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The appendix is organized as follows. In Appendix A, we provide a counterexample for lack of target law identification in
the criss-cross MNAR model using continuous variables under normal distributions. Appendix B contains our identification
proofs in the exponential family distribution: target law with univariate X (B.1), target law with multivariate X (B.2)
and full law (B.3). In Appendix C, we include several examples on parametric identification of popular distributions in
the exponential family distributions. Appendix D contains our proofs regarding asymptotic behaviors of our suggested
estimators for conditional likelihood with order statistics (D.1) and generalized method of moments (D.2). In Appendix E,
we provide additional discussions on (non)parametric estimation approaches. Appendix F contains additional experiments.

A COUNTEREXAMPLE FOR LACK OF TARGET LAW IDENTIFICATION

Consider two distinct distributions p1 and p2 defined over variables in {X,Y,Rx, Ry} as follows:

Model 1: Y ∼ N(1, 1), X | Y ∼ N(y, 1), p1(Rx = 1 | y) =
√

5/6√
5/6+exp[− 1

12 (y−1)2]
, and

p1(Ry = 1 | x,Rx) =

{
ϕ(x), when Rx = 1

ϕ(x−5√
5
), when Rx = 0

Model 2: Y ∼ N(1, 65 ), X | Y ∼ N(y, 1), p2(Rx = 1 | y) = exp[− 1
12 (y−1)2]√

5/6+exp[− 1
12 (y−1)2]

, and

p2(Ry = 1 | x,Rx) =

{
ϕ(x), when Rx = 1

exp(− 8
9 ) ∗

√
2
5ϕ(x− 7

3 ), when Rx = 0.

Here ϕ(.) denotes the standard normal CDF, and pi(x, y,Rx, Ry) = pi(y) p(x | y) pi(Rx | y) pi(Ry | x,Rx), i = 1, 2.
Note that p1 ̸= p2. In what follows, we analyze the four missingness patterns one by one and show that the above two
models map to the exact same observed data distribution and thus the target law is not identifiable as a unique function of
the observed data law.

1. Missingness pattern (Rx = 1, Ry = 1). We need to prove

p1(x, y,Rx = 1, Ry = 1) = p2(x, y,Rx = 1, Ry = 1).

This holds since

p1(y) p(x | y) p1(Rx = 1 | y) p1 (Ry = 1 | x,Rx = 1)

=
1√
2π

exp

{
−1

2
(y − 1)2

}
× p(x | y)×

√
5
6√

5
6 + exp

[
− 1

12 (y − 1)2
] × 1√

2π
exp

{
−1

2
x2

}
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=
1

√
2π

√
6
5

exp

{
− 1

2× 6
5

(y − 1)2
}
× p(x | y)×

exp
[
− 1

12 (y − 1)2
]√

5
6 + exp

[
− 1

12 (y − 1)2
] × 1√

2π
exp

{
−1

2
x2

}
= p2(y) p(x | y) p2(Rx = 1 | y) p2 (Ry = 1 | x,Rx = 1) .

2. Missingness pattern (Rx = 1, Ry = 0). We need to prove∫
p1(x, y,Rx = 1, Ry = 0)dy =

∫
p2(x, y,Rx = 1, Ry = 0)dy.

That is, ∫
p1(y)p(x | y)p1 (Rx = 1 | y) p1 (Ry = 0 | x,Rx = 1) dy

=

∫
p2(y)p(x | y)p2 (Rx = 1 | y) p2 (Ry = 0 | x,Rx = 1) dy.

Or in other words:∫
p1(y)p(x | y)p1 (Rx = 1 | y) dy −

∫
p1(y)p(x | y)p1 (Rx = 1 | y) p1(Ry = 1 | x,Rx = 1)dy

=

∫
p2(y)p(x | y)p2 (Rx = 1 | y) dy −

∫
p2(y)p(x | y)p2 (Rx = 1 | y) p2(Ry = 1 | x,Rx = 1)dy.

Since
∫
p1(y)p(x | y)p1 (Rx = 1 | y) p1(Ry = 1 | x,Rx = 1)dy =

∫
p2(y)p(x | y)p2 (Rx = 1 | y) p2(Ry = 1 |

x,Rx = 1)dy holds by the missingness pattern (Rx = 1, Ry = 1), we only need to show∫
p1(y)p(x | y)p1 (Rx = 1 | y) dy =

∫
p2(y)p(x | y)p2 (Rx = 1 | y) dy.

We have:

p1(y) p(x | y) p1 (Rx = 1 | y)

=
1√
2π

exp

{
−1

2
(y − 1)2

}
× p(x | y)×

√
5
6√

5
6 + exp

[
− 1

12 (y − 1)2
]

=
1

√
2π

√
6
5

exp

{
− 1

2× 6
5

(y − 1)2
}
× p(x | y)×

exp
[
− 1

12 (y − 1)2
]√

5
6 + exp

[
− 1

12 (y − 1)2
]

= p2(y) p(x | y) p2 (Rx = 1 | y) .

3. Missingness pattern (Rx = 0, Ry = 1). We need to prove∫
p1(x, y,Rx = 0, Ry = 1)dx =

∫
p2(x, y,Rx = 0, Ry = 1)dx.

For any µ and σ > 0, it is true that∫
ϕ(x− y)× ϕ(

x− µ

σ
)dx

=

∫
1√
2π

exp

{
−1

2
(x− y)2

}
× 1√

2πσ
exp

{
− 1

2σ2
(x− µ)2

}
dx

=
1√
2π

× 1√
2πσ

∫
exp

{
−1

2
x2 + xy − 1

2
y2 − 1

2σ2
x2 +

1

σ2
xµ− 1

2σ2
µ2

}
dx

=
1√
2π

1√
2πσ

×
∫

exp

{
− 1

2× σ2

σ2+1

[
x2 − 2x

(
y +

µ

σ2

) σ2

σ2 + 1
+

(
y +

µ

σ2

)2
(

σ2

σ2 + 1

)2
]}

exp

[
−1

2
y2 − 1

2σ2
µ2 +

1

2 σ2

σ2+1

×
(
y +

µ

σ2

)2
(

σ2

σ2 + 1

)2
]
dx

=
1√
2π

×
√

1

1 + σ2
× exp

[
−1

2

1

1 + σ2
y2 +

1

1 + σ2
µy − 1

2

µ2

1 + σ2

]
.



Thus, we have:

p1(y)p1 (Rx = 0 | y)
∫
p(x | y)p1 (Ry = 1 | x,Rx = 0) dx

=
1√
2π

exp

{
−1

2
(y − 1)2

}
×

exp
[
− 1

12 (y − 1)2
]√

5
6 + exp

[
− 1

12 (y − 1)2
] × 1√

2π

√
1

6
exp

[
− 1

12
y2 +

5

6
y − 1

2
× 25

6

]

=
1

2π

√
1

6

1√
5
6 + exp

[
− 1

12 (y − 1)2
] × exp

{
− 7

12
(y − 1)2 − 1

12
y2 +

5

6
y − 1

2
× 25

6

}

=
1

2π

√
1

6

1√
5
6 + exp

[
− 1

12 (y − 1)2
] × exp

{
−2

3
y2 + 2y − 8

3

}

= p2(y)p2 (Rx = 0 | y)
∫
p(x | y)p2 (Ry = 1 | x,Rx = 0) dx

=
1√
2π

exp

{
− 1

2× 6
5

(y − 1)2
}
×

√
5
6√

5
6 + exp

[
− 1

12 (y − 1)2
] × exp(−8

9
)

√
2

5

1√
2π

√
1

2
exp

[
−1

4
y2 +

7

6
y − 49

36

]

=
1

2π

√
1

6
exp(−8

9
)

1√
5
6 + exp

[
− 1

12 (y − 1)2
] exp{− 5

12
(y − 1)2 − 1

4
y2 +

7

6
y − 49

36

}

=
1

2π

√
1

6

1√
5
6 + exp

[
− 1

12 (y − 1)2
] exp{−2

3
y2 + 2y − 8

3

}
.

4. Missingness pattern (Rx = 0, Ry = 0). We need to prove∫
p1(x, y,Rx = 0, Ry = 0)dxdy =

∫
p2(x, y,Rx = 0, Ry = 0)dxdy,

which is guaranteed to hold since the previous three missingness patterns yield the same observed data law and the fact
that probabilities should integrate to one.

This concludes the claim that the target law is not identified in the criss-cross MNAR model.



B IDENTIFICATION PROOFS

B.1 THEOREM 1 (TARGET LAW PARAMETRIC IDENTIFICATION: UNIVARIATE X)

We have
X ∼ exp

{
xηx − bx(ηx)

Φx
+ cx(x; Φx)

}
Y | X ∼ exp

{
yη − b(η)

Φ
+ c(y; Φ)

}
, g(µ(η)) = α+ βx.

The parameters of interest are θ = (α, β,Φ, ηx,Φx). Since p(x | y) is nonparametrically (np)-identified, we can select two
distinct points of X , say x1 and x0 and write

p(x1 | y)
p(x0 | y)

=
p(y | x1)p(x1)

p(y)
÷ p(y | x0)p(x0)

p(y)
=
p(y | x1)
p(y | x0)

× p(x1)

p(x0)

= exp

{
y(η1 − η0)− [b(η1)− b(η0)]

Φ

}
× exp

{
ηx(x1 − x0)

Φx
+ c(x1; Φx)− c(x0; Φx)

}
.

We take a log on both sides. The left-hand side is only a function of y. Suppose the coefficient of y on the left-hand side is ϕ1
and the intercept is ζ1. For the ease of notation, define φ = [g ◦ µ]−1 and ζ = b([g ◦ µ]−1). We can then write the following:

ϕ1(θ) =
η1 − η0

Φ
=

[g ◦ µ]−1(α+ x1β)− [g ◦ µ]−1(α+ x0β)

Φ
=
φ(α+ x1β)− φ(α+ x0β)

Φ

ζ1(θ) =

{
−[b(η1)− b(η0)]

Φ
+
ηx(x1 − x0)

Φx
+ c(x1; Φx)− c(x0; Φx)

}
=

{
−
[
b
(
[g ◦ µ]−1(α+ x1β)

)
− b

(
[g ◦ µ]−1(α+ x0β)

)]
Φ

+
ηx(x1 − x0)

Φx
+ c(x1; Φx)− c(x0; Φx)

}

=

{
−ζ(α+ x1β) + ζ(α+ x0β)

Φ
+
ηx(x1 − x0)

Φx
+ c(x1; Φx)− c(x0; Φx)

}
.

Suppose we have k + 1 distinct values of x. We can then create 2k equations like above, say ϕi and ζi with i = 1, . . . , k.
The core of our identification proof relies on the implicit function theorem. In order to use this theorem, the above equations
need to satisfy the followings:

1. There exists at least one solution θ0 that satisfies the above equations,

2. ϕi(θ) and ζi(θ) are continuous in Θ, i.e., the parameter space with θ0 as an inner point,

3. ϕi(θ) and ζi(θ) are first order partially differentiable in Θ,

4. Let Φ = {ϕ1, . . . , ϕk} and Z = {ζ1, . . . , ζk}. Define the Jacobian matrix J as J = ∂(Φ, Z)
∂(θ) , which is described below:

J=



φ′ (α+ x1β)− φ′ (α+ x0β) φ′ (α+ x1β)x1 − φ′ (α+ x0β)x0 φ (α+ x1β)− φ (α+ x0β) 0 0
...

...
...

...
...

φ′ (α+ xkβ)− φ′ (α+ x0β) φ′ (α+ xkβ)xk − φ′ (α+ x0β)x0 φ (α+ xkβ)− φ (α+ x0β) 0 0

ζ ′ (α+ x1β)− ζ ′ (α+ x0β) ζ ′ (α+ x1β)x1 − ζ ′ (α+ x0β)x0 ζ (α+ x1β)− ζ (α+ x0β) x1 − x0 −ηx(x1−x0)
Φ2

x
+ ∂c(x1,Φx)

∂Φx
− ∂c(x0,Φx)

∂Φx

...
...

...
...

...
ζ ′ (α+ xkβ)− ζ ′ (α+ x0β) ζ ′ (α+ xkβ)xk − ζ ′ (α+ x0β)x0 ζ (α+ xkβ)− ζ (α+ x0β) xk − x0 −ηx(xk−x0)

Φ2
x

+ ∂c(xk,Φx)
∂Φx

− ∂c(x0,Φx)
∂Φx



J must be of full rank under (θ0, ϕi(θ0), ζi(θ0)),

5. The number of equations must be greater or equal to the number of unknown parameters, i.e., 2k ≥ dim(θ).



Under the above conditions, there exists neighborhood U around the true parameters θ0 as U = B (θ0, ϵ) ⊂ Θ, and the
neighborhood V around (ϕi(θ0), ζi(θ0)) as V = B ((ϕ1(θ0), . . . , ϕk(θ0), ζ1(θ0), . . . , ζk(θ0)), η) ⊂ R2k with ϵ, η > 0, and
uniquely defined functions g = (g1, . . . , g2k) on V that each gi is first-order continuously differentiable. We have

θ = g (ϕ1(θ), . . . , ϕk(θ), ζ1(θ), . . . , ζk(θ)) ,

where (ϕ1(θ), . . . , ϕk(θ), ζ1(θ), . . . , ζk(θ)) ∈ V , with θ ∈ U . Given that the (ϕ1, . . . , ϕk, ζ1, . . . , ζk) we observed is
generated under the true value θ0, which is observed (ϕ1, . . . , ϕk, ζ1, . . . , ζk) = (ϕ1(θ0), . . . , ϕk(θ0), ζ1(θ0), . . . , ζk(θ0)),
by applying g, we can uniquely find θ0 = g (ϕ1(θ0), . . . , ϕk(θ0), ζ1(θ0), . . . , ζk(θ0)) .

B.2 TARGET LAW PARAMETRIC IDENTIFICATION: MULTIVARIATE X

B.2.1 Multivariate normal X

Suppose
X ∼ Nd(µ,Σ)

Y | X ∼ exp

{
yη − b(η)

Φ
+ c(y; Φ)

}
, g(µ(η)) = α+ xTβ.

Assume the nuisance parameter Σ is known and θ = (α, β,Φ, µ). We can write down the following equation:

p (x1 | y)
p (x0 | y)

=
p (y | x1)
p (y | x0)

× p (x1)

p (x0)

= exp

{
y (η1 − η0)− [b (η1)− b (η0)]

Φ

}
exp

{
−1

2
(x1 − µ)

T
Σ−1 (x1 − µ) +

1

2
(x0 − µ)

T
Σ−1 (x0 − µ)

}
.

Taking a log on both sides yields the following equation:

log [p (x1 | y)]− log [p (x0 | y)] = y × η1 − η0
Φ

− b (η1)− b (η0)

Φ
− 1

2
(x1 − µ)

T
Σ−1 (x1 − µ) +

1

2
(x0 − µ)

T
Σ−1 (x0 − µ) .

The left-hand side is only a function of y. Suppose the coefficient of y is ϕ1 and the intercept is ζ1. For the ease of notation,
define φ = [g ◦ µ]−1 and ζ = b([g ◦ µ]−1). Then, we obtain the following equation:

ϕ1(θ) =
η1 − η0

Φ
=

[g ◦ µ]−1 (
α+ xT1 β

)
− [g ◦ µ]−1 (

α+ xT0 β
)

Φ
=
φ
(
α+ xT1 β

)
− φ

(
α+ xT0 β

)
Φ

ζ1(θ) = −b (η1)− b (η0)

Φ
− 1

2
(x1 − µ)

T
Σ−1 (x1 − µ) +

1

2
(x0 − µ)

T
Σ−1 (x0 − µ)

= −ζ(α+ xT1 β)− ζ(α+ xT0 β)

Φ
− 1

2
(x1 − µ)

T
Σ−1 (x1 − µ) +

1

2
(x0 − µ)

T
Σ−1 (x0 − µ) .

Suppose we have k + 1 distinct values of x. Thus, we can construct 2k equations, ϕi and ζi with i = 1, . . . , k. In order to
use this theorem, the above equations need to satisfy the followings:

1. There exists at least one solution θ0 that satisfies the above equations,

2. ϕi(θ) and ζi(θ) are continuous on Θ, i.e., the parameter space with θ0 as an inner point,

3. ϕi(θ) and ζi(θ) are first order partially differentiable on Θ,

4. Let Φ = {ϕ1, . . . , ϕk} and Z = {ζ1, . . . , ζk}. Define then Jacobian matrix J as J = ∂(Φ, Z)
∂(θ) , described below:

J=



φ′ (α+ xT1 β
)
− φ′ (α+ xT0 β

)
φ′ (α+ xT1 β

)
xT1 − φ′ (α+ xT0 β

)
xT0 φ

(
α+ xT1 β

)
− φ

(
α+ xT0 β

)
0

...
...

...
...

φ′ (α+ xTk β
)
− φ′ (α+ xT0 β

)
φ′ (α+ xTk β

)
xTk − φ′ (α+ xT0 β

)
xT0 φ

(
α+ xTk β

)
− φ

(
α+ xT0 β

)
0

ζ ′
(
α+ xT1 β

)
− ζ ′

(
α+ xT0 β

)
ζ ′
(
α+ xT1 β

)
xT1 − ζ ′

(
α+ xT0 β

)
xT0 ζ

(
α+ xT1 β

)
− ζ

(
α+ xT0 β

)
(x1 − x0)

T
Σ−1

...
...

...
...

ζ ′
(
α+ xTk β

)
− ζ ′

(
α+ xT0 β

)
ζ ′
(
α+ xTk β

)
xTk − ζ ′

(
α+ xT0 β

)
xT0 ζ

(
α+ xTk β

)
− ζ

(
α+ xT0 β

)
(xk − x0)

T
Σ−1





J must be of full rank under (θ0, ϕi(θ0), ζi(θ0)),

5. The number of equations must be greater or equal to the number of unknown parameters, i.e., 2k ≥ dim(θ).

Under the special case where Y | X ∼ N
(
α+ xTβ,Φ

)
, we have:

ϕi(θ) =
(xi − x0)

T
β

Φ

ζi(θ) = −
(
α+ xTi β

)2 − (
α+ xT0 β

)2
2Φ

− 1

2
(xi − µ)

T
Σ−1 (xi − µ) +

1

2
(x0 − µ)

T
Σ−1 (x0 − µ) ,

where i ∈ (1, . . . , k), and

J=



0 (x1−x0)
T

Φ − (x1−x0)
T β

Φ2 0
...

...
...

...
0 (xk−x0)

T

Φ − (xk−x0)
T β

Φ2 0

− (x1−x0)
T β

Φ −α(x1−x0)
T+βT (x1x

T
1 −x0x

T
0 )

Φ
(α+xT

1 β)2−(α+xT
0 β)2

2Φ2 (x1 − x0)
T
Σ−1

...
...

...
...

− (xk−x0)
T β

Φ −α(xk−x0)
T+βT (xkx

T
k −x0x

T
0 )

Φ
(α+xT

k β)2−(α+xT
0 β)2

2Φ2 (xk − x0)
T
Σ−1


After performing some rank-preserving modifications to this matrix, we have

J=



0 (x1 − x0)
T −(x1 − x0)

Tβ 0
...

...
...

...
0 (x1 − x0)

T −(x1 − x0)
Tβ 0

(x1 − x0)
Tβ −

[
α(x1 − x0)

T + βT (x1x
T
1 − x0x

T
0 )

] (α+xT
1 β)2−(α+xT

0 β)2

2 (x1 − x0)
T
Σ−1

...
...

...
...

(xk − x0)
Tβ −

[
α(xk − x0)

T + βT (xkx
T
1 − x0x

T
0 )

] (α+xT
k β)2−(α+xT

0 β)2

2 (xk − x0)
T
Σ−1


The dimension of J is dim(J) = 2k × (2 + 2d). Assume 2k ≥ (2 + 2d). A sufficient condition to make J full rank is
knowing at least α.

Note that in this example p(X | Y ) is in the exponential family, since:

p(x | y) = p(y | x)p(x)
p(y)

= exp

{
−
[
y −

(
α+ xTβ

)]2
2Φ

+ log
1√
2πΦ

− 1

2
(x− µ)TΣ−1(x− µ) + log

1√
(2π)d|Σ|

− log(y)

}

= exp

{
− (y − α)2

2Φ
+

(yβ − αβ)T

Φ
x−

tr
(
ββTxxT

)
2Φ

+ log
1√
2πΦ

+ µTΣ−1x− 1

2
xTΣ−1x− 1

2
µTΣ−1µ+ log

1√
(2π)d|Σ|

− log(y)

}

= exp

{[
(yβ − αβ)T

Φ
+ µTΣ−1,−

vec
(
ββT

)T
2Φ

](
x

vec
(
xxT

) )
− (y − α)2

2Φ
+ log

1√
2πΦ

− 1

2
xTΣ−1x− 1

2
µTΣ−1µ+ log

1√
(2π)d|Σ|

− log(y)

}
.

Here tr(.) denotes the trace of the input matrix and vec(.) refers to the vectorization operation applied to the input matrix,
e.g., An×m, as stacking the rows of the matrix one by one to form a long column vector with size nm, i.e.,

vec[A] = vec


 a11 · · · a1m

...
. . .

...
an1 · · · anm


 =


a11

...
a1m

...
anm

 .



B.2.2 Multinomial X

Suppose
X ∼ Multinomiald(n, p),

Y | X ∼ exp

{
yη − b(η)

Φ
+ c(y; Φ)

}
, g(µ(η)) = α+ xTβ,

where p = (p1, . . . , pd) is the vector of event probabilities, and n is the number of trials. We can write p(x) = exp[xT η +
c(x)] with η =

(
log p1, . . . , logpd

)
, c(x) = log n!

x1!···xd!
. Assume the nuisance parameter n is known and θ = (α, β,Φ, η).

We can write down the following:

p (x1 | y)
p (x0 | y)

=
p (y | x1)
p (y | x0)

× p (x1)

p (x0)

= exp

{
y (η1 − η0)− [b (η1)− b (η0)]

Φ

}
exp

{
(x1 − x0)

T
η + c (x1)− c (x0)

}
.

Taking a log on both sides yields the following:

log [p (x1 | y)]− log [p (x0 | y)] = y
η1 − η0

Φ
− b (η1)− b (η0)

Φ
+ (x1 − x0)

T
η + c (x1)− c (x0)

The left-hand side is only a function of y. Suppose the coefficient of y is ϕ1 and the intercept is ζ1. For the ease of notation,
define φ = [g ◦ µ]−1 and ζ = b([g ◦ µ]−1). Thus, we obtain the following:

ϕ1(θ) =
η1 − η0

Φ
=

[g ◦ µ]−1 (
α+ xT1 β

)
− [g ◦ µ]−1 (

α+ xT0 β
)

Φ
=
φ
(
α+ xT1 β

)
− φ

(
α+ xT0 β

)
Φ

ζ1(θ) = −b (η1)− b (η0)

Φ
+ (x1 − x0)

T
η + c (x1)− c (x0)

= −ζ(α+ xT1 β)− ζ(α+ xT0 β)

Φ
+ (x1 − x0)

T
η + c (x1)− c (x0) .

Suppose we have k + 1 distinct values of x. Thus, we can construct 2k equations, ϕi and ζi with i = 1, . . . , k. To apply the
implicit function theorem, the equations need to satisfy the following conditions:

1. There exists at least one solution θ0 that satisfies the above equations,

2. ϕi(θ) and ζi(θ) are continuous on Θ, i.e., the parameter space with θ0 as an inner point,

3. ϕi(θ) and ζi(θ) are first order partially differentiable on Θ,

4. Let Φ = {ϕ1, . . . , ϕk} and Z = {ζ1, . . . , ζk}. Define then Jacobian matrix J as J = ∂(Φ, Z)
∂(θ) , described below:

J=



φ′ (α+ xT1 β
)
− φ′ (α+ xT0 β

)
φ′ (α+ xT1 β

)
xT1 − φ′ (α+ xT0 β

)
xT0 φ

(
α+ xT1 β

)
− φ

(
α+ xT0 β

)
0

...
...

...
...

φ′ (α+ xTk β
)
− φ′ (α+ xT0 β

)
φ′ (α+ xTk β

)
xTk − φ′ (α+ xT0 β

)
xT0 φ

(
α+ xTk β

)
− φ

(
α+ xT0 β

)
0

ζ ′
(
α+ xT1 β

)
− ζ ′

(
α+ xT0 β

)
ζ ′
(
α+ xT1 β

)
xT1 − ζ ′

(
α+ xT0 β

)
xT0 ζ

(
α+ xT1 β

)
− ζ

(
α+ xT0 β

)
(x1 − x0)

T
M

...
...

...
...

ζ ′
(
α+ xTk β

)
− ζ ′

(
α+ xT0 β

)
ζ ′
(
α+ xTk β

)
xTk − ζ ′

(
α+ xT0 β

)
xT0 ζ

(
α+ xTk β

)
− ζ

(
α+ xT0 β

)
(xk − x0)

T
M



where Md×d−1 =

[
Id−1×d−1

(−1,−1, · · · ,−1)1×d−1

]
, I is the identity matrix.

The Jacobian matrix J must be of full rank under (θ0, ϕi(θ0), ζi(θ0)).

5. The number of equations must be greater or equal to the number of unknown parameters, i.e., 2k ≥ dim(θ).



Under the special case where Y | X ∼ N
(
α+ xTβ,Φ

)
, we have:

ϕi(θ) =
(xi − x0)

T
β

Φ

ζi(θ) = −
(
α+ xTi β

)2 − (
α+ xT0 β

)2
2Φ

+ (xi − x0)
T
η + c (xi)− c (x0) , i ∈ (1, 2, · · · , k),

J=



0 (x1−x0)
T

Φ − (x1−x0)
T β

Φ2 0
...

...
...

...
0 (xk−x0)

T

Φ − (xk−x0)
T β

Φ2 0

− (x1−x0)
T β

Φ −α(x1−x0)
T+βT (x1x

T
1 −x0x

T
0 )

Φ
(α+xT

1 β)2−(α+xT
0 β)2

2Φ2 (x1 − x0)
T
M

...
...

...
...

− (xk−x0)
T β

Φ −α(xk−x0)
T+βT (xkx

T
k −x0x

T
0 )

Φ
(α+xT

k β)2−(α+xT
0 β)2

2Φ2 (xk − x0)
T
M


After performing some rank-preserving modifications to this matrix, we get:

J=



0 (x1 − x0)
T −(x1 − x0)

Tβ 0
...

...
...

...
0 (xk − x0)

T −(xk − x0)
Tβ 0

(x1 − x0)
Tβ −

[
α(x1 − x0)

T + βT (x1x
T
1 − x0x

T
0 )

] (α+xT
1 β)2−(α+xT

0 β)2

2 (x1 − x0)
T
M

...
...

...
...

(xk − x0)
Tβ −

[
α(xk − x0)

T + βT (xkx
T
k − x0x

T
0 )

] (α+xT
k β)2−(α+xT

0 β)2

2 (xk − x0)
T
M


The dimension of J is dim(J) = 2k × (1 + 2d). Assume 2k ≥ (1 + 2d). A sufficient condition to make J full rank is
knowing α or at least one element of η.

Note that in this example, p(X | Y ) is in the exponential family, since:

p(x | y) = p(y | x)p(x)
p(y)

= exp

{
−
[
y −

(
α+ xTβ

)]2
2Φ

+ log
1√
2πΦ

+ xT η + c(x)− log p(y)

}

= exp

{[
(yβ − αβ)T

Φ
+ ηT ,−

vec
(
ββT

)T
2Φ

](
x

vec
(
xxT

) )
− (y − α)2

2Φ
+ c(x)− log p(y)

}
.

B.3 LEMMA 1 (FULL LAW IDENTIFICATION)

Using the DAG factorization we have

p (X,Y,Rx = 1, Ry = 1) = p(X,Y ) p(Rx = 1 | Y ) p(Ry = 1 | X,Rx = 1).

Given the above relation and the fact that the target law p(X,Y ) is identified, it is straightforward to conclude that p(Rx | Y )
is also identified. We now prove under the completeness condition, p(Ry | X,Rx) is also identified. Therefore the full law



is identified. The full observed data law can be written down as follows:

Lfull(Zobs, R; θ, ψ) =
∏

Rx=1,Ry=1

p(X,Y,Rx = 1, Ry = 1)×
∏

Rx=1,Ry=0

∫
p(X,Y,Rx = 1, Ry = 0)dy

×
∏

Rx=0,Ry=1

∫
p(X,Y,Rx = 0, Ry = 1)dx×

∏
Rx=0,Ry=0

∫
p(X,Y,Rx = 0, Ry = 0)dxdy.

Given the fact that p(X,Y ), p(Rx = 1 | Y ), and p(Rx = 0, Ry = 0) are all identified, the following would stay the same
across different models:

∏
Rx=1,Ry=1

p(X,Y,Rx = 1, Ry = 1)×
∏

Rx=1,Ry=0

∫
p(X,Y,Rx = 1, Ry = 0)dy ×

∏
Rx=0,Ry=0

∫
p(X,Y,Rx = 0, Ry = 0)dxdy.

Suppose there exist p1(Ry | X,Rx) and p2(Ry | X,Rx) such that∫
p(X,Y )p(Rx = 0 | Y )p1(Ry = 1 | Rx = 0, X)dx =

∫
p(X,Y )p(Rx = 0 | Y )p2(Ry = 1 | Rx = 0, X)dx

Let g(X) = p1(Ry = 1 | Rx = 0, X)− p2(Ry = 1 | Rx = 0, X), we have

p(Rx = 0 | Y = y) p(Y = y)

∫
p(x | Y = y) g(x) dx = 0, ∀y

This must mean thatE[g(X) | y] = 0, ∀y. In our case, g(X) is bounded, thus is with finite mean. Based on the completeness
condition, g(X) = 0 almost surely, which implies p1(Ry | X,Rx) = p2(Ry | X,Rx) almost surely. This concludes that
the full law is indeed identified.



C EXAMPLES FROM THE EXPONENTIAL FAMILY DISTRIBUTIONS

In order to better illustrate the implications of Theorem 1, we provide explicit sufficient identification conditions in a
variety of examples in the class of exponential family distributions. In all subsequent examples, we assume that if X is
continuous, a sufficient number of unique X values have been observed such that the first condition in Theorem 1, namely
that k ≥ dim(θ), is satisfied. If X is discrete, it is assumed that every category of X is observed in the sample.

C.1 X AND Y ARE BIVARIATE NORMAL

Suppose (
Y
X

)
∼ N

[(
µ1

µ2

)
,

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)]
.

According to Theorem 1, p(X,Y ) is identifiable if at least µ1 or µ2 is known, in addition to knowing at least one more
parameter in {σ1, σ2, ρ}. As special cases, when either the marginal distribution of X or Y is known, we can identify
p(X,Y ).

The above claim can be proven as follows. First, we note that p(X | Y ) also follows a normal distribution:

X | Y ∼ N
[
µ2 + ρ

σ2
σ1

(y − µ1) ,
(
1− ρ2

)
σ2
2

]
.

Since p(X | Y ) is nonparametrically identified, it means the mean and variance are both identifiable, i.e., µ2 + ρσ2

σ1
(y − µ1)

and
(
1− ρ2

)
σ2
2 . Thus the following three parameters are identified:

µ2 − ρ
σ2
σ1
µ1, ρ

σ2
σ1
,

(
1− ρ2

)
σ2
2

Let θ = (µ1, µ2, σ1, σ2, ρ). By taking derivative with respect to θ, we obtain the following Jacobian matrix:

J =

 −ρσ2

σ1
1 ρσ2

σ2
1
µ1 −ρ 1

σ1
µ1 −σ2

σ1
µ1

0 0 −ρσ2

σ2
1
µ1 ρ 1

σ1

σ2

σ1

0 0 0 2
(
1− ρ2

)
σ2 −2ρσ2

2


The number of unknown parameters is greater than the number of equations. To establish target law identification, we
need to assume two of the five parameters are known. However, not every pair of parameters will be useful in establishing
identification. We go over different options one by one: (|J | denotes the determinant of matrix J .)

1. Assume µ1, µ2 are known, then |J | ≠ 0 =⇒ target law is identified

J =

 ρσ2

σ2
1
µ1 −ρ 1

σ1
µ1 −σ2

σ1
µ1

−ρσ2

σ2
1
µ1 ρ 1

σ1

σ2

σ1

0 2
(
1− ρ2

)
σ2 −2ρσ2

2


2. Assume µ1, σ1 are known, then |J | ≠ 0 =⇒ target law is identified

J =

 1 −ρ 1
σ1
µ1 −σ2

σ1
µ1

0 ρ 1
σ1

σ2

σ1

0 2
(
1− ρ2

)
σ2 −2ρσ2

2


3. Assume µ1, σ2 are known, then |J | ≠ 0 =⇒ target law is identified

J =

 1 ρσ2

σ2
1
µ1 −σ2

σ1
µ1

0 −ρσ2

σ2
1
µ1

σ2

σ1

0 0 −2ρσ2
2





4. Assume µ1, ρ are known, then |J | ≠ 0 =⇒ target law is identified

J =

 1 ρσ2

σ2
1
µ1 −ρ 1

σ1
µ1

0 −ρσ2

σ2
1
µ1 ρ 1

σ1

0 0 2
(
1− ρ2

)
σ2


5. Assume µ2, σ1 are known, then |J | ≠ 0 =⇒ target law is identified

J =

 −ρσ2

σ1
−ρ 1

σ1
µ1 −σ2

σ1
µ1

0 ρ 1
σ1

σ2

σ1

0 2
(
1− ρ2

)
σ2 −2ρσ2

2


6. Assume µ2, σ2 are known, then |J | ≠ 0 =⇒ target law is identified

J =

 −ρσ2

σ1
ρσ2

σ2
1
µ1 −σ2

σ1
µ1

0 −ρσ2

σ2
1
µ1

σ2

σ1

0 0 −2ρσ2
2


This recovers the case studied in Zhao and Shao [2015].

7. Assume µ2, ρ are known, then |J | ≠ 0 =⇒ target law is identified

J =

 −ρσ2

σ1
ρσ2

σ2
1
µ1 −ρ 1

σ1
µ1

0 −ρσ2

σ2
1
µ1 ρ 1

σ1

0 0 2
(
1− ρ2

)
σ2


8. Assume σ1, σ2 are known, then |J | = 0 =⇒ target law is not identified

J =

 −ρσ2

σ1
1 −σ2

σ1
µ1

0 0 σ2

σ1

0 0 −2ρσ2
2


9. Assume σ1, ρ are known, then |J | = 0 =⇒ target law is not identified

J =

 −ρσ2

σ1
1 −ρ 1

σ1
µ1

0 0 ρ 1
σ1

0 0 2
(
1− ρ2

)
σ2


10. Assume σ2, ρ are known, then |J | = 0 =⇒ target law is not identified

J =

 −ρσ2

σ1
1 ρσ2

σ2
1
µ1

0 0 −ρσ2

σ2
1
µ1

0 0 0


This concludes that under the bivariate normal distribution, the target law is identified if either µ1 or µ2 is known, in addition
to knowing at least one more parameter in {σ1, σ2, ρ}.

It is straightforward to show that p(X | Y ) lies in the exponential family.

C.2 X AND Y | X ARE NORMAL UNDER INVERSE LINK

Suppose

X ∼ N (µ, ϕx) , Y | X ∼ N
(
(α+ βx)−1, ϕ

)
.



According to Theorem 1, p(X,Y ) is identifiable without any additional assumptions on the unknown parameter vector
θ = (α, β, ϕ, µ, ϕx). This can be proven as follows: based on Theorem 1, we have the following equations,

ϕi(θ) =
(α+ βxi)

−1 − (α+ βx0)
−1

ϕ

ζi(θ) =

−
b
[
(α+ βxi)

−1
]
− b

[
(α+ βx0)

−1
]

ϕ
+
µ (xi − x0)

ϕx
+ c (xi, ϕx)− c (x0, ϕx)


= − (α+ βxi)

−2 − (α+ βx0)
−2

2ϕ
+
µ (xi − x0)

ϕx
− x2i − x20

2ϕx
, where i ∈ (1, . . . , k).

The Jacobian matrix is as follows:



− (α+βx1)
−2−(α+βx0)

−2

ϕ − (α+βx1)
−2x1−(α+βx0)

−2x0

ϕ − (α+βx1)
−1−(α+βx0)

−1

ϕ2 0 0
...

...
− (α+βxk)

−2−(α+βx0)
−2

ϕ − (α+βxk)
−2xk−(α+βx0)

−2x0

ϕ − (α+βxk)
−1−(α+βx0)

−1

ϕ2 0 0

2 (α+βx1)
−3−(α+βx0)

−3

2ϕ 2 (α+βx1)
−3x1−(α+βx0)

−3x0

2ϕ
(α+βx1)

−2−(α+βx0)
2

2ϕ2
x1−x0

ϕx

(x1−x0)(x1+x0−2µ)
2ϕ2

x

...
...

2 (α+βxk)
−3−(α+βx0)

−3

2ϕ 2 (α+βxk)
−3xk−(α+βx0)

−3x0

2ϕ
(α+βxk)

−2−(α+βx0)
2

2ϕ2
xk−x0

ϕx

(xk−x0)(xk+x0−2u)
2ϕ2

x


After performing some rank-preserving modifications to this matrix, we get:



(α+ βx1)
−2 − (α+ βx0)

−2
(α+ βx1)

−2
x1 − (α+ βx0)

−2
x0 (α+ βx1)

−1 − (α+ βx0)
−1

0 0
...

...
(α+ βxk)

−2 − (α+ βx0)
−2

(α+ βxk)
−2
xk − (α+ βx0)

−2
x0 (α+ βxk)

−1 − (α+ βx0)
−1

0 0

(α+ βx1)
−3 − (α+ βx0)

−3
(α+ βx1)

−3
x1 − (α+ βx0)

−3
x0

1
2

[
(α+ βx1)

−2 − (α+ βx0)
−2

]
x1 − x0 (x1 − x0) (x1 + x0 − 2µ)

...
...

(α+ βxk)
−3 − (α+ βx0)

−3
(α+ βxk)

−3
xk − (α+ βx0)

−3
x0

1
2

[
(α+ βxk)

−2 − (α+ βx0)
−2

]
xk − x0 (xk − x0) (xk + x0 − 2µ)


which is of full rank.

It is worth pointing out that unlike the example in (C.1), p(X | Y ) in this example is not in the exponential family, since:

p(x | y) = p(y | x)p(x)
p(y)

=
N
(
(a+ bx)−1, σ2

y

)
N
(
µ, σ2

x

)
p(y)

= exp

−

(
y − 1

a+bx

)2

2σ2
y

+ log
1√
2πσy

− (x− µ)2

2σ2
x

+ log
1√
2πσx

− log p(y)


= exp

{
−

1
(a+bx)2 − 2y

a+bx + y2

2σ2
y

+ log
1√
2πσy

− (x− µ)2

2σ2
x

+ log
1√
2πσx

− log p(y)

}
.

C.3 X AND Y ARE BINARY

Suppose p(X = 0, Y = 1) = p1, p(X = 1, Y = 0) = p2, p(X = 0, Y = 0) = p3, and p(X = 1, Y = 1) = p4, where∑4
i=1 pi = 1, pi ̸= 0. The unknown parameters of interest are θ = (p1, p2, p3, p4).

In this binary case, there are at most two distinct values of X as 0 or 1. According to Theorem 1, p(X,Y ) is identifiable if
any one of pi is known or marginal distribution of either X or Y is known.

In order to prove the above claim, we look at two distinct parameterizations of p(X,Y ).



C.3.1 Parameterization 1

Suppose p1 = p(X = 0, Y = 1), p2 = p(X = 1, Y = 0), p3 = p(X = 0, Y = 0), p4(X = 1, Y = 1), pi ̸= 0, i =
1, . . . , 4.

Since p(X | Y ) is nonparametrically identified, we obtain the following three equations with four unknowns:

p(X = 1 | Y = 1) =
p4

p1 + p4
, p(X = 1 | Y = 0) =

p2
p2 + p3

,

4∑
i=1

pi = 1

In order to possibly achieve identification, we need to assume one parameter is known. We consider the four different
scenarios one by one.

1. Assume p1 is known, then |J | ≠ 0 =⇒ target law is identified

J =

 0 0 p1

(p1+p4)
2

p3

(p2+p3)
2

−p2

(p2+p3)
2 0

1 1 1


2. Assume p2 is known, then |J | ≠ 0 =⇒ target law is identified

J =


−p4

(p1+p4)
2 0 p1

(p1+p4)
2

0 p3

(p2+p3)
2 0

1 1 1


3. Assume p3 is known, then |J | ≠ 0 =⇒ target law is identified

J =


−p4

(p1+p4)
2 0 p1

(p1+p4)
2

0 p3

(p2+p3)
2 0

1 1 1


4. Assume p4 is known, then |J | ≠ 0 =⇒ target law is identified

J =


−p4

(p1+p4)
2 0 0

0 p3

(p2+p3)
2

−p2

(p2+p3)
2

1 1 1


In the binary case, it is also useful to assume

1. Assume p(Y = 1) = p1 + p4 is known, then |J | ≠ 0 =⇒ target law is identified

J =


− p4

(p1+p4)
2 0 0 p1

(p1+p4)
2

0 p3

(p2+p3)
2 − p2

(p2+p3)
2 0

1 1 1 1
1 0 0 1


2. Assume p(X = 1) = p2 + p4 is known, then |J | ≠ 0 =⇒ target law is identified

J =


− p4

(p1+p4)
2 0 0 p1

(p1+p4)
2

0 p3

(p2+p3)
2 − p2

(p2+p3)
2 0

1 1 1 1
0 1 0 1





C.3.2 Parameterization 2

We can also adopt another parameterization. Suppose

X ∼ Bern(p), Y | X ∼ Bern(a+ bX)

More specifically,

p(x) = exp

{
x log

p

1− p
+ log(1− p)

}
= exp {x · ηx − log (1 + eηx)} where ηx = log

p

1− p

p(y | x) = (a+ bx)y(1− a− bx)1−y

= exp

{
y log

a+ bx

1− (a+ bx)
+ log[1− (a+ bx)]

}
The parameter vector of interest is θ = (a, b, ηx). Based on Theorem 1, we have the following equations. Note that since X
is binary, there are at most two distinct values of X . Therefore, we have the following two equations:

ϕ1(θ) = log
a+ bx1

1− (a+ bx1)
− log

a+ bx0
1− (a+ bx0)

ζ1(σ) = log [1− (a+ bx1)]− log [1− (a+ bx0)] + (x1 − x0) ηx, where x1 = 1, x0 = 0.

The resulted Jacobian matrix is:

J =

[
1

(a+b)[1−(a+b)] −
1

a(1−a)
1

(a+b)[1−(a+b)] 0
−1

1−(a+b) +
1

1−a
−1

1−(a+b) x1 − x0

]

This concludes that in order to establish target law identification, we need to know at least one parameter in {a, b, ηx}.

It is straightforward to show that p(X | Y ) lies in the exponential family.

C.4 X IS BINARY AND Y | X IS NORMAL UNDER CANONICAL LINK

Suppose

X ∼ Bern(p), Y | X ∼ N
(
a+ bX, σ2

y

)
.

More specifically,

p(x) = px(1− p)1−x = exp

{
x · log p

1− p
+ log(1− p)

}
= exp {x · η − log (1 + eη)} , where η = log

p

1− p

p(y | x) = exp

{
y(a+ bx)− 1

2 (a+ bx)2

ϕ
+

[
− y2

2ϕ
− 1

2
log (2πϕ)

]}
, where ϕ = σ2

y.

The unknown parameter vector of interest is θ = (a, b, ϕ, η). According to Theorem 1, p(X,Y ) is identifiable if at either a
or η is known, in addition to knowing one extra parameter in θ. Knowing η is equivalent to knowing p.

In order to prove the above claim, we can construct the following equations: (note that when X is binary, we only have at
most two distinct values)

ϕ1(θ) =
(a+ bx1)− (a+ bx0)

ϕ
=
b (xi − x0)

ϕ

ζ1(θ) = − (a+ bx1)
2 − (a+ bx0)

2

2ϕ
+ η (x1 − x0) , where x1 = 1, x0 = 0.

The Jacobian matrix is:

J =

[
0 x1−x0

ϕ − b(x1−x0)
ϕ2 0

− b(x1−x0)
ϕ −a(x1−x0)+b(x2

1−x2
0)

ϕ
(a+bx1)

2−(a+bx0)
2

2ϕ2 x1 − x0

]
.



After some rank-preserving operations, we get:[
0 x1 − x0 x1 − x0 0
1 a (x1 − x0) + b

(
x21 − x20

)
a (x1 − x0) +

b
2

(
x21 − x20

)
1

]
.

This concludes the claim that a sufficient set of assumptions for target law identification is knowing either a or η, in addition
to knowing one more parameter in θ.

Note that in this example, p(X | Y ) is in exponential family since:

p(x | y) = p(y | x)p(x)
p(y)

=
Ny

(
a+ bx, σ2

y

)
px(1− p)1−x

p(y)

= exp

{
−1

2

(
y − (a+ bx)

σy

)2

+ log
1√
2πσy

+ x log p+ (1− x) log(1− p)− log [p(y)]

}

= exp

{
−1

2

(
x, x2

) (
2ab− 2by, b2

)T
+ (a− y)2

σ2
y

+ log
1√
2πσy

+ x log p+ (1− x) log(1− p)− log [p(y)]

}

= exp

{(
x, x2

)(
−ab− by

σ2
y

+ log(
p

1− p
),− b2

2σ2
y

)T

− (a− y)2

2σ2
y

+ log
1√
2πσy

+ log(1− p)− log [p(y)]

}
.

C.5 X IS POISSON AND Y | X IS NORMAL UNDER CANONICAL LINK

Suppose

X ∼ Poisson(λ), Y | X ∼ N
(
a+ bx, σ2

y

)
.

More specifically,

p(y | x) = exp

{
y(a+ bx)− 1

2 (a+ bx)2

ϕ
+

[
− y2

2ϕ
− 1

2
log (2πϕ)

]}
, where ϕ = σ2

y

p(x = k) =
λke−λ

k!
= exp{k log λ− λ− log k!} = exp {kηx − eηx − log k!} , where ηx = log λ

The unknown parameter vector of interest is θ =
(
a, b, σ2

y, λ
)
. According to Theorem 1, p(X,Y ) is identifiable if either a

or λ is known.

In order to prove the above claim, we can construct the following equations:

ϕi(θ) =
(a+ bxi)− (a+ bx0)

ϕ
=
b (xi − x0)

ϕ

ζi(θ) = − (a+ bxi)
2 − (a+ bx0)

2

2ϕ
+ ηx (xi − x0) + (− log xi! + log x0!) , where i ∈ (1, . . . , k)

The Jacobian matrix is then as follows:

J =



0 x1−x0

ϕ − (bx1−x0)
ϕ2 0

0 x2−x0

ϕ − (bx2−x0)
ϕ2 0

...
...

0 xk−x0

ϕ − (bxk−x0)
ϕ2 0

− b(x1−x0)
ϕ −a(x1−x0)+b(x2

1−x2
0)

ϕ
(a+bx1)

2−(a+bx0)
2

2ϕ2 x1 − x0

− b(x2−x0)
ϕ −a(x2−x0)+b(x2

2−x2
0)

ϕ
(a+bx2)

2−(a+bx0)
2

2ϕ2 x2 − x0
...

...

− b(xk−x0)
ϕ −a(xk−x0)+b(x2

k−x2
0)

ϕ
(a+bxk)

2−(a+bx0)
2

2ϕ2 xk − x0


.



After some rank-preserving operations, we get:

0 x1 − x0 x1 − x0 0
0 x2 − x0 x2 − x0 0
...

...
0 xk − x0 xk − x0 0

x1 − x0 a (x1 − x0) + b
(
x21 − x20

)
a (x1 − x0) +

b
2

(
x21 − x20

)
x1 − x0

x2 − x0 a (x2 − x0) + b
(
x22 − x20

)
a (x2 − x0) +

b
2

(
x22 − x20

)
x2 − x0

...
...

xk − x0 a (xk − x0) + b
(
x2k − x20

)
a (xk − x0) +

b
2

(
x2k − x20

)
xk − x0


.

We need to know either a or ηx to establish identifiability.

Note that in this example, p(X | Y ) is in the exponential family since:

p(x | y) = p(y | x)p(x)
p(y)

=
Ny

(
a+ bx, σ2

y

)
λxe−λ

x!

p(y)

= exp

{
−1

2

(
y − (a+ bx)

σy

)2

+ log
1√
2πσy

+ x log λ− λ− log x!− log p(y)

}

=
1

x!
exp

{
−1

2

(
x, x2

) (
2ab− 2by − 2σ2

y log λ, b
2
)T

+ (a− y)2

σ2
y

+ log
1√
2πσy

− λ− log p(y)

}

=
1

x!
exp

{(
x, x2)(−

ab− by − σ2
y log λ

σ2
y

,− b2

2σ2
y

)T

− (a− y)2

2σ2
y

+ log
1√
2πσy

− λ− log p(y)

}
.

C.6 X IS EXPONENTIAL AND Y | X IS NORMAL UNDER CANONICAL LINK

Suppose

X ∼ exponential(λ), Y | X ∼ N
(
a+ bx, σ2

y

)
.

More specifically,

p(x) = λe−λx = exp{−λx+ log λ}

p(y | x) = exp

{
y(a+ bx)− 1

2 (a+ bx)2

ϕ
+

[
− y2

2ϕ
− 1

2
log (2πϕ)

]}
where ϕ = σ2

y

The unknown vector of parameters is θ = (a, b, ϕ, λ). According to Theorem 1, p(X,Y ) is identifiable if either a or λ is
known.

In order to prove the above claim, we can construct the following equations:

ϕi(θ) =
b (xi − x0)

ϕ

ζi(θ) = − (a+ bxi)
2 − (a+ bx0)

2

2ϕ
− λ (xi − x0) , where i ∈ (1, . . . , k)

The Jacobian matrix is

J =



0 x1−x0

ϕ − b(x1−x0)
ϕ2 0

...
...

0 xk−x0

ϕ − b(xk−x0)
ϕ2 0

− b(x1−x0)
ϕ −a(x1−x0)+b(x2

1−x2
0)

ϕ
(a+bx1)

2−(a+bx0)
2

2ϕ2 −(x1 − x0)
...

...

− b(xk−x0)
ϕ −a(xk−x0)+b(x2

k−x2
0)

ϕ
(a+bxk)

2−(a+bx0)
2

2ϕ2 −(xk − x0)


.



After some rank-preserving operations, we get:

0 x1 − x0 x1 − x0 0
...

...
0 xk − x0 xk − x0 0

x1 − x0 −
[
a (x1 − x0) + b

(
x21 − x20

)]
−
[
a (x1 − x0) +

b
2

(
x21 − x20

)]
x1 − x0

...
...

xk − x0 −
[
a (xk − x0) + b

(
x2k − x20

)]
−
[
a (xk − x0) +

b
2

(
x2k − x20

)]
xk − x0


.

This concludes the initial claim.

Note that in this example, p(X | Y ) is in the exponential family since:

p(x | y) = p(y | x)p(x)
p(y)

=
N

(
(a+ bx), σ2

y

)
λe−λx

p(y)

= exp

{
−1

2

(
y − (a+ bx)

σy

)2

+ log
1√
2πσy

+ log λ− λx− log p(y)

}

= exp

{
−1

2

(
x, x2

) (
2ab− 2by − 2σ2

yλ, b
2
)T

+ (a− y)2

σ2
y

+ log
1√
2πσy

+ log λ− log p(y)

}

= exp

{(
x, x2)(−

ab− by − σ2
yλ

σ2
y

,− b2

2σ2
y

)T

− (a− y)2

2σ2
y

+ log
1√
2πσy

+ log λ− log p(y)

}
.

C.7 X IS EXPONENTIAL AND Y | X IS EXPONENTIAL UNDER CANONICAL LINK

Suppose

X ∼ exponential(λx)

Y | X ∼ exponential(λ) = exp{y(−λ) + log λ} = exp{y(a+ bx) + log[−(a+ bx)]}.

The unknown parameter vector is θ = (a, b, λx). According to Theorem 1 and without any further assumptions on θ,
p(X,Y ) is identifiable.

In order to prove the above claim, we can construct the following equations:

ϕi(θ) = b (xi − x0)

ζi(θ) = log [−(a+ bxi)]− log [−(a+ bx0)]− λx (xi − x0) , i ∈ (1, . . . , k)

The Jacobian matrix is

J =



0 x1 − x0 0
...

...
0 xk − x0 0

1
a+bx1

− 1
a+bx0

x1

a+bx1
− x0

a+bx0
− (x1 − x0)

...
...

1
a+bxk

− 1
a+bx0

xk

a+bxk
− x0

a+bx0
− (xk − x0)


.

After some rank-preserving operations, we get:

0 x1 − x0 0
0 x2 − x0 0
...

...
0 xk − x0 0
1

(a+bx1)(a+bx0)
1

(a+bx1)(a+bx0)
1

1
(a+bx2)(a+bx0)

1
(a+bx2)(a+bx0)

1
...

...
1

(a+bxk)(a+bx0)
1

(a+bxk)(a+bx0)
1


.



This matrix is full rank and thus it concludes the initial claim.

Note that in this example, p(X | Y ) is not in exponential family (unless a and b are known), since:

p(x | y) = p(y | x)p(x)
p(y)

=
exp {y(a+ bx) + log[−(a+ bx)] + x(−λx) + log λx}

p(y)
.

The main difficulty is with the term log[−(a+ bx)].



D ESTIMATION PROOFS

D.1 THEOREM 2 (CONDITIONAL LIKELIHOOD WITH ORDER STATISTICS)

Proof. Denote l(θ) = − 2
N(N−1)

∑
1≤i<k≤N Rxi

Ryi
Rxk

Ryk
log{1 +Qik(θ)}. Following the Taylor expansion, we have

0 =
∂l(θ̃)

∂θ
=
∂l(θ0)

∂θ
+ (θ̃ − θ0)

∂2l(θ0)

∂θ2
+ op(N

−1/2).

Therefore,
√
N(θ̃ − θ0) = −

{
∂2l(θ0)

∂θ2

}−1 √
N
∂l(θ0)

∂θ
+ op(1).

Since both ∂2l(θ0)
∂θ2 and ∂l(θ0)

∂θ are U-statistics, from the theory of U-statistics, we have

∂2l(θ0)

∂θ2
p−→ A, and

√
N
∂l(θ0)

∂θ

d−→ N(0, B),

which completes the proof.

D.2 THEOREM 3 (GENERALIZED ESTIMATING EQUATIONS)

Proof. The proof of (a) is straightforward following the standard argument of generalized estimating equations, so omitted
here. In order to find the optimal choice for f(Y ), we can compute

C = E {−Ψ′ (X,Y,Rx, Ry; θ0)}

= E

[
RxRy

p (Ry = 1 | Rx = 1, X)

∂E(X | Y )

∂θ

∣∣∣∣
θ=θ0

f(Y )T

]

= E

[
Rx

∂E(X | Y )

∂θ

∣∣∣∣
θ=θ0

f(Y )T

]
= E

{
w(Y )a(Y )f(Y )T

}
,

and

D = E
[

RxRy

p2 (Ry = 1 | Rx = 1, X)
(X − E(X | Y ))2f(Y )f(Y )T

]
= E

[
Rx

(X − E(X | Y ))2

π(X)
f(Y )f(Y )T

]
= E

[
w(Y )

(X − E(X | Y ))2

π(X)
f(Y )f(Y )T

]
= E

[
w(Y )E

[
(X − E(X | Y ))2

π(X)
| Y

]
f(Y )f(Y )T

]
= E

[
w(Y )b(Y )f(Y )f(Y )T

]
,

where b(Y ) = E
[
(X−E(X|Y ))2

π(X) | Y
]

and w(Y ) = p(Rx = 1 | Y ). Based on Cauchy-Schwarz inequality, we have

E
(
uvT

) {
E
(
vvT

)}−1 E
(
vuT

)
≲ E

(
uuT

)
with equality hold at u = v. Here M ≲ N simply means M −N is negative semi-definite.

Define v =
√
w(Y )

√
b(Y )f(Y ) and u =

√
w(Y )
b(Y ) a(Y ), then we have

E{w(Y )f(Y )a(Y )T }
[
E{w(Y )b(Y )f(Y )f(Y )T }

]−1 E{w(Y )a(Y )f(Y )T } ≲ E
{
w(Y )

b(Y )
a(Y )a(Y )T

}
, i.e.,



E
{
w(Y )

b(Y )
a(Y )a(Y )T

}−1

E{w(Y )b(Y )f(Y )f(Y )T }E{w(Y )f(Y )a(Y )T }−1 ≳ E
{
w(Y )

b(Y )
a(Y )a(Y )T

}−1

.

Note that the right-hand side is irrespective of f(Y ). Thus, when f(Y ) = fopt(Y ) = a(Y )
b(Y ) , the equality holds, and we have

the optimal variance
{

w(Y )
b(Y ) a(Y )a(Y )T

}−1

.



E ADDITIONAL DISCUSSIONS ON ESTIMATION

E.1 NONPARAMETRIC ESTIMATION UNDER ADDITIONAL ASSUMPTIONS

In addition to independence restrictions in display (3), we assume p(Ry = 1 | Rx, X) is not a function of X when Rx = 0.
This additional assumptions moves us from the criss-cross MNAR model to the permutation model considered by Robins
[1997]. In the permutation model, one can proceed with estimation of arbitrary functions of X and Y as follows.

Let our parameter of interest be βh = E[h(X,Y )], which can be identified via the following function of the observed data:

βh = E
[

Rx Ry h(X,Y )

p(Rx = 1 | Y ) p(Ry = 1 | Rx = 1, X∗)

]
.

The core idea of deriving the efficient influence function (EIF) for βh is to use an intermediate variable that first takes care
of the missingness of X , and then Y in a sequential manner. Intuitively, this is due to the fact that we can rewrite βh via an
intermediate variable β̃h(X,Rx, Y ) as follows:

β̃h(X,Rx, Y ) =
Rx

p (Rx = 1 | Y )
h (X,Y ) , βh = E

[
Ry

p (Ry = 1 | Rx, X∗)
β̃h(X,Rx, Y )

]
.

The claim made by Robins [1997] is that EIF for βh is equal to the EIF for E
[

Ry

p (Ry = 1 | Rx, X∗)
ϕ(β̃h)

]
, where

ϕ(β̃h) = EIFβ̃h
+ E[β̃h] and EIFβ̃h

denotes the efficient influence function for E
[
β̃h(X,Rx, Y )

]
. Therefore, we first need

to derive the EIF for E
[
β̃h(X,Rx, Y )

]
.

∂E[β̃h (pε)]
∂ε

∣∣∣∣∣
ε=0

=
∂

∂ε

∫
Rxh (X,Y )

p (Rx = 1 | Y )
dpε (X,Y,Rx)

∣∣∣∣
ε=0

= −
∫

Rxh (X,Y )

p (Rx = 1 | Y )
S (Rx | Y ) dp (X,Y,Rx) +

∫
Rxh (X,Y )

p (Rx = 1 | Y )
S (X,Y,Rx) dp (X,Y,Rx)

= −
∫
RxE [h (X,Y ) | Rx = 1, Y ]

p (Rx = 1 | Y )
S (Rx | Y ) dp (Rx, Y ) +

∫ {
Rxh (X,Y )

p (Rx = 1 | Y )
− E [h (X,Y )]

}
S (X,Y,Rx) dp (X,Y,Rx)

= −
∫ {

RxE [h (X,Y ) | Rx = 1, Y ]

p (Rx = 1 | Y )
− E [h (X,Y ) | Rx = 1, Y ]

}
S (Rx, Y ) dp (Rx, Y )

+

∫ {
Rxh (X,Y )

p (Rx = 1 | Y )
− E [h (X,Y )]

}
S (X,Y,Rx) dp (X,Y,Rx)

= −
∫ {

RxE [h (X,Y ) | Rx = 1, X]

p (Rx = 1 | Y )
− E [h (X,Y ) | Rx = 1, Y ]

}
S (Y,Rx, X) dp (Rx, X, Y )

+

∫ {
Rxh (X,Y )

p (Rx = 1 | Y )
− E [h (X,Y )]

}
S (X,Y,Rx) dp (X,Y,Rx) .

Therefore, the efficient influence function for E[β̃h], denoted by EIFβ̃h
, is as follows

EIFβ̃h
=

Rx

p (Rx = 1 | Y )

{
h (X,Y )− E [h (X,Y ) | Rx = 1, Y ]

}
+
{
E[h(X,Y ) | Rx = 1, Y ]− E[h(X,Y )]

}
.

Thus we get:

ϕ(β̃h) =
Rx

p (Rx = 1 | Y )

{
h (X,Y )− E [h (X,Y ) | Rx = 1, Y ]

}
+ E

[
h(X,Y ) | Rx = 1, Y

]
.

Following a similar procedure, we can easily obtain the EIF for E
[

Ry

p (Ry = 1 | Rx, X∗)
ϕ(β̃h)

]
, which yields the EIF for

βh as follows:

EIFβh
=

Ry

p (Ry = 1 | Rx, X∗)

{
ϕ(β̃h) − E

[
ϕ(β̃h) | Ry, Rx, X

∗]}+
{
E
[
ϕ(β̃h) | Ry = 1, Rx, X

∗]− βh

}
.



E.2 MAXIMUM LIKELIHOOD ESTIMATION

In the criss-cross MNAR model, the observed full data likelihood, denoted by Lobs(Z; θ), can be written down as follows:

Lobs(X,Y,R; θ, ψ) =
∏

Rx=1,Ry=1

p(X,Y,Rx = 1, Ry = 1)×
∏

Rx=1,Ry=0

∫
p(X,Y,Rx = 1, Ry = 0)dy

×
∏

Rx=0,Ry=1

∫
p(X,Y,Rx = 0, Ry = 1)dx×

∏
Rx=0,Ry=0

∫
p(X,Y,Rx = 0, Ry = 0)dxdy

Under the conditions of Theorem 1 and Condition 1, one can simply estimate the entire parameter vector of the full law,
assuming the parametric forms of the propensity scores in the missingness mechanism are known.



Figure 1: OR estimation under model misspecification.

F ADDITIONAL EXPERIMENTAL RESULTS

F.1 SIMULATION RESULTS

Varying ρ. We examine the effect of changing the correlation coefficient on the efficiency of the estimators by varying ρ
across the range of values from -0.9 to 0.9, with increments of 0.2. The sample size used is N = 1000. Table 1 displays the
standard deviation (SD) of the three suggested estimators for different values of ρ. To avoid distorting the SD patterns after
applying the Delta method, we summarize the SD of the direct estimates of each method instead of converting it to OR. The
results indicate that both GEE methods provide more efficient estimators when X and Y are highly correlated, but exhibit
more estimation uncertainty when the correlation is low. In contrast, the conditional likelihood estimator has less variability
when the correlation is low.

Table 1: Standard deviation of estimators with varying correlation between
X and Y

ρ β (non-optimal GEE) β (optimal GEE) logOR(conditional likelihood)
-0.9 0.0468 0.0354 0.1272

-0.7 0.0678 0.0622 0.0470

-0.5 0.0847 0.1033 0.0268

-0.3 0.108 0.1319 0.0206

-0.1 0.127 0.1023 0.0201

0.1 0.118 0.0979 0.0179

0.3 0.154 0.0783 0.0189

0.5 0.0877 0.0535 0.0267

0.7 0.0628 0.0432 0.0413

0.9 0.0296 0.0211 0.0917

Model misspecification. To understand the behavior of the proposed estimators under model misspecification, we generate
data under missing mechanism for Y as p(Ry = 1 | X,Rx) = expit(2 − Rx + 0.7X + 0.2X2). While estimation with
GEE is carried out, the relations between Ry and {X,Rx} is assumed to be linear. Under model misspecification, Figure 1
illustrates that both GEE methods fail to provide an unbiased estimate of the OR despite an increasing sample size. The
conditional likelihood still yields unbiased estimates especially with large sample size. Same observation is made in the
estimation of α and β as shown in Table 2. Bias and high MSE persist for both methods even with large sample size whereas
SD shrinks as sample size increases.

The simulation results indicate all three methods yield unbiased estimators when the model is correctly specified. GEE
methods are more efficient than the conditional likelihood. As expected, the optimal GEE is consistently more efficient
than the non-optimal GEE regardless of the sample size. On the other hand, for OR estimation, the conditional likelihood



Table 2: Estimation under model misspecification

Non-optimal GEE Optimal GEE
N Statistics α β α β

500 bias -0.3435 0.1260 -0.3352 0.1224

MSE 0.1180 0.0159 0.1124 0.0150

SD 0.4557 0.1966 0.4483 0.1930

1000 bias -0.4667 0.1607 -0.4606 0.1578

MSE 0.2178 0.0258 0.2122 0.0249

SD 0.3254 0.1397 0.3160 0.1346

2000 bias -0.4859 0.1737 -0.4747 0.1689

MSE 0.2361 0.0302 0.2253 0.0285

SD 0.2343 0.1041 0.2358 0.1042

4000 bias -0.4497 0.1616 -0.4387 0.1568

MSE 0.2022 0.0261 0.1924 0.0246

SD 0.1524 0.0689 0.1487 0.0673

method is more robust under model misspecification meaning that it yields unbiased estimators even when p(Ry | X,Rx)
is misspecified. In the presence of a strong correlation between X and Y , the GEE estimators exhibit higher efficiency.
Conversely, under conditions of weak correlation, the conditional likelihood estimator displays higher efficiency.

F.2 REAL DATA RESULTS

We also applied our proposed methods to analyze data from the KLIPS dataset, which includes information on monthly
income for 2511 regular wage earners in 2005 and 2006. The combined monthly income for these two years has approximately
40% missing data. Our objective was to investigate whether past income has a lasting effect on future income. We defined X
as the logarithm of monthly income in 2005 and Y as the logarithm of monthly income in 2006. Based on empirical data
distributions, we assumed that X , Y , and X|Y are normally distributed. Specifically, we modeled X|Y as N(α+ βY, σ2),
where σ2 was empirically estimated.

Using our nonparametric identification results, we were able to determine α and β without making any additional assumptions.
For estimating these parameters, we employed generalized estimating equations (GEEs). Additionally, we used all three
methods to estimate log(OR), where OR represents the odds ratio between the income of the two years. The parameter
estimates obtained are summarized in Table 3.

Table 3: Parameter estimates for KLIPS data

α β log(OR)
Non-optimal GEE 0.25 (0.289) 0.923 (0.055) 12.621 (0.706)

Optimal GEE 0.348 (0.153) 0.905 (0.029) 12.364 (0.376)

Pseudo-likelihood 10.467 (0.025)

The findings presented above indicate a significant and persistent effect of income. Specifically, high income in the past is
strongly predictive of high income in the future, and conversely, low income in the past is predictive of low income in the
future. These results provide confirmation that the optimal GEE approach outperforms the non-optimal GEE, particularly in
terms of higher efficiency when dealing with continuous variable distributions.
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