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Abstract

We propose functional causal Bayesian optimiza-
tion (fCBO), a method for finding interventions that
optimize a target variable in a known causal graph.
fCBO extends the CBO family of methods to enable
functional interventions, which set a variable to be
a deterministic function of other variables in the
graph. fCBO models the unknown objectives with
Gaussian processes whose inputs are defined in
a reproducing kernel Hilbert space, thus allowing
to compute distances among vector-valued func-
tions. In turn, this enables to sequentially select
functions to explore by maximizing an expected
improvement acquisition functional while keeping
the typical computational tractability of standard
BO settings. We introduce graphical criteria that es-
tablish when considering functional interventions
allows attaining better target effects, and condi-
tions under which selected interventions are also
optimal for conditional target effects. We demon-
strate the benefits of the method in a synthetic and
in a real-world causal graph.

1 INTRODUCTION

Finding interventions in a system that optimize a target
variable is key to many scientific disciplines, including
medicine, biology, and social sciences. Causal graphs [Pearl,
2000, Koller and Friedman, 2009], in which an interven-
tion on a variable is represented as modifying the casual
influence from its incoming edges, offer a powerful tool for
dealing with the effects of interventions, and are therefore
increasingly integrated into approaches to learning optimal
policies such as bandits [Lattimore et al., 2016, Lee and
Bareinboim, 2018, 2019, Lu et al., 2020, Nair et al., 2021,
De Kroon et al., 2022], reinforcement learning [Lu et al.,
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Figure 1: Left: Graph representing causal relationships between
prostate specific antigen (PSA) and other variables. Red, grey and
green nodes indicate target, intervenable, non-intervenable vari-
ables respectively. Middle: Modified graph describing a policy
made of hard interventions on Aspirin and Statin. Right: Modified
graph describing a policy with an intervention on Statin that retains
dependence on Age and BMI.

2018, Zhang and Bareinboim, 2019, Zhang, 2020, Gasse
et al., 2021, Zhang and Bareinboim, 2022], and Bayesian
optimization [Aglietti et al., 2020, 2021, Sussex et al., 2023].

Most works in causal Bayesian optimization (CBO) have
focused on the hard intervention do(X = x), which con-
sists in setting variable X to a constant value x. However,
in many practical scenarios the investigator may be able to
implement policies that also contain other types of inter-
ventions. Consider, for example, the graph in Fig. 1(left)
representing causal relationships between prostate specific
antigen (PSA) and other variables. An investigator wishing
to find a policy for prescribing Aspirin and Statin dosages,
as well as Calories Intake (CI), that minimizes PSA might be
able to consider, in addition to policies made of only hard
interventions (as the one represented in Fig. 1(middle)), also
policies where e.g. Statin dosage retains a dependence on
Age and BMI (as the one represented in Fig. 1(right)).

Contextual interventions are achieved in Arsenyan et al.
[2023] and in Sussex et al. [2023] by searching for different
hard interventions in separate sub-groups defined by some
contexts and by inducing changes in the parametrization
of a node’s conditional distribution via action variables, re-
spectively. However, the first approach learns an implicit
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mapping between contexts and intervention values, and re-
quires extrapolating to unseen or rarely explored areas of
the context space; while the second approach can only in-
duce some modifications of the parametrization and does
not allow choice of context.

In this work, we introduce an extension of the CBO family
of methods that considers a more flexible and general type
of contextual intervention, consisting in making variable X
a deterministic function of other nodes in the graph. Such a
functional intervention is implemented via new techniques
for computing distances among functions of different vari-
ables. Our contributions can be summarized as follows:

• We formalize the problem of finding policies made of
hard and functional interventions optimizing the expec-
tation of a target variable as the functional causal global
optimization (fCGO) problem.

• We introduce two graphical criteria that establish when
functional interventions could be necessary to solve the
fCGO problem and when policies made of only hard in-
terventions are sufficient, respectively.

• We introduce conditions in which a policy solving the
fCGO problem also optimizes conditional expectations of
the target variable.

• We propose functional causal Bayesian optimization
(fCBO), a method for solving the fCGO problem that mod-
els the expectation of the target variable under each policy
scope with a Gaussian process model whose inputs are
defined in a reproducing kernel Hilbert space.

• We validate fCBO in a synthetic and in a real-world setting
with respect to target effects, conditional target effects,
and costs of interventions.

2 BACKGROUND AND SETTING

We consider a system of observable random variables V
with target variable Y ∈ V and intervenable variables
I ⊆ V \Y , and the problem of finding a subset of I
and interventions on it that optimize the expectation of Y .
Our goal is to introduce a method that allows two types
of interventions on a variable X ∈ I: (i) the hard inter-
vention do(X = x) consisting in setting X to value x;
and (ii) the functional intervention1 X = πX|CX (CX)
that makes X a deterministic function of a set of vari-
ables CX ⊆ V \{X,Y }, called the context of X , where
πX|CX : RCX 7→ RX with e.g.RCX indicating the range
of CX . Both hard and functional interventions make X
a deterministic function of a context CX (the hard inter-
vention do(X = x) can be viewed as a functional inter-
vention with empty context CX = ∅, setting X to value
x = πX|∅(∅) where πX|∅ : ∅ 7→ x is the empty function),

1Functional interventions are also called conditional interven-
tions in Correa and Bareinboim [2020a,b].

and are therefore referred to as deterministic interventions
Lee and Bareinboim [2020].

We specify the system’s behavior using a structural causal
model (SCM) M defined by the tuple 〈V ,U ,F , p(U)〉,
where U is a set of exogenous, mutually-independent, un-
observed random variables with distribution p(U), and
F = {fV }V ∈V is a set of deterministic functions such that
V = fV (pa(V ),UV ) with pa(V ) ⊆ V \V and UV ⊆ U ,
∀V ∈ V . A deterministic intervention on X therefore re-
places fX with πX|CX .

M has associated a directed graph, which we assume to
be acyclic2, with nodes V ∪ U and with an edge from A
to B if A ∈ pa(B) or A ∈ UB . A node A with an edge
into B is called a parent or direct cause of B (in this case
B is called a child of A). A node A with a directed path
ending at B is called an ancestor of B (in this case B is
called a descendant of A). We consider the projection of
this graph into the graph that contains only nodes V and
that has a directed edge from V to W if V is a parent of W
and a bi-directed edge between V and W if UV ∩UW 6= ∅
(UV ∩UW is an unobserved confounder between V andW ),
and refer to it as causal graph associated withM. Given
a causal graph G, we say thatM is compatible with G if
all edges that are in the causal graph associated with M
are also in G. We indicate the set of parents, ancestors, and
descendants of V in G with paG(V ), anG(V ) and deG(V ),
respectively. We indicate the nodes connected to V by a bi-
directed edge with spG(V ). We refer to the joint distribution
of V determined by p(U), which we denote by p(V ), as
observational distribution.

The space of deterministic interventions for a casual graph G
can be formalized using the concepts of mixed policy scope
(MPS) and deterministic mixed policy (DMP) introduced in
Lee and Bareinboim [2020].

Definition 2.1 (Mixed Policy Scope (MPS)). A mixed policy
scope S for a causal graph G is a collection of pairs 〈X,CX〉
such that (i) X ∈ I , CX ⊆ V \{X,Y }; and (ii) the graph
GS obtained by removing from G the incoming edges into
X and by adding to G directed edges from CX to X , for
every 〈X,CX〉 ∈ S , is acyclic.

An MPS specifies the variables in I on which interven-
tions are performed and their contexts. For example, MPS
S = {〈Aspirin, ∅〉, 〈Statin, {Age, BMI}〉} for G in Fig.
1(left) specifies that interventions are performed on Aspirin
and Statin, and with context ∅ and {Age, BMI} respectively,
as graphically represented in Fig. 1(right).

Definition 2.2 (Deterministic Mixed Policy (DMP)). A deter-
ministic mixed policy πS compatible with MPS S is defined

2A directed graph is acyclic if it has no directed paths starting
and ending at the same node. A directed path is a sequence of
linked nodes whose edges are directed and point from preceding
towards following nodes in the sequence.
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as πS = {πX|CX}〈X,CX〉∈S\Shard

⋃
{πX|∅(∅)}〈X,CX〉∈Shard ,

where πX|CX : RCX 7→ RX , πX|∅(∅) denotes the value
returned by the empty function, and Shard = {〈X,CX〉 ∈
S : CX = ∅}.

A DMP specifies the function πX|CX or the value πX|∅(∅)
that replaces fX ∈ F inM, ∀〈X,CX〉 ∈ S. The replace-
ments induce a variantMπS ofM with joint distribution
over V denoted by pπS (V ). We refer to pπS (V ) as inter-
ventional distribution induced by πS , and to an observation
from pπS (V ) as an interventional data sample.

3 FCGO PROBLEM

Let µYπS = EpπS [Y ] denote the expectation of Y w.r.t. the
interventional distribution induced by πS , which we refer
to as the target effect. Our goal is to introduce a method for
solving the problem of minimizing µYπS over the space Σ of
MPSs for G and the space ΠS of DMPs that are compatible
with MPS S, formally defined below.

Definition 3.1. (fCGO problem) The functional causal
global optimization (fCGO) problem is the problem of iden-
tifying a tuple (S∗, π∗S∗) such that

S∗, π∗S∗ = arg min
S∈Σ,πS∈ΠS

µYπS . (1)

Importantly, Proposition 1 in Lee and Bareinboim [2020]
implies that the target effect µYπ∗S∗ given by a solution of the
fCGO problem (S∗, π∗S∗) equals the one that would be ob-
tained by also considering stochastic interventions [Correa
and Bareinboim, 2020a].

The fCGO problem extends the causal global optimization
(CGO) problem defined in Aglietti et al. [2020] that only
considers hard interventions. In Section 3.1 we introduce
graphical criteria that establish when only considering hard
interventions might lead to a bigger target effect and when
this is not the case. In addition, in Section 3.2 we introduce
conditions under which a policy solving the fCGO problem
is also optimal for conditional target effects.

Solving the fCGO problem requires computing distances be-
tween functions defined over different contexts. In Section
4.2 we propose to model each target effect via a Gaussian
process whose kernel allows computing such distances. We
discuss how this approach enables us to keep the computa-
tional tractability of standard Bayesian optimization (BO)
methods while allowing to flexibly specify functional inter-
ventions.

3.1 HARD INTERVENTIONS (SUB-)OPTIMALITY

Let Σhard denote the set of MPSs in Σ that contain only hard
interventions, i.e. Σhard = {S ∈ Σ: S = Shard}. In this

section, we introduce graphical criteria that establish when
restricting the search space in the fCGO problem from Σ to
Σhard might lead to a bigger target effect and when this is
not the case, thereby informing the investigator about when
functional interventions should be considered. The proofs
are given in Section 1 of the supplementary material.

Proposition 3.2 (Sub-optimality of hard interventions). Let
G be a causal graph such that (i) ∃C ∈ paG(Y ) with
C /∈ I; or (ii) ∃C ∈ spG(Y ). If ∃X ∈ anG(Y ) ∩ I
such that {〈X,C〉} is an MPS, then there exists at least one
SCM compatible with G for which minS∈Σhard,πS∈ΠS µ

Y
πS >

minS∈Σ,πS∈ΠS µ
Y
πS .

Proposition 3.3 (Optimality of hard interventions). In a
casual graph G, if paG(Y ) ⊆ I and spG(Y ) = ∅ there exists
a DMP compatible with MPS S = {〈X, ∅〉 : X ∈ paG(Y )}
that solves the f CGO problem.

(i)

X

C

Y

(ii)

X

C

Y

Proposition 3.2 captures two conditions
for sub-optimality of hard interventions:
the existence of a non-intervenable vari-
able C in paG(Y ) that can serve as con-
text for a functional intervention on a
variable X , as in the causal graph (i) on
the right (for which I = {X}); and the
existence of a variable C with an un-
observed confounder between it and Y
that can serve as context for a functional intervention on
a variable X , as in the casual graph (ii) on the right (for
which I = {X,C}). In both cases, a hard intervention on
X would cut the paths from X to Y passing through C (i.e.
X ← C → Y and X ← C ↔ Y respectively). Instead, a
functional intervention on X with context C would keep
such paths open and therefore could assign intervention val-
ues to X informed by values of C, potentially leading to
a smaller target effect. Below, we provide two SCMs and
functional interventions for which this is the case.

Consider graph (i), with SCMM with U = {UC , UX , UY }
such that p(UC) = p(UX) = N (0, 1) and p(UY ) =
N (1, 1), and functional assignments C = UC , X =
CUX , Y = CXUY . Σhard = {S1 = {〈X, ∅〉}} with DMP
πS1 = {x = πX|∅(∅)} induces the modified SCM MπS1

where Y = UCxUY and µYπS1
= 0. In contrast, MPS

S = {〈X,C〉} with DMP πS = {πX|C(C) = −1/C}
inducesMπS with Y = −UY , giving µYπS = −1.0. There-
fore, πS achieves a smaller target effect than πS1 .

Consider graph (ii), with SCM M with U =
{UCY , UX , UY } such that p(UCY ) = p(UX) = N (0, 1)
and p(UY ) = N (1, 1), and functional assignments C =
UCY , X = CUX , Y = UCYXUY . In this case, Σhard =
{S1 = {〈X, ∅〉},S2 = {〈C, ∅〉},S3 = {〈X, ∅〉, 〈C, ∅〉}}
with DMPs πS1 = {x = πX|∅(∅)}, πS2 = {c = πC|∅(∅)},
and πS3 = {x = πX|∅(∅), c = πC|∅(∅)}. InMπS1 , Y =

xUCY UY thus µYπS1
= 0. In MπS2 , Y = cUXUCY UY
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thus µYπS2
= 0. InMπS3 , Y = xUCY UY thus µYπS3

= 0. In
contrast, MPS S = {〈X,C〉} with DMP πS = {πX|C(C) =
−1/C} inducesMπS with Y = −UY giving µYπS = −1.
Therefore πS achieves a smaller target effect than any other
DMP containing only hard interventions.

3.2 CONDITIONAL TARGET EFFECTS

In addition to potentially leading to a smaller target ef-
fect, considering functional interventions allows to deal
with settings in which the investigator might wish to min-
imize the target effect conditioned on a set of variables.
For instance, in the health example of Fig. 1(left), the in-
vestigator might want to find interventions minimizing the
expectation of PSA in a given population as well as in a
specific sub-group made of individuals aged over 65, i.e.
µPSA
πS ,Age>65 := EpπS [PSA |Age > 65] – since a high per-

centage of prostate cancer cases are diagnosed within this
sub-group [Rawla, 2019] – while still not negatively affect-
ing individuals of other ages. Such settings can be formal-
ized as wishing to minimize the conditional target effect
µYπS ,C=c = EpπS [Y |C = c] for C ⊂ V \Y and c ∈ RC .

LetXS denote the intervention variables included in MPS
S, i.e. XS = {X : 〈X,CX〉 ∈ S}, and CSX the context
variables in MPS S for an intervention on X . Unlike when
considering only hard interventions, the following propo-
sition shows that, under some conditions, a solution of the
fCGO problem also minimizes µYπS ,C=c in a restricted MPSs
space (the proof is given in Section 1 of the supplementary
material).

Proposition 3.4 (Optimizing conditional target effects).
If S∗, π∗S∗ = arg minS∈Σ,πS∈ΠS µ

Y
πS , then S∗, π∗S∗ =

arg minS∈ΣC ,πS∈ΠS µ
Y
πS ,C=c ∀C ⊂ V \Y such that C ∩

deG(I) = ∅ and ∀c ∈ RC with ΣC = {S ∈ Σ : XS =
XS∗ and {〈X,CS∗X ∪CSX ∪C〉 : X ∈XS∗} is an MPS}.

4 METHODOLOGY

We propose to solve the fCGO problem using the functional
causal Bayesian optimization (fCBO) method summarized
in Algorithm 1, which assumes known casual graph G and
continuous variables V . fCBO first reduces the search space
from Σ to a subset MΣ using the NRMPSReduce procedure
described in Section 4.1; and then solves the minimization
problem in Eq. (1) using a Gaussian process (GP) gS(πS)
to model the unknown target effect µYπS , ∀S ∈ MΣ, as de-
scribed in Section 4.2, with the following sequential strategy.
At each trial t = 1, . . . , T : (1) MPS St and DMP πtSt are se-
lected via the expected improvement acquisition functional
(fEI) described in Section 4.3; (2-3) a set of S interventional
data samples is obtained and used to compute a sample
mean estimate, µ̂YπtSt

, of µYπtSt
; (4) (πtSt , µ̂

Y
πtSt

) is added to

Algorithm 1 fCBO

Inputs: G, I , Y , DI = {DIS}S∈Σ, T , S
MΣ ← NRMPSReduce(G, I, Y )
Initialise GPs gS(πS) ∀S ∈MΣ with DIS
for t = 1, . . . , T do

1. Select MPS St and DMP πtSt via the fEI

2. Obtain samples {y(s)}Ss=1 from pπtSt
(Y )

3. Compute sample mean estimate µ̂YπtSt
using {y(s)}Ss=1

4. DISt ← D
I
St ∪ (πtSt , µ̂

Y
πtSt

)

5. Update τ(gSt | DISt)
end
Output: (S∗, π∗S∗) with min µ̂Yπ∗S∗ over DI

the interventional dataset DISt of the MPS St; (5) the poste-
rior distribution of the GP gSt , denoted by τ(gSt | DISt), is
updated. Once the maximum number of trials is reached, a
tuple (S∗, π∗S∗) giving the smallest estimated target effect
in DI = {DIS}S∈Σ is returned.

Notice that Algorithm 1 only requires realizations from
pπtSt

(Y ) (and could also operate if given directly µ̂YπtSt
in-

stead). This is a considerable practical advantage compared
to context-specific reward approaches such as the one in Ar-
senyan et al. [2023] that, similarly to non-causal contextual
BO methods [Krause and Ong, 2011], require values of the
contexts and of the target variable resulting from the inter-
vention at that specific context values. Similarly to recent
approaches in contextual BO [Feng et al., 2020], fCBO can
directly operate on aggregate rewards.

4.1 SEARCH SPACE REDUCTION

The cardinality of Σ grows exponentially with the cardinal-
ity of I and the number of possible context sets CX for
each X . Therefore, solving the fCGO problem by exploring
the entire set could be prohibitively expensive. Even if Σ
has small cardinality, reducing the search space would sim-
plify the problem by reducing the number of target effects
to be modelled. We propose to use the results in Lee and
Bareinboim [2020] to reduce the search to the subset of
non-redundant MPSs included in Σ, denoted by MΣ, which
is guaranteed to contain a solution to the fCGO problem. For
completeness and clarity, in this section we describe these
results in the setting of DMPs.

Let S ′ ⊆ S indicate that C ′X ⊆ CX , ∀〈X,C ′X〉 ∈ S ′
with XS′ ⊆ XS . Furthermore, let πS′ ⊆ πS indicate
that πX|C′X (c′X) =

∫
πX|CX (c′X ∪ c′′X)pπS (c′′X | c′X)dc′′X ,

∀X ∈ XS′ , c′′X ∈ RCX\C′X . Finally, let |= G denote d-
separation in G, and GS\X the modification of G obtained
by removing node X and its incoming and outgoing edges.

Definition 4.1 (Non-redundant MPS). An MPS S is said to
be non-redundant if there exists an SCM compatible with G

759



and πS ∈ ΠS such that µYπ′S 6= µYπS ∀S
′ ⊂ S and π′S ⊂ πS .

The following proposition gives a graphical criterion for
identifying MΣ.

Proposition 4.2 (Characterization of non-redundant MPS).
An MPS S is non-redundant if and only if (1) XS ⊆
anGS (Y ) and (2) Y��|= GS\XC |CX\C for every X ∈ XS
and C ∈ CX .

4.2 GAUSSIAN PROCESS SURROGATE MODELS

We model the unknown target effect µYπS for each S using
a GP gS(πS). Differently from existing works on Bayesian
functional optimization that focus on univariate functional
inputs, πS can include scalar values as well as functions
potentially defined on different input spaces.

C1 C2

X Z

Y

C1 C2

X Z

Y

For instance, for MPS S =
{〈X, {C1, C2}〉, 〈Z, {C2}〉} with GS
given on the top right, πX|{C1,C2}
is defined over RC1

× RC2
, while

πZ|C2
over RC2 . Alternatively, for

MPS S = {〈X, {C1}〉, 〈Z, {C2}〉}
with GS given on the bottom right,
πX|C1

is defined over RC1
, while

πZ|C2
over RC2

. We address this
complexity by introducing a kernel function for gS(πS)
that allows to compute distances among the mixed inputs
while handling the different input dimensionality.

More specifically, gS(π) ∼ GP(mS(π),Kθ
S(π, π′)), where

π, π′ ∈ ΠS (we omit the subscript S to simplify the no-
tation3), and mS and Kθ

S denote the prior mean and co-
variance functional with hyperparameters θ. Notice that
ΠS := R|Shard|×B(CS) where4 R|Shard| is the space of scalar
values for XShard while B(CS) is the space of bounded
vector-valued functions on CS =

⋃
X∈XS CX . Given an

interventional dataset DIS for S, for which we assume a
Gaussian likelihood, the posterior distribution τ(gS | DIS)
can be computed by standard GP updates [Williams and
Rasmussen, 2006]. We initialize mS to a zero mean func-
tional and extend the RBF kernel to consider mixed inputs
as detailed below.

Kernels for Functional GP. We define Kθ
S as the RBF

kernel Kθ
S(π, π′) = σ2

f exp(−||π − π′||2/2`2), where
θ = (σ2

f , `) and where ||π − π′|| represents a distance be-
tween mixed inputs to the GP5. Let πhard and πfunc denote
the vectors whose elements are the scalar values and the

3In this section, a DMP πS indicates a vector, rather than a set,
of interventions.

4|X| indicates the cardinality of the set X .
5While we discuss the RBF kernel, this procedure can be used

to compute any stationary kernel involving the distance between
functional inputs similarly to Vien et al. [2018].

functions included in π, respectively. We define ||π − π′||2
as ||π − π′||2 = ||πhard − π′hard||2 + ||πfunc − π′func||2HκS ,
with ||πhard − π′hard||2 indicating the square of the Euclidean
distance in R|Shard|, and ||πfunc − π′func||2HκS the distance be-
tween functions in the vector-valued reproducing kernel
Hilbert space (RKHS, Aronszajn [1950]) B(CS) = HκS
described below.

Specifically,HκS is an RKHS with vector-valued reproduc-
ing kernel κξS : RCS × RCS → R|Sfunc|×|Sfunc| where ξ
denotes the hyper-parameters and Sfunc = {〈X,CX〉 ∈
S : CX 6= ∅}. We refer to κξS as the functional inter-
vention kernel to distinguish it from Kθ

S . We thus have
||πfunc−π′func||2HκS = 〈πfunc−π′func, πfunc−π′func〉HκS , where
〈·, ·〉H denotes the inner product in the spaceH. Evaluating
this quantity requires computing κξS at different input values
for the variables in CS , say cS and c′S , for πfunc and π′func
respectively.

We write the vector of functions πfunc included in the RKHS
HκS as πfunc(·) =

∑Nα
i=1 κ

ξ
S(ciS , ·)αi with αi ∈ R|Sfunc|

and ciS ∈ RCS and let π′func(·) =
∑Nβ
i=1 κ

ξ
S(ciS , ·)βi with

βi ∈ R|Sfunc|. This implies that the inner product 〈πfunc −
π′func, πfunc − π′func〉HκS can be written as

Nα∑
i=1

Nα∑
j=1

α>i κ
ξ
S(ciS , c

j
S)αj +

Nβ∑
i=1

Nβ∑
j=1

β>i κ
ξ
S(ciS , c

j
S)βj

− 2

Nα∑
i=1

Nβ∑
j=1

α>i κ
ξ
S(ciS , c

j
S)βj .

To construct κξS , we propose to augment the input space by
including a task index for each function πX|CX in S , i.e. we
redefine κξS : (RCS × T ) × (RCS × T ) → R|Sfunc|×|Sfunc|

where T is the space of integer values from 1 to |Sfunc|. For
every realization of the context variables and the task index,
say (cS , t)

i, we can then evaluate κξS((cS , t)
i, (cS , t)

j). We
assume the covariance between functions defined on differ-
ent input spaces, i.e. for which ti 6= tj , to be 06. Instead,
we let the covariance structure across function values asso-
ciated with different inputs for ti = tj be determined by
a task-specific kernel, which we denote by kt

i

. Denote by
ciS [ti] the subset of values included in ciS for the contexts of
the ti task and by ξ[ti] the subset of hyper-parameters for ti

included in ξ. We have that κξS((cS , t)
i, (cS , t)

j) is equal
to kt

i

(ciS [ti], cjS [tj ]) with hyper-parameters ξ[ti] if ti = tj

and to 0 otherwise. The kernel kt
i

might differ across tasks
both in terms of functional form and hyper-parameter values.
This allows to impose different characteristics in terms of
e.g. smoothness for each function πX|CX included in π.

6Alternative kernel constructions where this assumption is
relaxed are discussed in Section 2 of the supplementary material.
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4.3 ACQUISITION FUNCTIONAL

We sequentially select interventions by numerically7 max-
imizing the expected improvement (EI) per unit of cost
CoS(·) across the MPSs in MΣ. Given an interventional
dataset DIS , for each S ∈ MΣ the functional EI (fEI) is
given by:

fEIS(π) = σ2
S(π | DIS)[γ(π)Φ(γ(π)) + φ(γ(π))]/CoS(π),

where σ2
S(π | DIS) = Kθ

S(π, π | DIS), Φ(·) and φ(·) are
the CDF and PDF of a standard Gaussian random vari-
able respectively, and γ(π) =

mS(π | DIS)−g∗

Kθ
S(π,π | DIS)

with g∗ de-
noting the optimum observed for gS across MPSs in MΣ.
mS(π | DIS) and Kθ

S(π, π | DIS) denote the posterior param-
eters of τ(gS | DIS). At every trial t of the optimization,
the MPS and the DMP are chosen by numerically solving
St, πtSt = arg maxS∈MΣ,πS∈ΠS fEIS(πS).

CoS(π) denotes the cost associated to π. We consider two
types of costs: (i) CoS(π) = |S|; and (ii) CoS(π) =∑
X∈XS

∫
RCX

πX|CX (cX)dcX , (i.e. the sum of the area
under πX|CX over all X ∈ XS), which can be seen as a
measure of the units of intervention given to a population
whose context values cX are uniformly distributed inRCX .
Notice that the second cost requires knowledge of RCX

at initialization. We use the first cost in the CHAIN experi-
ments of Section 6.1, and the second cost in the HEALTH
experiments of Section 6.2.

5 RELATED WORK

There exist two other CBO-type methods in the literature
that can achieve contextual interventions, namely CoCa-BO
[Arsenyan et al., 2023] and MCBO [Sussex et al., 2023].
CoCa-BO performs different hard interventions in separate
sub-groups defined by some contexts after observing con-
text values. Interventional data samples, formed by context
values, intervention values, and target effect, are used to fit
a GP model over the potentially high-dimensional context-
intervened variables space. Therefore, CoCa-BO can only
be used in settings in which the investigator observes the
values of the context variables, say C = c, selects an inter-
vention and observes the resulting target effect across units
with C = c, rather than an aggregate target effect across all
possible context values in a population. This is not feasible
in many applied problems (e.g. in A/B testing platforms, in
which outcomes are often measured as an aggregate across a
large population that spans an entire distribution of contexts),
and might lead to sup-optimal policies for unseen or rarely
observed context values. In addition, this method defines the
GP surrogate model for each MPS S on CS thus reducing
the flexibility of the learned policy by not encoding the exis-
tence of different CX for each X inXS . MCBO considers

7Alternatively, the functional gradient w.r.t. functions in a
RKHS could be derived analytically (see Vien et al. [2018]).

systems described by SCMs in which X ∈ I is of the form
X = fX(paG(X),AX) +UX , whereAX is a set of action
variables that parametrize fX whose values can be set by
the investigator to induce a change in the parametrization.
Therefore, a contextual intervention in MCBO modifies a
node’s original functional assignment rather than replacing
it as in fCBO. This might lead to more limited interventions
and does not allow change of contexts. In addition, this
method can achieve contextual interventions only in settings
in which the system’s SCM contains action variables. When
this is not the case, MCBO can only implement hard interven-
tions (see the HEALTH experiment of Section 6.2). Finally,
unlike fCBO, MCBO does not reduce the search space and
cannot handle unobserved confounders.

Extensions of BO [Shahriari et al., 2015] to solve functional
global optimization (FGO) problems have been studied by
searching over the space of Bernstein polynomials [Vellanki
et al., 2019], by constructing a sequence of low-dimensional
search spaces [Shilton et al., 2020], or by representing the
functional inputs as elements in an RKHS (BFO) [Vien et al.,
2018]. This work takes an approach similar to BFO, but
considers a varied search space and its causal reduction.
More importantly, thanks to a simple kernel construction,
it enables functional BO, which has generally focused on
univariate functional inputs, to deal with settings where the
inputs are multi-task functions.

6 EXPERIMENTS

We compare8 fCBO with CBO, MCBO, BO, and BFO on
the synthetic graph in Section 6.1 (CHAIN), and on the
healthcare graph in Fig. 1(a) (HEALTH). The experiments
aim at highlighting three main advantages of using fCBO to
find optimal interventions. The first advantage is the ability
to achieve smaller target effects compared to methods that
use only hard interventions. We assess this by looking at the
convergence to the optimum. The second advantage is the
ability to perform well w.r.t. conditional target effects. We
demonstrate this in the CHAIN experiments, by computing
the performance gain for DMP πS on sub-group C = c,
which is defined as PGain(πS ,C = c) = µ̂YC=c− µ̂YπS ,C=c,
where µ̂YC=c denotes an estimate of the conditional expecta-
tion of Y given C = c w.r.t. the observational distribution
and µ̂YπS ,C=c an estimate of the conditional target effect.
The third advantage is the ability to craft flexible and more
targeted DMPs that can incur similar or lower cost, while
still ensuring a smaller target effect than policies made of
only hard interventions. We exemplify this in the HEALTH
experiments where we assume a cost function given by

8We cannot compare to CoCa-BO as: (i) in our settings the
values of the contexts are not observed before intervening, and
only an aggregate target effect across contexts is observed post
intervention; (ii) this method does not allow considering MPSs that
do not share the same contexts.
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Figure 2: CHAIN experiments. Left: Average convergence of fCBO to the fCGO optimum (solid red line); of CBO, BO, and
MCBO-H to the CGO optimum (dotted red line); of BFO to the FGO optimum (dashed red line); and of MCBO to the CGO∗

optimum (across 20 initializations of DI for fCBO, CBO, BO, BFO, and across 20 seeds for MCBO-H and MCBO – shaded
areas give ± standard deviation). Middle: Average performance gains PGain(π∗S? , X < 0) and PGain(π∗S? , X > 0) obtained
by the optimal DMP π∗S? . Right: Initial πZ|X included in DIZ , π∗Z|X found by fCBO and associated target effect values.

CoS(π) =
∑
X∈XS

∫
RCX

πX|CX (cX)dcX .

Search Space and Optimization Problem

fCBO CBO MCBO-H MCBO BO BFO

Σ Σhard Σhard PA SI,CX=∅ S⊆I,CX 6=∅

fCGO CGO CGO CGO∗ GO FGO

The different search spaces of fCBO, CBO, MCBO, BO, and
BFO are summarized in the table above. An intervention
in BO and BFO is performed on all variables or on a sub-
set of variables in I simultaneously: BO considers only
hard interventions, thus its search space contains only MPS
SI,CX=∅ = {〈X,CX〉 : X ∈ I,CX = ∅}); while BFO
considers functional interventions with a fixedCX 6= ∅ over
trials, i.e. its search space contains only one MPS formed
by tuples 〈X,CX〉 with XS ⊆ I , denoted by S⊆I,CX 6=∅.
CBO and MCBO with hard interventions, denoted by MCBO-
H, consider the space of MPSs containing only hard inter-
ventions Σhard. Finally, MCBO performs interventions via
actions variablesA = {AX}X∈I thus exploring the power
set PA (with the convention that no intervention on X cor-
responds to removingAX from the SCM). While fCBO aims
at solving the fCGO problem, CBO and MCBO-H target the
CGO problem, and BFO the FGO problem. Finally, BO solves
a global optimization problem (GO), while MCBO a CGO
problem in the action variable space, denoted by CGO∗. In
all experiments, we consider settings where the fCGO, CGO,
and FGO problems have unique solutions, and the GO opti-
mum coincides with the CGO optimum.

fCBO, CBO, BO, and BFO. While fCBO does not impose
restrictions in terms of context variables used for functional
interventions beyond acyclicity of GS , for ease of demon-
stration and for computational reasons, in the experiments
we only consider keeping the original parents as contexts.
In other words, we set CX = paG(X) for each functional
intervention. We make the same choice for BFO. To demon-
strate performance on different choices for ΠS , we consider
linear and RBF functional intervention kernels κξS in the

CHAIN and HEALTH experiments, respectively. We use the
same functional intervention representation for BFO. For
each S ∈ MΣ we numerically optimize the acquisition
functions on a grid whose size is set to GridSize|Shard|+1

where GridSize is a hyper-parameter. We initialize DI
by randomly generating a single DMP and associated target
effect for each S ∈ Σ. We provide average results across
the 20 different initializations.

MCBO. In the CHAIN experiments, we consider both
MCBO restricted to hard interventions (MCBO-H) and MCBO
with contextual interventions (by augmenting the SCM with
an action variable for each variable in I). In the HEALTH
experiments, the SCM is given and does not contain action
variables. Therefore, we follow Sussex et al. [2023] and
consider only hard interventions on Aspirin, Statin, and CI.
We run the algorithm9 by setting the random seed control-
ling both the initial interventional data and the optimization
of the acquisition function to values 1, . . . , 20. We report
results across the 20 different seeds. Cross-validation with
values 0.05, 0.5, and 5 on the hyper-parameter β for the UCB
acquisition function, as done in Sussex et al. [2023], does
not give major differences in the performance (we report
the results for β = 5).

6.1 CHAIN EXPERIMENTS

X Z

W

Y

X = UX , W = UW

Z = −0.5X + UZ

Y = −W − 3ZX + UY

We first experiment on the
chain graph with associated
SCM given on the right (see Sec-
tion 3 of the supplementary ma-
terial for details). Fig. 2(left)
shows how considering mixes
of hard and functional interven-
tions allows fCBO to reach the
smallest target effect.

Fig. 2(middle) shows how fCBO and CBO differ in terms of
conditional target effects defined for X < 0 and X > 0.

9We used the code companion to Sussex et al. [2023] available
at https://github.com/ssethz/mcbo.
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Figure 3: HEALTH experiments with GridSize = 5. Left: Average convergence of fCBO to the fCGO optimum (solid red
line); of CBO, BO, and MCBO-H to the CGO optimum (dotted red line); and of BFO to the FGO optimum (dashed red line)
(across 20 initializations of DI for fCBO, CBO, BO, BFO, and across 20 seeds for MCBO-H – shaded areas give ± standard
deviation). Middle: π∗Statin|Age,BMI found by fCBO (left) and π∗Statin|∅ found by CBO (right) across levels of Age and BMI. Right:
Cost associated to the optimal MPS and associated optimal DMP found by fCBO and CBO.

Due to the existence of the interaction term −3ZX , mini-
mizing Y would require setting Z to a negative value when
X < 0 and to a positive value when X > 0. However, this
cannot be achieved via hard interventions that set Z to a
fixed value irrespective of X as in CBO. As a consequence
CBO, which selects MPS S∗ = {〈Z, ∅〉, 〈W, ∅〉} and DMP
π∗S∗ = {−1, 1}, achieves a very low performance gain for
X > 0, PGain(π∗S? , X > 0). Instead, fCBO selects MPS
S∗ = {〈Z,X〉, 〈W, ∅〉} and DMP π∗S∗ = {π∗Z|X , 1}, where
the linear function π∗Z|X (shown as a dashed red line in
Fig. 2(right)) has a slope that gives an optimal Z value
for both sub-groups thus leading to an evenly distributed
performance gain.

6.2 HEALTH EXPERIMENTS

For the HEALTH experiments, we use the SCM by Ferro
et al. [2015] (see Section 4 of the supplementary ma-
terial for details). Fig. 3 shows the results obtained
with GridSize = 5. In these experiments, fCBO
achieves the smallest target effect by selecting MPS
S∗ = {〈Aspirin, ∅〉, 〈Statin, (Age, BMI)〉, 〈CI, ∅〉} and DMP
π∗S∗ = {0.1, π∗Statin|Age,BMI, 1}. BO and CBO select MPS

S∗ = {〈Aspirin, ∅〉, 〈Statin, ∅〉, 〈CI, ∅〉}, and DMP π∗S∗ =
{0.1, 1, 1}. MCBO-H does not reach convergence.

Fig. 3(middle) displays π∗Statin|Age,BMI selected by fCBO (left)
and π∗Statin|∅(∅) = 1 selected by CBO as a constant func-
tion over Age and BMI (right). These two plots show that,
while methods that consider only hard interventions are
forced to assign intervention values uniformly across the
context space, methods that also allow functional inter-
ventions can concentrate on specific sub-groups, in this
case characterized by lower values of Age and BMI. Be-
ing able to differentiate among interventions assigned to
different sub-groups has important implications in terms
of cost CoS∗(π∗S∗). Fig. 3(right) shows that fCBO incurs al-
most the same cost as CBO. This result demonstrates another
key property of functional interventions: taking the context

values into account allows the investigator to assign inter-
ventions to units in the population characterized by context
values that lead to smaller target effects. Similar results are
observed with GridSize = 8 (Fig. 4). fCBO achieves the
smallest target effect (Fig. 4, left), and incurs a lower cost
compared to CBO (Fig. 4, right). In this setting fCBO con-
verges to S∗ = {〈Aspirin, ∅〉, 〈Statin, (Age, BMI)〉} with
π∗S∗ = {0.1, π∗Statin|Age,BMI}. Due to the more complex
π∗Statin|AgeBMI (Fig. 4(middle, left)), which allocates the high-
est Statin dosages to mid-range value of Age and BMI, the
investigator can avoid intervening on CI thus lowering the
overall cost of the intervention while still achieving an over-
all smaller target effect.

7 CONCLUSION

We proposed the fCBO method for finding policies made
of hard and functional interventions that optimize a target
effect. We introduced graphical criteria that establish when
functional interventions could be necessary to achieve opti-
mal target effects and when hard interventions are sufficient.
Furthermore, we showed that optimizing a target effect by
considering functional interventions allows the investigator
to identify policies that are also optimal w.r.t. conditional
target effects. We demonstrated the benefit of the proposed
approach on a synthetic and on a real-world causal graph.
Future work will explore the use of gradient-based optimiza-
tion methods for the acquisition functional, as well as the
development of more flexible kernel construction for the
GP functionals (see Section 2 of the supplementary mate-
rial). These extensions would enable the identification of
more flexible functional interventions while speeding up the
convergence of the algorithm.
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Figure 4: HEALTH experiments with GridSize = 8. Left: Average convergence of fCBO to the fCGO optimum (solid red
line); of CBO, BO, and MCBO-H to the CGO optimum (dotted red line); and of BFO to the FGO optimum (dashed red line)
(across 20 different initializations of DI for fCBO, CBO, BO, BFO, and across 20 seeds for MCBO-H – shaded areas give ±
standard deviation). Middle: π∗Statin|Age,BMI found by fCBO (left) and π∗Statin|∅ found by CBO (right) across levels of Age and
BMI. Right: Cost associated to the optimal MPS and associated optimal DMP found by fCBO and CBO.
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