimators is at most r̄/T . Then the expected regret of the algorithm is at most the expected regret
conditioned on the success of the estimation of the means plus (r̄/T ) · (T∆max) = O(∆max log T ) by Eq. (56). Thus it
remains to bound the conditioned expected regret.

In the remainder of the proof, we assume that the robust mean estimators always succeed. Therefore, the regret of the
algorithm is at most the regret of an algorithm terminating with Vr = {i?}. In addition, we assume that T is large enough
for this to happen.

Let ∆̄ = maxi∈V (τ) ∆i be the largest gap of arms in V (τ) and r̃ = blog2(4/∆̄)/ε− 1c. Thus, it takes r̃+ 1 epochs in order
for 4εr̃ = 22−ε(r̃+1) < ∆̄, which means that the algorithm eliminates all arms in V \V (τ) until epoch r̃. Now we will split
in the following two cases:

If τ > K − 1, then V (τ) = V \{i?}. Thus the regret of the algorithm is upper bounded by the the regret until the algorithm
finished running with Vr = {i?}, which can be directly obtained by (53) of Lemma 5.

If τ ≤ K − 1, then splitting by epoch r̃, we can bound the expected regret before and after that, using (49) and (50) in
Lemma 4 respectively. Since ∆̄ ≥ ∆i for all i ∈ V (τ), we have that

α

∆̄1/ε
≤ α

|V (τ)|
∑
i∈V (τ)

1

∆
1/ε
i

=
∑
i∈V (τ)

1

∆
1/ε
i

, (57)

by definition of V (τ). Thus we notice that the expected regret of the algorithm up to epoch r̃ is at most the regret from round
r̃ + 1 thereafter. Then we can also bound the expected regret of the algorithm by using (50) of Lemma 4.

Finally, we obtain a regret O(
∑
i∈V (τ)( v

∆i
)1/ε log T + ∆max log T ) by the assumption T ≥ K.



2.2 ANALYSIS FOR RAAE-MOM

Following the same proof sketch of Theorem 4, we can obtain the property described in Lemma 3. It shows that, after the
active arm elimination phase of epoch r, the remained arms are at most 4εr-suboptimal with high probability.

Besides, we list the following two lemmas that will be used in the proof of Theorem 5. The first lemma shows that, the
expected regret of the algorithm until the first arm in V (τ) has been eliminated, is bounded by O(log(KT )). Furthermore,
the expected regret of the algorithm after that epoch is also bounded by O(log(KT )). The second lemma shows that the
expected regret of RUNE-MoM after we have eliminated all arms not in V (τ), is at most O(log(KT )).

Lemma 6 Let ∆̄ = maxi∈V (τ) ∆i be the largest gap of arms in V (τ) and r̃ = blog2(4/∆̄)/ε − 1c. Then, the expected
regret of RAAE-MoM up to epoch r̃ is at most

256α(48v)1/ε

∆̄1/ε
log(2KT ). (58)

Also, the expected regret of RAAE-MoM after epoch r̃ is at most∑
i∈V (τ)

256(48v)1/ε

∆
1/ε
i

log(2KT ). (59)

Proof [of Lemma 6] By Lemma 3, the instantaneous regret for each round on epoch r is at most 4εr−1 = 8εr. Note that
each epoch spends at most α rounds. Then, the expected regret up to round r̃ is at most

r̃∑
r=1

α · nr · 8εr ≤ 128α(12v)1/ε log(2e1/8KT )

r̃∑
r=1

1

ε
1/ε
r

= 128α(12v)1/ε log(2e1/8KT )

r̃∑
r=1

2r+1

≤ 128α(12v)1/ε log(2e1/8KT )2r̃+2 ≤ 256α(48v)1/ε log(2e1/8KT )

∆̄1/ε
,

(60)

where the last inequality comes from the fact r̃ = blog2(4/∆̄)/ε− 1c.

Let r̃i = blog2(4/∆̄i)/ε− 1c, the number of epochs until arm i is removed from Vr, which means that it takes r̃i + 1 epochs
in order for 4εr̃i+1 = 22−ε(r̃i+2) < ∆̄i. We shall assume that the algorithm finished after r̃u epochs, where u is the arm in
V with the minimum nonzero gap. Note that each epoch spends at most |Vr| rounds after we have eliminated all arms not in
V (τ). Thus, the expected regret for the remaining epochs is at most

r̃u∑
r=r̃+1

|Vr| · nr · 8εr ≤ 128(12v)1/ε log(2e1/8KT )
r̃∑
r=1

|Vr|
ε

1/ε
r

= 128(12v)1/ε log(2e1/8KT )
∑
i∈V (τ)

r̃i∑
r=r̃+1

1

ε
1/ε
r

≤ 128(12v)1/ε log(2e1/8KT )
∑
i∈V (τ)

r̃i∑
r=1

2r+1

≤
∑
i∈V (τ)

256(48v)1/ε log(2e1/8KT )

∆
1/ε
i

,

(61)

where the last inequality is induced by the same computation as (60).

Lemma 7 The expected regret of RAAE-MoM after we have eliminated all arms not in V (τ), is at most∑
i∈V (τ)

256(48v)1/ε

∆
1/ε
i

log(2e1/8KT ). (62)



Proof [of Lemma 7] Let r̃i = blog2(4/∆̄i)/ε− 1c, the number of epochs until arm i is removed from Vr, which means that
it takes r̃i + 1 epochs in order for 4εr̃i+1 = 22−ε(r̃i+2) < ∆̄i. We’re going to talk about two categories.

When τ ≤ K − 1, the expected regret of RAAE-MoM after we have eliminated all arms not in V (τ) equals that of
RAAE-MoM after epoch r̃, then the conclusion is directly induced by the second part of Lemma 6.

When τ > K − 1, then V (τ) = V \{i?}, the expected regret equals that of the algorithm terminating with Vr = {i?}. We
shall assume that the algorithm finished after r̃u epochs, where u is the arm in V (τ) with the minimum gap. Note that each
epoch spends at most |Vr| rounds after we have eliminated all arms not in V (τ). Thus, the expected regret for the remaining
epochs is at most

r̃u∑
r=1

|Vr| · nr · 8εr ≤ 128(12v)1/ε log(2e1/8KT )

r̃∑
r=1

|Vr|
ε

1/ε
r

= 128(12v)1/ε log(2e1/8KT )
∑
i∈V (τ)

r̃i∑
r=1

1

ε
1/ε
r

= 128(12v)1/ε log(2e1/8KT )
∑
i∈V (τ)

r̃i∑
r=1

2r+1

≤
∑
i∈V (τ)

256(48v)1/ε log(2e1/8KT )

∆
1/ε
i

,

(63)

where the last inequality is induced by the same computation as (60).

Proof [of Theorem 5] Here, we use a proof sketch similar to [Cohen et al., 2016]. Firstly, we need to bound R, which is
defined as the total number of epochs that the algorithm runs for. As the fact that the number Tr of rounds elapsed during
epoch r, is lower bounded by nr = d (8(12v)1/ε log(2e1/8KT ))

ε
(1+ε)/ε
r

e, there must be

T ≥
R∑
r=1

Tr ≥ (8(12v)1/ε log(2e1/8KT ))

R∑
r=1

(2(1+ε))r+1 . (64)

Then, by computing the RHS of the above inequality, we can obtain an upper bound

R ≤ r̄ =
1

1 + ε
log2

(
(21+ε − 1)T

48(12v)1/ε4ε log(2e1/8KT )
+ 1

)
. (65)

Next, we attempt to bound the expected regret of the algorithm. By Lemma 3 and the union bound, the total failure probability
of the robust mean estimators is at most r̄/T . Then the expected regret of the algorithm is at most the expected regret
conditioned on the success of the estimation of the means plus (r̄/T ) · (T∆max) = O(∆max log T ) by Eq. (65). Thus it
remains to bound the conditioned expected regret.

In the remainder of the proof, we assume that the robust mean estimators always succeed. Therefore, the regret of the
algorithm is at most the regret of an algorithm terminating with Vr = {i?}. In addition, we assume that T is large enough
for this to happen.

Let ∆̄ = maxi∈V (τ) ∆i be the largest gap of arms in V (τ) and r̃ = blog2(4/∆̄)/ε− 1c. Thus, it takes r̃+ 1 epochs in order
for 4εr̃ = 22−ε(r̃+1) < ∆̄, which means that the algorithm eliminates all arms in V \V (τ) until epoch r̃. Now we will split
in the following two cases:

If τ > K − 1, then V (τ) = V \{i?}. Thus the regret of the algorithm is upper bounded by the the regret until the algorithm
finished running with Vr = {i?}, which can be directly obtained by (62) of Lemma 7.

If τ ≤ K − 1, then splitting by epoch r̃, we can bound the expected regret before and after that, using (58) and (59) in
Lemma 4 respectively. Since ∆̄ ≥ ∆i for all i ∈ V (τ), we have that

α

∆̄1/ε
≤ α

|V (τ)|
∑
i∈V (τ)

1

∆
1/ε
i

=
∑
i∈V (τ)

1

∆
1/ε
i

, (66)



by definition of V (τ). Thus we notice that the expected regret of the algorithm up to epoch r̃ is at most the regret from round
r̃ + 1 thereafter. Then we can also bound the expected regret of the algorithm by using (50) of Lemma 4.

Finally, we obtain a regret O(
∑
i∈V (τ)( v

∆i
)1/ε log T + ∆max log T ) by the assumption T ≥ K.
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