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In this Supplementary Material, we provide some subtleties of the target graph of J-PCMCI+, the dummy-projection and
deletion operations, the embedding and representation of the dummy variable and how to relax some of the assumptions.
Furthermore, we give background on the challenge of determinism within causal discovery, illustration on how context
nodes can help with orienting additional edges, proofs for the main theorems, additional pseudocode and details on the
simplified experimental setup as well as additional plots for the numerical experiments.

A CODE

The code to reproduce the experimental results can be found under the following url https://github.com/guenwi/
J-PCMCIplus. The method (J-PCMCI+) will also be made available as part of the tigramite package (https://
github.com/jakobrunge/tigramite).

B MORE ON DUMMY-PROJECTION AND -DELETION

B.1 THE TARGET GRAPH OF J-PCMCI+

We define the "target graph" as our ultimate object of interest, which is the causal graph between the system nodes. By
extension, it is implied that the links between the context nodes as well as those between the dummy and system nodes
aren’t of interest, the latter additionally so because the dummy variable is not a causal variable. To make this more tangible,
we provide additional illustration of the target graph in relation to the dummy-projection and dummy-deleted version of the
ground truth graph in figure 1.

B.2 DUMMY CONFOUNDING

A misleading fact about the dummy projection, and also of Galg, which is the result of algorithm J-PCMCI+ (J-PC,
respectively), is that it can contain system variables confounded by the dummy, that do not correspond to actual latent
confounding, see figure 3 for a visualization of one such case. However, as we prove in Section 4.3, this is not a concern
because we are interested in the true causal graph over the system variables together with edges from context to system
variables, and for this task conditioning on such a dummy that isn’t a true confounder doesn’t lead to wrong inferences.

Furthermore, note that we include the time-dummy Dtime only once into the time series graph. Since the time-dummy does
not contain information on the specific value of the unobserved context variables but only encodes expert knowledge on
their structure, we are not able to discover at which specific lag the causal relationship between the latent temporal context
variables and the system variables occurs. However, we are able to find whether the system variables are influenced by a
temporal context variable or not. See figure 2 for a visualization.
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Figure 1: Visualization of the summary graphs of SCM (1) (A), as well as the corresponding target graph (B). The node D
in the dummy projected graph can be either the time dummy Dtime or the space dummy Dspace. Latent context nodes are
visualized using dashed circles, dashed arrows denote deterministic dependencies (not part of dummy projection).
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Figure 2: Unrolled time series graph with system variables X1, X2, an observed temporal context variable C1
time with

(possibly lagged) links to system variables, an observed spatial context variable C1
space as a single node as it’s constant over

time, space and time dummy Dspace and Dtime as single nodes. Note that this graph omits links between context variables
and between dummy and context variables. For better readability, we used thinner arrows for lagged links from the context
and dummy variables to the system variables.



B.3 EMBEDDING OF THE DUMMY VARIABLES

Here, we provide further detail on how to represent or encode the dummy variable. The choice of embedding matters most
for testing conditional independence between dummy and system variables. Potential choices of embeddings include one-hot
encoding, which we use, or using the integers that denote the time or data set index directly (as done in [Huang et al., 2020]),
among others.

In CD-NOD [Huang et al., 2020], the auxiliary variable corresponds to the domain or time index, i.e., the dummy takes
values in {1, . . . , nC}, where nC is the number of contexts. To then be able to test for marginal and conditional independence
between a system variable X and the dummy D, Huang et al. [2020] employ the KCI test [Zhang et al., 2011] since the
functional relationship between D and X is highly non-linear. In case of non-stationary data, they also assume that all
temporal context variables are a smooth function of the time-dummy, thus they also need to keep the time order in their
embedding of the dummy (which we do not do). When using a one-hot encoded dummy in combination with a partial
correlation test for testing whether a system variable depends on the context, we are essentially testing for differences in
mean of that system variable as the context changes, since the partial correlation coefficient reduces to the point-biserial
correlation coefficient Sheskin [2020] if one of the variables is dichotomous. If we would adapt the CI test, the same could
be achieved with an integer-embedding of the dummy.

Furthermore, the choice of embedding also has implications on how easy it is to regress out context information from
the system variables when testing system-system adjacencies conditional on the dummy. Using the one-hot encoding
of the dummy values, we are centering the system data within each dataset or across time. This is very related to the
well-established technique of fixed effects panel regression.

B.4 RELAXING THE NO-MEDIATION ASSUMPTION

It is possible to relax the no-mediation assumption, which is part of Assumption 2. However, this will result in the context-
system links as discovered by J-PCMCI+ representing ancestral rather than direct causal relationships. A consequence of
that is that the graph Galg that corresponds to the (time-series) graph resulting from algorithm J-PCMCI+ is not identical to
the dummy-projected graph GD of the ground truth graph G. In particular Galg will have more system-context links than
those in GD. Such link could appear because of an observed context variable that is indeed a parent of the system variable,
i.e., links that also appear in GD. However, it could also happen that a latent context L is a mediator between an observed
context variable and a system variable. Since we cannot condition on the dummy in the first step of the algorithm (due to the
deterministic relationship between dummy and context), the algorithm will not remove this link. However, it is not contained
in the dummy projected ground truth graph because there is no actual link to system from the observed context variable.

Consequently, the consistency theorem 2 does no longer hold since it relies on the dummy-projection of the ground truth
graph which does not include ancestral links between context and system variables that are mediated by a latent context. The
theorem would be adapted to a new definition of the dummy-projection that includes such links.

C FAITHFULNESS VIOLATION DUE TO DETERMINISM

Causal inference on data containing deterministic relationships and the challenges thereof have been dealt with previously,
e.g. [Daniusis et al., 2012], [Lemeire et al., 2011]. Let us look at an example which was taken from Lemeire et al. [2012] to
illustrate the challenge that is introduced by deterministic relationships.

Let X → Y → Z be the ground truth causal graph over the variables X , Y , Z, where there is a deterministic relation
between Y and X , i.e. there exists a function f(·) s.t. Y = f(X). Therefore, Y ⊥⊥ Z|X since X contains all information
about Y .

This illustrates that deterministic relations generate additional independencies beyond those implied by the Markov condition.
In other words, the true DAG is not faithful to the joint probability distribution of X,Y, Z. To describe these additional
independencies, the D-separation criterion has been introduced [Geiger et al., 1990]. It is worth noting that the PC algorithm
will not be sound when deterministic relationships are present. In the above example, the algorithm will remove both the
edge between Y and Z, and also between X and Z. This will happen because the conditional independence Y ⊥⊥ Z|X
(wrongly) suggests that X separates Y and Z. On the other hand, X ⊥⊥ Z|Y due to d-separation.



Figure 3: Visualization of the dummy projection operator (middle) and the dummy deletion (right) on summary graphs of
SCM (1). The node D can be either the time dummy Dtime or the space dummy Dspace. Latent context nodes are visualized
using dashed circles, dashed arrows denote deterministic dependencies (not part of dummy projection). The first row
indicates that a dummy confounder does not correspond to a real latent confounder, while in the second row it does.

Figure 4: Visualization of how the context variables help orient additional edges by making use of the assumption that
context nodes are exogenous to the system (left) and the standard rules of orientation propagation (right).

D CONTEXT NODES HELP IN ORIENTING EDGES

We quickly recap how context variables help in orienting additional system-system links. We consider the situation where
C → X − Y and there is no edge between C and Y . Then C → X − Y forms an unshielded triple. Then we can use
standard collider orientation rules to orient the edge between X and Y . In more detail:

(i) If Y and C are independent given a set of variables that does not include X , then the triple is a V-structure, and we
have X ← Y .

(ii) Otherwise, if Y and C are independent given a set of variables including X , then we have X → Y .

See figure 4 for a visualization.

E PROOFS

E.1 PROOF OF THEOREM 1

Before we get to the proof of Theorem 1, we note that the following useful lemma holds for the non-time series case.

Lemma 1. For two system variables X and Y , it holds for any S ⊂ X

X ⊥⊥ Y |S ∪ {D} ⇐⇒ X ⊥⊥ Y |S ∪C ∪ L.

For a definition of the sets X, C and L, please refer to the main text. Note that in the non-time series case, there is no time
dummy, therefore D := Dspace.



Proof. This was already shown in the proof of Theorem 1 by Huang et al. [2020] but, for convenience, we repeat the
arguments here. All system variables can be expressed as functions of C, L, and the noise. Therefore, the conditional
distribution of the system given the dummy (i.e. the distribution within each data set) P (X|D) is determined by the
joint distribution of the noise, and the observed and latent context variables C ∪ L. This implies P (X,Y |S ∪C ∪ L ∪
{D}) = P (X,Y |S ∪ C ∪ L) where S ⊂ X (since the noise is independent of D). Then by recalling the weak union
property of conditional independece as well using the fact that L and C are deterministic functions of D, it follows that,
X ⊥⊥ Y |S ∪ {D}, i.e. P (X,Y |S ∪ {D}) = P (X|S ∪ {D})P (Y |S ∪ {D}) is equivalent to P (X,Y |S ∪ C ∪ L) =
P (X|S ∪C ∪ L)P (Y |S ∪C ∪ L).

We now recall theorem 1.

Theorem 1 (Non-time series consistency result). Denote the output of J-PC (Algorithm 1 in the main text) as Galg . Under
the assumptions 1, 2, 3, 4, and assuming consistent conditional independence tests are used, the dummy deletion of Galg
corresponds to the dummy-deleted ground truth graph as the number of data sets M tends to infinity.

Proof. Let us denote the skeleton of the projected ground truth graph with deleted dummy nodes by G∗. Similarly, we
denote the skeleton of the dummy-deleted output of the algorithm by Ĝ∗. We call their dummy-projected version of the
ground truth graph G, and the output of the algorithm (which is essentially a dummy projection) Galg .

First, we prove soundness of the algorithm, in other words we need to show that Ĝ∗ = G∗.

The soundness of context-system links follows from the soundness of the PC algorithm on the subset of system and observed
context nodes. Let X ∈ X and C ∈ C. The algorithm removes a link iff X ⊥⊥ C|S where S ⊂ X ∪C. Then Faithfulness
(w.r.t. ground truth graph to Pm(X,C,L)) implies that all links not in Ĝ∗ are also not in G∗.
We also need to show that any context-system links that are not in G∗ are also not in Ĝ∗. If the link between X and C is
not in G∗, then X ⊥⊥ C|S where S ⊂ X ∪C ∪ L. Using the assumption that system and context (Assumption 3) are not
confounded by latent variables and latent context nodes cannot be mediators between system and context, this is equivalent
to X ⊥⊥ C|S where S ⊂ X ∪C. This is tested at some iterative step of the PC-algorithm, and consequently the link is
removed.

Since the dummy-deleted graphs do not contain any links to the dummy, we need to show soundness for the system-system
links. However, within that it is needed that we find the correct dummy-system links. In other words we first show that if the
link D −X is not in Galg, then it also is not in G.
If the link D −X is not in Galg, then X ⊥⊥ D|S ∪ PaC(X) where S ⊂ X. This implies that for all latent context nodes
L holds X ⊥⊥ L|S ∪ PaC(X) since L can be expressed as a function of D, i.e. there exists a function g with L = g(D).
Therefore by Faithfulness and the non-invertibility of the function g, there is also no link between X and L in the ground
truth graph, and thus also no link to the dummy in its projected version G.
For the other direction, we need to show that if the link D −X is not in G, then it also is not in Galg. If the link D −X is
not in G, then for all latent nodes L it holds L−X is not in the ground truth graph. By the Causal Markov Condition, it
holds X ⊥⊥ L|Pa(X) for all L. This also implies that PaL(X) is empty. We also know that X can be expressed as a function
of the context nodes C, L and the noise. This means, conditional on Pa(X), X only depends on the noise. The noise is
independent of D, thus X ⊥⊥ D|Pa(X). Therefore, the algorithm will remove this dummy-system link.

Now, we prove soundness for the system-system links. The algorithm removes a link iff X ⊥⊥ Y |S∪PaCD(X) where S ⊂ X,
PaCD(X) dummy and contextual parents of X . Note that by Assumption 4 there exist functions gi, hj s.t. Li = gi(D) and
Cj = gj(D), and thus P (X,Y |S ∪C ∪ L ∪ {D}) = P (X,Y |S ∪ {D}).
So, if D ∈ PaCD(X) this yields, together with Lemma 1

X ⊥⊥ Y |S ∪ PaCD(X) =⇒ X ⊥⊥ Y |S ∪ {D} =⇒ X ⊥⊥ Y |S ∪C ∪ L.

And Faithfulness (of ground truth graph to Pm(X,C,L)) implies that this link is not in G∗. If D ̸∈ PaCD(X), Faithfulness
is directly applicable.

It remains to show that system-system links not in G∗ are also not in Ĝ∗. If the link between X and Y is not in G∗, then
X ⊥⊥ Y |S where S ⊂ X ∪C ∪ L, and also X ⊥⊥ Y |S ∪ PaC(X) ∪ PaL(X) where S ⊂ X. Again, we distinguish two
cases:



First note that by what we proved above PaCD(X) in the dummy-projection G is a subset of PaCD(X) in the dummy-
projection Galg (i.e. it might not contain the dummy if Galg has a dummy link to X). If D ̸∈ PaCD(X) in G, then there
exists V ∈ C ∪X with X ⊥⊥ L|V (since L is a function of D), i.e. PaL(X) = ∅, and thus X ⊥⊥ Y |S ∪ PaC(X), but also
X ⊥⊥ Y |S ∪ PaC(X) ∪ {D}. So, in any case (if D is a parent of X in Galg or not) the algorithm removes the link.
On the other hand, if D ∈ PaCD(X) in G, we use that X ⊥⊥ Y |S∪PaC(X)∪PaL(X) is equivalent to X ⊥⊥ Y |S∪C∪L which
is equivalent to X ⊥⊥ Y |S∪{D}. If this holds, then also X ⊥⊥ Y |S∪{D}∪PaC(X), which implies X ⊥⊥ Y |S∪PaCD(X).
So, also in this case the algorithm will remove the link. This concludes the soundness proof.

Completeness follows from soundness of the context-system, dummy-system and system-system links proved above, and
the completeness of the PC-algorithm under tiered background knowledge Andrews et al. [2020].

E.2 PROOF OF THEOREM 2

We extend Lemma 1 to the time series case.

Lemma 2. Let X be time series data. Define B−XY := (B̂−t (Yt) \ {Xt−τ}), B̂−t−τ (Xt−τ ) where B̂−t (Xt) denotes the lagged
adjacency set resulting from the lagged skeleton phase of PCMCI+ (Algorithm 1 in Runge [2020]). For two system variables
Xt−τ and Yt, it holds for any S ⊂ X

Xt−τ ⊥⊥ Yt|S,B−XY , Dtime, Dspace ⇐⇒ Xt−τ ⊥⊥ Yt|S,B−XY ,C,L,

and
Xt−τ ⊥⊥ Yt|S,B−XY , Dspace ⇐⇒ Xt−τ ⊥⊥ Yt|S ∪Cspace,B−XY ,Lspace,

as well as
Xt−τ ⊥⊥ Yt|S,B−XY , Dtime ⇐⇒ Xt−τ ⊥⊥ Yt|S,B−XY ,Ctime,Ltime.

Proof. The following equation follows exactly in the same way as Lemma 1. Since the observed and latent context variables
are either space- or time-dependent, this also works for the space and time dimension separately.

Theorem 2 (Time series consistency result). Denote the time series graph output of J-PCMCI+ (Algorithm 2 in the main
text) as Galg. Under assumptions 1, 2, 3, 4, and assuming consistent conditional independence tests are used, the dummy
deletion of Galg corresponds to the target graph (definition 1) as the number of data sets M and the number of times steps T
tend to infinity.

Proof. Let us denote the skeleton of the projected ground truth time series graph with deleted dummy nodes by G∗. Similarly,
we denote the skeleton of the dummy-deleted time series graph output of the algorithm by Ĝ∗. We call their dummy-projected
version of the ground truth graph G, and the output of the algorithm (which is essentially a dummy projection) Galg.

Soundness:
First, note that the lagged phase returns a set that always contains the parents of Xj

t by Lemma S1 in Runge [2020]. This
still holds if latent context confounders are present, only additional links are possible.

Now, we show soundness of the system-context links. If Xj
t − Ci

t−τ not in Ĝ∗, then by Faithfulness also Xj
t − Ci

t−τ not in
G∗.
For the other direction,if the link between Xj

t and Ci
t−τ is not in G∗, due to the Causal Markov Condition it holds

(Xi
t−τ ,W

−
t ) ⊥⊥ Cj

t |Pa(Cj
t ). Define W−

t := (B̂−t (X
j
t )\{Ci

t−τ}), B̂−t−τ (C
i
t−τ )\Pa(Xj

t ) as in Runge [2020] where B̂−t (Xt)
denotes the lagged adjacency set resulting from the lagged skeleton phase of PCMCI+ (Algorithm 1 in Runge [2020]).
Using the weak union property of conditional independence this implies Xi

t−τ ⊥⊥ Cj
t |Pa(Cj

t ),W
−
t which is, by definition

of W−
t equivalent to Xi

t−τ ⊥⊥ Cj
t |Pa(Cj

t ), B̂−t (C
j
t ) \ {Xi

t−τ}, B̂−t−τ (X
i
t−τ ). Note that Pa(Cj

t ) ⊂ C ∪ L, however by
Assumptions 2, there exist no latent confounders or mediators between system and context, thus we also find a set S ⊂ C
s.t. Xi

t−τ ⊥⊥ Cj
t |S, B̂−t (C

j
t ) \ {Xi

t−τ}, B̂−t−τ (X
i
t−τ ). This is tested at some iterative step of the algorithm and the link is

removed.

Even though, eventually we are only interested in the soundness of system-context and system-system links, we need to
establish that the dummy-system links within Galg correspond to those in the dummy-projected ground truth graph G. In the
following, D can either denote Dtime or Dspace.
Now, we show if the link D − Xj

t is not in Galg, then it also is not in G. If the link D − Xj
t is not in Galg, then



D ⊥⊥ Xj
t |S, B̂Ct (X

j
t ). This conditional independence also holds for all latent context nodes L since it can be expressed as

a non-invertible function of D. Therefore by Faithfulness and the non-invertibility of this function, there is also no link
between Xj

t and L in the ground truth graph, and thus also no link to the dummy in its projected version G.

For the other direction, let us define W−
t := B̂−t (X

j
t ) \ Pa(Xj

t ), the set W−
t does not contain parents of Xj

t , it also does not
contain any latent nodes. If the link D −Xi

t is not in G, then for all latent nodes L it holds L −Xi
t is not in the ground

truth graph. Thus by the Causal Markov Condition (L,W−
t ) ⊥⊥ Xj

t |Pa(Xj
t ), and by the weak union property and using the

definition of W j
t , we get L ⊥⊥ Xj

t |Pa(Xj
t ), B̂−t (X

j
t ) for all L ∈ L. This also implies that PaL(X

j
t ) = ∅.

Also, similarly to the non time series case, Xj
t can be expressed as a function of the context nodes C, L and the noise

(and auto-correlation which is accounted for by B̂−t (X
j
t )). This means, conditional on (Pa(Xj

t ) \ L) ∪ B̂−t (X
j
t ), X

j
t only

depends on the noise. The noise is independent of D, thus Xj
t ⊥⊥ D|Pa(Xj

t ). Therefore, the algorithm will remove this
dummy-system link.

Next, we show the soundness of the discovery of the system-system links.
We first show, if the link Xi

t−τ −Xj
t not in Ĝ∗ then it is also not in G∗. Essentially, this follows with the same arguments as

in non time series case combined with Faithfulness, but we will go through the arguments in more detail now.
To simplify the notation, we make the abbreviation B := B̂−t (X

j
t ) \ {Xi

t−τ}, B̂−t−τ (X
i
t−τ ). The algorithm removes the link

between Xi
t−τ and Xj

t if and only if
Xi

t−τ ⊥⊥ Xj
t |S,B,PaCD(Xi

t−τ , X
j
t )

for some S ∈ Ât(X
j
t ).

If Dtime, Dspace ̸∈ PaCD(Xi
t−τ , X

j
t ): Faithfulness is directly applicable.

Let now D be either Dtime or Dspace. If D ∈ PaCD(Xi
t−τ , X

j
t ) this yields, together with Lemma 2

X ⊥⊥ Y |S,B,PaCD(X,Y ) =⇒ X ⊥⊥ Y |S,B, {D} =⇒ X ⊥⊥ Y |S,B,C,L.

and we can apply the Faithfulness argument.

Now we show the other direction, i.e. if Xi
t−τ − Xj

t not in G∗ =⇒ Xi
t−τ − Xj

t not in Ĝ∗. For that, we define
W−

t := (B̂−t (X
j
t ) \ {Xi

t−τ}, B̂−t−τ (X
i
t−τ ),PaC(Xi

t−τ )) \ Pa(Xj
t ) similar to Runge [2020]. This set does not contain any

parents of Xj
t and by the assumption also Xi

t−τ is not a parent of Xj
t . Furthermore, we assume that for τ = 0, Xi

t is not a
descendant of Xj

t (can be always achieved by exchanging the roles of Xi
t and Xj

t ).
Then the Causal Markov Condition implies (Xi

t−τ ,W
−
t ) ⊥⊥ Xj

t |Pa(Xj
t ) Using the weak union property this implies

Xi
t−τ ⊥⊥ Xj

t |Pa(Xj
t ),W

−
t which is, by definition of W−

t , equivalent to

Xi
t−τ ⊥⊥ Xj

t |Pa(Xj
t ), B̂−t (X

j
t ) \ {Xi

t−τ}, B̂−t−τ (X
i
t−τ ),PaC(Xi

t−τ ) (1)

Note that the conditioning set potentially also contains nodes from L (but only in Pa(Xj
t )). This also implies

Xi
t−τ ⊥⊥ Xj

t |Pa(Xj
t ) \ L, B̂−t (X

j
t ) \ {Xi

t−τ}, B̂−t−τ (X
i
t−τ ),PaC(X

j
t−τ ), {Dtime, Dspace}, (2)

and similarly if Pa(Xj
t ) only contains nodes from Lspace which can be accounted for by additionally conditioning on

Dspace (same argument holds if we replace space by time). If there are no latent nodes in Pa(Xj
t ), then (1) is the same as

Xi
t−τ ⊥⊥ Xj

t |PaXC(X
j
t ), B̂−t (X

j
t ) \ {Xi

t−τ}, B̂−t−τ (X
i
t−τ ), in our algorithm we either test this or (2) and therefore remove

the link.
If there are latent nodes in Pa(Xj

t ), then D ∈ PaCD(Xj
t ) within G and thus also in PaCD(Xj

t ) within Galg , so we test (2)
and remove the link.

For system-system links completeness follows as in Runge [2020]. The context-system links are already correctly oriented
by the exogeneity assumption (context cannot be a descendent of system).

Corollary 1. If some of the observed context variables are treated as unobserved, and the assumptions 1, 2, 3, 4 still hold,
our method J-PCMCI+ will recover the correct system-system adjacencies.

Proof. This follows directly from theorem 2.

F PSEUDOCODE

We present the pseudocodes for poolData, partialSkeletonPC and partialContempSkeletonPCMCI+
below.



Algorithm 1: poolData (for non-time-series data)
For the time-series case we rely on the functionality supplied in Tigramite [Runge et al., 2019] to handle time-series
data from multiple data-sets while keeping the time structure (in particular while using the sliding window approach to
cunstruct time-series data for the lagged variables Xi

−τ for τ > 0

Data: M data-sets X containing observations of the same system (and for time-series case: temporal context) variables,
M observations of context variables C (one per data-set), optional: dummy variable with M distinct values

Result: one data-set containing the pooled data
Let N denote the number of system variables
Let K denote the number of (observed) context variables
Let Tm denote the sample-size of the system variables with m = 1, . . . ,M
for i in 1, . . . , N do

concatenate (Xi,(m))m=1,...,M

end
for j in 1, . . . ,K do

construct array of context variable Cj by repeating its M values Tm times
end
if data for the dummy variable D is provided then

construct array for the dummy variable D by repeating its M values Tm times
end
return (X1, . . . , XN , C1, . . . , CK , D)

Algorithm 2: partialSkeletonPC
CI(X,Y, S) is some suitable conditional independence test
Data: Data X, significance level α, node pairs to consider P , link knowledge B
Result: graph G
Form a graph G with information from B, connect all other nodes with undirected links
Set p = 0
while any adjacent pairs (X,Y ) in P satisfy |A(X) \ {Y }| ≥ p do

Select an adjacent pair (X,Y ) from P with |A(X) \ {Y }| ≥ p
Select S ⊂ A(X) \ {Y } with |S| = p
p-value← CI(X,Y, S)
if p-value > α then

Delete link X − Y from G
Store (unordered) sepset (X,Y ) = S

end
end
return G, sepset



Algorithm 3: partialContempSkeletonPCMCI+, small adaption of Algorithm 2 in Runge [2020]
CI(X,Y, S) is some suitable conditional independence test

Data: M time-series data-sets X(m) = (X1,(m), . . . , XN,(m)) which can contain system, context and also dummy
variables, indices of system variables J , max. time lag τmax, significance threshold αPC, B̂−t (X

j
t ) for all

Xj
t ∈ Xt = (X1

t , . . . , X
N
t )1, contextual parents C(X), pairs to consider P

Result: graph G, sepset
Form time series graph G with lagged links from B̂−t (X

j
t ) for all Xj

t ∈ Xt, fully connect all contemporaneous system
variables, i.e. add Xi

t −Xj
t for all Xi

t ̸= Xj
t ∈ Xt with i, j ∈ J , and set links between context and system according

to C(X)
Initialize contemporaneous adjacencies Â(Xj

t ) := Ât(X
j
t ) = {Xi

t ̸= Xj
t ∈ Xt|Xi

t −Xj
t in G}

Let p = 0
while any adjacent pairs (Xi

t−τ , X
j
t ) for τ ≥ 0 in G from P satisfy |Â(Xj

t ) \ {X
j
t−τ}| ≥ p do

Select new adjacent pair (Xi
t−τ , X

j
t ) from P for τ ≥ 0 satisfying |Â(Xj

t ) \ {X
j
t−τ}| ≥ p

while (Xi
t−τ , X

j
t ) are adjacent in G and not all S ⊂ Â(Xj

t ) \ {X
j
t−τ} with |S| = p have been considered do

Choose new S ⊂ Â(Xj
t ) \ {X

j
t−τ} with |S| = p

Set Z = (S, B̂−t (X
j
t ) \ {X

j
t−τ}, B̂−t−τ (X

j
t−τ )

(Xi
t−τ , X

j
t ,Z)← poolData((X

i,(m)
t−τ , X

j,(m)
t ,Z(m))m=1,...,M )

(p-value, I)← CI(Xi
t−τ , X

j
t ,Z)

Imin(Xi
t−τ , X

j
t ) = min(|I|, Imin(Xi

t−τ , X
j
t ))

if p-value > αPC then
Delete link Xi

t−τ → Xj
t for τ > 0 (or Xi

t −Xj
t for τ = 0) from G

Store (unordered) sepset (Xi
t−τ , X

j
t ) = S

end
Let p = p+ 1 and re-compute Â(Xj

t ) from G and sort by Imin(Xi
t−τ , X

j
t ) from largest to smallest

end
end
return G, sepset



G SIMPLIFIED EXPERIMENTAL SETUP

We want to understand the shape of the adjacency-FPR surface of our method better. From the numerical results of the
standard setup it seems that for a fixed samplesize T the FPR goes up with the number of datasets. On the other hand, for a
fixed number of datasets M , FPR goes down with increasing samplesize. A similar pattern is visible when simply applying
PCMCI+ on data where dummy variables have been included.

To this end, we simplify our experimental setup in the following way. We sample data from a specific version of the SCM
(1):

X0
t := 0.5X1

t + 0.5C0
space + 0.5C1

space + 0.5C0
time,t−1 + 0.5C1

time,t−1 + η0

X1
t := 0.5X1

t−1 + 0.5C0
space + 0.5C1

space + 0.5C0
time,t−1 + 0.5C1

time,t−1 + η1

C0
space := η0space

C1
space := η1space

C0
time,t := η0time

C1
time,t := η1time,

(3)

where C1
space and C1

time are unobserved, and all other variables are observed. On the system data of this SCM we apply a
modified version of PCMCI+ where we always including the dummy variables in the conditioning sets of all conditional
independence tests. By doing so, we are able to see what effect conditioning on the dummies has on the FPR, see figure 5.
In the FPR-plot, we see a similar pattern as is visible in the more involved experimental setup. Generally speaking, for a
fixed samplesize T the FPR goes up with the number of datasets M while, for a fixed number of datasets M , it goes down
with increasing samplesize T . This means, in the large sample limit (of both M and T ) we can expect consistent results.
However, if we only have a small samplesize T , there are potentially inflated false positives.

Figure 5: Discovery results of system-system links in the simplified experimental setup (section G) for varying sample sizes
T , and number of datasets M .



Figure 6: Discovery results of system-system links for varying sample sizes T , and fixed M = 10 (top row), and varying
number of contexts M , and fixed T = 10 (bottom row). The data is generated according to the SCM described in section H.
In this setting all of the context nodes are observed. We compare our method (J-PCMCI+) to PCMCI+ using all data of
observed nodes (PCMCI+ with C) and only using data of system variables (PCMCI+).

H NONLINEAR EXPERIMENTAL SETUP

We extend the simplified experimental setup of section G a bit to allow for nonlinear mechanisms. In this way, we are able
to demonstrate that our method can be flexibly combined with any CI test. In this setup, we use a CI test based on Gaussian
process regression and a distance correlation (GPDC).

X0
t := 0.3(X1

t )
2 + 0.5C0

space − 0.2(C0
time,t−1)

2 + η0

X1
t := 0.5X1

t−1 − 0.5(C0
space)

2 + 0.3(C0
time,t−1)

2 + η1

C0
space := η0space

C0
time,t := η0time

(4)

We show the results in figure 6.

I ADDITIONAL PLOTS



Figure 7: Discovery results of system-system links for varying sample sizes T , and fixed M = 10 (top two rows), and
varying number of contexts M , and fixed T = 10 (bottom two rows). All other setup parameters are set as the defaults
described in the main text. In this setting half of the context nodes are observed. We compare our method (J-PCMCI+) to
PCMCI+ using all data of observed nodes (PCMCI+ with C), using all data of system variables and including dummies
(PCMCI+ with D), and only using data of system variables (PCMCI+).



Figure 8: Discovery results of system-system links for varying sample sizes T , and fixed M = 10 (top two rows), and
varying number of contexts M , and fixed T = 10 (bottom two rows). All other setup parameters are set as the defaults
described in the main text. In this setting all of the context nodes are observed. We compare our method (J-PCMCI+) to
PCMCI+ using all data of observed nodes (PCMCI+ with C), using all data of system variables and including dummies
(PCMCI+ with D), and only using data of system variables (PCMCI+).



Figure 9: Discovery results of our method (J-PCMCI+) on system-system links for varying sample sizes T , and number of
contexts M . All other setup parameters are set as the defaults described in the main text. In this setting half of the context
nodes are observed. We show the contour line corresponding to the significance level α in the adjacency-FPR plot.



Figure 10: Discovery results of our method (J-PCMCI+) on system-system links for varying sample sizes T , and number of
contexts M . All other setup parameters are set as the defaults described in the main text. In this setting all the context nodes
are observed.We show the contour line corresponding to the significance level α in the adjacency-FPR plot.

Figure 11: Discovery results of our method (J-PCMCI+) on context-system links for varying sample sizes T , and number of
contexts M . All other setup parameters are set as the defaults described in the main text. In this setting all the context nodes
are observed.
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