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Abstract

Understanding the differences between machine
learning (ML) models is of interest in scenarios
ranging from choosing amongst a set of compet-
ing models, to updating a deployed model with
new training data. In these cases, we wish to go
beyond differences in overall metrics such as ac-
curacy to identify where in the feature space do
the differences occur. We formalize this problem
of model differencing as one of predicting a dis-
similarity function of two ML models’ outputs,
subject to the representation of the differences be-
ing human-interpretable. Our solution is to learn
a Joint Surrogate Tree (JST), which is composed
of two conjoined decision tree surrogates for the
two models. A JST provides an intuitive represen-
tation of differences and places the changes in the
context of the models’ decision logic. Context is
important as it helps users to map differences to
an underlying mental model of an AI system. We
also propose a refinement procedure to increase
the precision of a JST. We demonstrate, through
an empirical evaluation, that such contextual dif-
ferencing is concise and can be achieved with no
loss in fidelity over naive approaches.

1 INTRODUCTION

At various stages of the AI model lifecycle, data scientists
make decisions regarding which model to use. For instance,
they may choose from a range of pre-built models, select
from a list of candidate models generated from automated
tools like AutoML, or simply update a model based on new
training data to incorporate distributional changes. In these
settings, the choice of a model is preceded by an evaluation
that typically focuses on accuracy and other metrics, instead
of how it differs from other models.

We address the problem of model differencing. Given two
models for the same task and a dataset, we seek to learn
where in the feature space the models’ predicted outcomes
differ. Our objective is to provide accurate and interpretable
mechanisms to uncover these differences.

The comparison is helpful in several scenarios. In a model
marketplace, multiple pre-built models for the same task
need to be compared. The models usually are black-box
and possibly trained on different sets of data drawn from
the same distribution. During model selection, a data scien-
tist trains multiple models and needs to select one model
for deployment. In this setting, the models are white-box
and typically trained on the same training data. For model
change, where a model is retrained with updated training
data with a goal towards model improvement, the data sci-
entist needs to understand changes in the model beyond
accuracy metrics. Finally, decision pipelines consisting of
logic and ML models occur in business contexts where a
combination of business logic and the output of ML models
work together for a final output. Changes might occur either
due to model retraining or adjustments in business logic
which can impact the behavior of the overall pipeline.

In this work we address the problem of interpretable model
differencing as follows. First, we formulate the problem as
one of predicting the values of a dissimilarity function of
the two models’ outputs. We focus herein on 0-1 dissimilar-
ity for two classifiers, where 0 means “same output” and 1
means “different”, so that prediction quality can be quan-
tified by any binary classification metric such as precision
and recall. Second, we propose a method that learns a Joint
Surrogate Tree (JST), composed of two conjoined decision
tree surrogates to jointly approximate the two models. The
root and lower branches of the conjoined decision trees are
common to both models, while higher branches (farther
from root) may be specific to one model. A JST thus accom-
plishes two tasks at once: it provides interpretable surrogates
for the two models while also aligning the surrogates for
easier comparison and identification of differences. These
aspects are encapsulated in a visualization of JSTs that we
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present. Third, a refinement procedure is used to grow the
surrogates in selected regions, improving the precision of
the dissimilarity prediction.

Our design of jointly learning surrogates is motivated by
the need to place model differences in the context of the
overall decision logic. This can aid users who may already
have a mental model of (individual) AI systems, either for
debugging [Kulesza et al., 2012] or to understand errors
[Bansal et al., 2019].

The main contributions of the paper are (a) a quantitative
formulation of the problem of model differencing, and (b)
algorithms to learn and refine conjoined decision tree surro-
gates to approximate two models simultaneously. A detailed
evaluation of the method is presented on several benchmark
datasets, showing more accurate or more concise represen-
tation of model differences, compared to baselines.

2 RELATED WORKS

Our work touches upon several active areas of research
which we summarize based on key pertinent themes.

Surrogate models and model refinement One mecha-
nism to lend interpretability to machine learning models
is through surrogates, i.e., simpler human-readable models
that mimic a complex model [Bucilă et al., 2006, Ba and
Caruana, 2014, Hinton et al., 2015, Lopez-Paz et al., 2016].
Most relevant to this paper are works that use a decision
tree as the surrogate [Craven, 1996, Bastani et al., 2017,
Frosst and Hinton, 2017]. Bastani et al. [2017] showed that
interpretable surrogate decision trees extracted from a black-
box ML model allowed users to predict the same outcome
as the original ML model. Freitas [2014] also discusses
interpretability and usefulness of using decision trees as
surrogates. None of these works however have considered
jointly approximating two black-box models.

Decision tree generation with additional objectives
Chen et al. [2019] showed that decision tree generation
is not robust and slight changes in the root node can result
in a very different tree structure. Chen et al. [2019], An-
driushchenko and Hein [2019] focus on improving robust-
ness when generating the decision tree while Moshkovitz
et al. [2021] prioritises both robustness and interpretability.
Aghaei et al. [2019] use mixed-integer optimization to take
fairness into account in the decision tree generation. How-
ever, none of these solutions consider the task of comparing
two decision trees.

Predicting disagreement or shift Prior work has focused
on identifying statistically whether models have signifi-
cantly changed [Bu et al., 2019, Geng et al., 2019, Harel
et al., 2014], but not on where they have changed. Cito et al.
[2021] present a model-agnostic rule-induction algorithm

to produce interpretable rules capturing instances that are
mispredicted with respect to their ground truth.

Comparing models The “distill-and-compare” approach
of Tan et al. [2018] uses generalized additive models
(GAMs) and fits one GAM to a black-box model and a
second GAM to ground truth outcomes. While differences
between the GAMs are studied to uncover insights, there
is only one black-box model. Demšar and Bosnić [2018]
study concept drift by determining feature contributions to a
model and observing the changes in contributions over time.
Similarly, Duckworth et al. [2021] investigated changes in
feature importance rankings pre- and post-COVID. This
approach however does not localize changes to regions of
the feature space. Chouldechova and G’Sell [2017] compare
models in terms of fairness metrics and identify groups in
the data where two models have maximum disparity. Prior
work by Nair et al. [2021], which is most similar to our own,
uses rule-based surrogates for two models and derives rules
for where the models behave similarly. Their method biases
the learning of the second surrogate based on inputs from
the first model, a step they call grounding, and imposes a
one-to-one mapping between rules in the two surrogates.
This is a strict condition that may not hold in practice. Ad-
ditionally, their method does not evaluate the accuracy of
resulting rules in predicting model similarities or differences.
Our approach addresses these limitations.

3 PROBLEM STATEMENT AND
PRELIMINARIES

We are given two predictive models M1,M2 : X → Y
mapping a feature space X ⊂ Rd to an output space Y , as
well as a dissimilarity function D : Y × Y → R+ (where
R+ means the non-negative reals including zero) for com-
paring the outputs of the two models. Our goal is to obtain
a difference model (“diff-model” for short), D̂ : X → R+,
that predicts the dissimilarityD(M1(x),M2(x)) well while
also being interpretable. To construct D̂, we assume access
to a dataset X ∈ Rn×d consisting of n samples drawn
i.i.d. from a probability distribution P over X . This dataset
does not have to have ground truth labels, in contrast to
supervised learning, since supervision is provided by the
models M1,M2. Prediction quality is measured by the ex-
pectation E[L(D̂(X), D(M1(X),M2(X))] of one or more
metrics L : R+ ×R+ → R+ comparing D̂ to D, where the
expectation is with respect to P . In practice, these expecta-
tions are approximated empirically using a test set.

In this work, we focus on classification models M1

and M2, so that Y is a finite set, and 0-1 dissimilar-
ity D(M1(x),M2(x)) = 1 if M1(x) 6= M2(x) and
D(M1(x),M2(x)) = 0 otherwise. Accordingly, the pre-
dictions D̂(x) are also binary-valued and any binary classi-
fication metrics L may be used for evaluation. Herein we
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use precision, recall, and F1-score (described in Section 5).

We use decision trees as the basis for our Joint Surrogate
Tree solution. To ensure interpretability, the height (also
referred to as maximum depth) is constrained to a small
value (e.g. 6 in our experiments). Below we define notation
and terminology related to decision trees for later use.

Decision Tree A decision tree is a binary tree T =
(Vdt, Edt) with a node set Vdt, a root node r ∈ Vdt and
a directed set of edges Edt ⊂ Vdt × Vdt. Each internal node
v ∈ Vdt contains a split condition s(v) := f(v) < t(v) con-
taining a predicate on feature f(v) ∈ [d] (where [d] is the
shorthand for {1 . . . d}), and a threshold t(v) ∈ R, and two
children vT and vF . The edges (v, vT ) and (v, vF ) are an-
notated with edge conditions f(v) < t(v) and f(v) ≥ t(v),
respectively. Each leaf node v contains a label label(v) ∈ Y .
All leaf nodes of a tree rooted at r are denoted as leaves(r).
Given a node v, path-condition of v (denoted as pc(v)) is
defined as the conjunction of all edge conditions from r to
v. At a given node v ∈ Vdt, we denote by Xv, yv the subset
of samples that satisfy the pc(v) and their labels, and we
use Xv[f ] to denote the set of values for the feature f ∈ [d].
Without loss of generality, s(v) is formed by minimizing
function H , for all features and their values. We express
the split condition at node v as s(v) = c(Xv, yv) and the
minimum objective value (impurity) by imp(Xv, yv):

c(Xv, yv) = arg min
{f∈[d], t∈Xv [f ]}

H(f, t,Xv, yv) (1)

imp(Xv, yv) = min
{f∈[d], t∈Xv [f ]}

H(f, t,Xv, yv) (2)

For example, H can be instantiated as the weighted sum of
entropy values of left and right split [Quinlan, 1986]. We
now describe two baseline approaches to the problem before
presenting our proposed algorithm in Section 4.

Direct difference modelling Given the above problem
statement, a natural way to predict the dissimilarity function
D is to let D̂ be a single ML model, in our case a decision
tree for interpretability, and train it to classify between D =
0 (models M1,M2 having the same output) and D = 1
(different output). We call this the direct approach. The
main drawback of direct differencing is that even when
using an interpretable decision tree, it does not capture the
differences between the two models in the context of their
human-interpretable decision processes, i.e., where in the
decision logic of the models do the differences occur.

Surrogate modelling Another natural way to model the
dissimilarity is to separately build a decision tree surrogate
M̂i for each input model Mi, i = 1, 2, using the outputs of
Mi on the input samples X for training the surrogate. Then
we predict D̂(x) = 1 if M̂1(x) 6= M̂2(x) and D̂(x) = 0
otherwise. We call this the separate surrogate approach. Its
drawback is that the two decision tree surrogates are not

Joint Surrogate
Tree Builder

Diff Ruleset
Builder

Want more
precision?

Output
Diff Ruleset

JST
Refinement

Dataset XM1 M2

Yes No

Figure 1: Method Overview

aligned, making it cumbersome for human comparison. In
Section 5, we show that the manifestation of this drawback
is the large number of rules (see next paragraph) needed to
describe all the regions where the two surrogates differ.

Diff rules as output We use diff rules as an interpretable
representation of model differences for both direct and sur-
rogate tree-based diff models. A diff rule is a conjunction
of conditions on individual features that, when satisfied at
a point x, yields the prediction D̂(x) = 1. Corresponding
to each diff rule is a diff region, the set of x’s that satisfy
the rule. A diff ruleset R is a set of diff rules such that if x
satisfies any rule in the set, we predict D̂(x) = 1. For a di-
rect decision tree model, the diff rules are given by the path
conditions of the D̂(x) = 1 leaves. For surrogate models
M̂1, M̂2, the diff rules are conjunctions of path conditions
for pairs of intersecting leaves where M̂1(x) 6= M̂2(x).

4 PROPOSED ALGORITHM

We propose a technique called IMD, which shows the dif-
ferences between two ML models by constructing a novel
representation called a Joint Surrogate Tree or JST. A JST
is composed of two conjoined decision tree surrogates that
jointly approximate the two models, intuitively capturing
similarities and differences between them. It overcomes the
drawbacks of the direct and separate surrogate approaches
mentioned in Section 3: it avoids the non-smoothness of
direct difference modelling, aligns and promotes similarity
between surrogates for the two models, and shows differ-
ences in the context of each model’s decision logic. Our
method has a single hyperparameter, tree depth, which con-
trols the trade-off between accuracy and interpretability.

IMD performs two steps as shown in Figure 1. In the first
step, IMD builds a JST for models M1,M2 using data sam-
ples X , and then extracts diff regions from the JST. Inter-
pretability is ensured by restricting the height of the JST.
The IMD algorithm treats M1,M2 as black boxes and can
handle any pair of classification models. It is also easy to
implement as it requires a simple modification to popular
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Figure 2: A JST for the Breast Cancer (bc) dataset.

greedy decision tree algorithms.

The second (optional) step, discussed at the end of Sec-
tion 4.1, refines the JST by identifying diff regions where
the two decision tree surrogates within the JST differ but
the original models do not agree with the surrogates on their
predictions. The refinement process aims to increase the
fidelity of the surrogates in the diff regions, thereby gener-
ating more precise diff regions where the true models also
differ.

4.1 JOINT SURROGATE TREE

Representation Figure 2 shows an example of a JST
for Logistic Regression and Random Forest models on the
Breast cancer dataset [Dua and Graff, 2017] (feature names
are omitted to save space). The JST consists of two con-
joined decision tree surrogates for the two models. The
white oval nodes of the JST are shared decision nodes where
both surrogates use the same split conditions. We refer to
the subtree consisting of white nodes as the common pre-
fix tree. In contrast, the colored nodes represent separate
decision nodes, pink for surrogate M̂1 corresponding to
M1, and orange for surrogate M̂2 for M2. The rectangular
nodes correspond to the leaves, and are colored differently
to represent class labels — cyan for label 1, and beige for
label 0. The leaves are marked as pure/impure depending
on whether all the samples falling there have the same label
or not.

The JST intuitively captures diff regions, i.e., local regions
of feature space where the two input models diverge, and
also groups them into a two-level hierarchy. As with any
surrogate-based diff model, we have D̂(x) = 1 if and only if
the constituent decision tree surrogates disagree, M̂1(x) 6=
M̂2(x). Thus, diff regions can be identified by first focusing
on an or-node (the dotted circle nodes in Figure 2 where
the surrogates diverge) and then enumerating pairs of leaves
under it with different labels.

For example, considering the rightmost or-node vo1 in Fig-

ure 2, with path condition X[22] ≥ 116.05, M̂2 classifies
all the samples to label 0 whereas M̂1 classifies to label 1 in
the region X[22] < 118.85 ∧X[29] < 0.1. Therefore the
diff region is 118.85 > X[22] ≥ 116.05 ∧ X[29] < 0.1.
While in this case vo1 yields a single diff region, in general
multiple diff regions could be grouped under a single or-
node, resulting in a hierarchy. By processing all the or-nodes
of the JST, one obtains all diff-regions.

Formally, JST = (V = Vdt ∪ Vo, E = Edt ∪Eo). Vdt is a
set of decision nodes similar to decision trees (oval shaped
in figure) with each outgoing edge ∈ Edt (solid arrows)
representing True or False decisions as in a regular decision
tree. Vo are the set of or-nodes (circular nodes) representing
the diverging points where the decision trees no longer share
the same split conditions. Each child of vo ∈ Vo is denoted
as vio, i = 1, 2, with dashed edges (vo, v

i
o) ∈ Eo. Each

vio represents the root of an individual surrogate decision
sub-tree for model i. The height of a JST is the maximum
number of decision edges (solid edges) in any root-to-leaf
path.

Formally, a diff region is defined by the non-empty intersec-
tion of path-conditions of differently labelled leaves l1, l2
from two decision sub-trees rooted at the same or-node vo.
The collection of all diff regions specifies the diff ruleset:

R =
{

pc(l1) ∧ pc(l2) : li ∈ leaves(vio), i = 1, 2,

label(l1) 6= label(l2), vo ∈ Vo} . (3)

Construction The objective of JST construction is two-
fold: (a) Maximize comparability: To achieve maximal shar-
ing of split conditions between the two decision tree surro-
gates, and (b) Interpretability: Achieve the above objective
under the constraint of interpretability. We have chosen the
height of the JST as the interpretability constraint.

The construction of a JST corresponding to the inputs
M1,M2, X starts with evaluating y1 = M1(X) and y2 =
M2(X). Starting from the root, at each internal node v ∈
Vdt, with inputs (Xv, y1v = M1(Xv), y2v = M2(Xv)) fil-
tered by the node’s path condition, the key choice is whether
to create a joint decision node or an or-node for the surro-
gates to diverge. The choice of node type signifies whether
the two surrogates will continue to share their split condi-
tions or not. Once divergence happens at an or-node, the
two sub-trees rooted at the or-node do not share any split
nodes thereafter. Below we present a general condition for
divergence and a simplified one implemented in our experi-
ments.

In general, a divergence condition should compare the cost
of a joint split to that of separate splits for the two models. In
the context of greedy decision tree algorithms considered in
this work, the comparison is between the sum of impurities
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for the best possible common split,

imp(Xv, y1v, y2v) =

min
{f∈[d], t∈Xv[f ]}

H(f, t,Xv, y1v) +H(f, t,Xv, y2v), (4)

and the impurities imp(Xv, y1v), imp(Xv, y2v) (2) for the
best separate splits. One condition for divergence is

imp(Xv, y1v) + imp(Xv, y2v) ≤ α imp(Xv, y1v, y2v)
(5)

for some α ≤ 1. The choice α = 1 always results in diver-
gence and thus reduces to the separate surrogate approach
in Section 3. This happens because the left-hand side of
(5) corresponds to separately minimizing the two terms in
(4), hence ensuring that (5) is true. As α decreases, joint
splits are favored. For α < 0, divergence essentially never
occurs.1

For this work, we choose to heavily bias the algorithm to-
ward joint splits and greater interpretability of the resulting
JST. In this case, we use the simplified condition

imp(Xv, y1v) = 0 ∨ imp(Xv, y2v) = 0, (6)

which results in divergence if at least one of the minimum
impurity values is zero. The advantage of (6) over (5) is
that the minimization in (4) to compute imp(Xv, y1v, y2v)
can be done lazily, only if (6) is not satisfied. If condition
(6) is met, we create an or-node, two or-edges, and grow
individual surrogate trees from that point onward. Figure 2
shows 1 instance (node vo0) where (6) is met. A special case
of (6) occurs when at least one of y1v, y2v contains only one
label, i.e., it is already pure without splitting. The node vo1
in Figure 2 shows one such case.

The JST construction ends if pure leaf nodes are found or the
height of the JST has reached a pre-defined hyper-parameter
value k.

JST Refinement We now present an iterative process for
refinement aimed at increasing precision of diff regions.

For each leaf li contributing to a diff region (3), if its samples
(satisfying pc(li)) have more than one label as given by
the model Mi being approximated (the leaf is impure), we
can further split it into two leaf nodes. This refines the
decision tree surrogates only in the diff regions and not at
all impure leaves. Next, diff regions are recomputed with
the resulting leaf nodes. This process can continue for a
pre-defined number of steps or until some budget is met.
Every such iteration increases the tree depth by 1 (but not
uniformly) and improves the fidelity of the individual sub-
tree rooted at an or-node.

1If imp(Xv, y1v, y2v) = 0, then imp(Xv, y1v) =
imp(Xv, y2v) = 0 also and the same (f, t) pair minimizes all
three impurities. Hence divergence has no effect.

5 EXPERIMENTAL RESULTS

We report experimental results comparing the proposed IMD
technique to learning separate surrogates for the two models
(Section 5.1), and to direct difference modelling and the
prior work of Nair et al. [2021] (Section 5.2). The effect of
refinement is demonstrated in Section 5.3. The following
paragraphs describe the setup of the experiments.

Datasets We have used 13 publicly available [Dua and
Graff, 2017, Vanschoren et al., 2013, Alcalá-Fdez et al.,
2011] tabular classification datasets, including both binary
and multiclass classification tasks. As preprocessing steps,
we dropped duplicate instances occurring in the original
data, and one-hot encoded categorical features.

Models We split each dataset in the standard 70/30 ratio,
and trained an array of machine learning models — Deci-
sion Tree Classifier (DT), Random Forest Classifier (RF),
K-Neighbours Classifier (KN), Logistic Regression (LR),
Gradient Boosting (GB), Multi-Layered Perceptron (MLP),
and Gaussian Naive Bayes (GNB). For some models, multi-
ple instances were trained with different parameter values.
We have used the Scikit-learn [Pedregosa et al., 2011] im-
plementations for training. Once trained, we did not do any
performance tuning of the models, and used them as black
boxes (through the predict() method only) for subsequent
analyses. The dataset and model details including test set
accuracies are reported in the supplementary material (SM).

Set Up We have selected two pairs of models per dataset
corresponding to the largest and smallest differences in ac-
curacy on the test set (indicated as max M1-M2 and min
M1-M2 in Table 1). This ensures we compare models with
contrasting predictive performance, as well as models that
achieve similar accuracy. For fitting and evaluating diff mod-
els, including our IMD approach as well as baselines, we
split the available dataset X (without labels) in a 70/30 ratio
into Dtrain and Dtest. This split is not and does not have to
be the same as the train/test splits for training and evaluating
the underlying models. We perform 5 train/test splits and
report in the main paper the mean of the following metrics
across the 5 runs, with standard deviation values in the SM.

Metrics To measure how accurately we capture the true
regions of disagreement between models M1 and M2, we
use the following metrics. Given a test set Dtest, we have a
subset of true diff samples:

Ttrue = {x ∈ Dtest |M1(x) 6= M2(x)},

and the predicted diff samples by the diff model D̂(x):

Tpred = {x ∈ Dtest | D̂(x) = 1}.

Recall that in the case where we have extracted a diff ruleset
R for D̂(x), x ∈ Tpred if there exists a rule r ∈ R that is
satisfied by x.
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Precision (Pr) is the ratio |Ttrue ∩Tpred|
|Tpred| , measuring the frac-

tion of predicted diff samples that are true diff samples on
the test set Dtest.

Recall (Re) is the ratio |Ttrue ∩Tpred|
|Ttrue| , measuring the fraction

of true diff samples in Dtest that are correctly predicted.

Interpretability For interpretable diff models for which we
have extracted a diff rulesetR, we measure its interpretabil-
ity in terms of the number of rules (# r) in the set, and the
number of unique predicates (# p) summed over all the rules
in the set. The choice of the above metrics is motivated by
the works of Lakkaraju et al. [2016], Dash et al. [2018],
Letham et al. [2015].

5.1 IMD AGAINST SEPARATE SURROGATES

First we study the effect of jointly training surrogates in
IMD, which encourages sharing of split nodes, against train-
ing separate surrogates for the two models. Since these are
both surrogate-based approaches to obtain a diff model D̂,
we compare the metrics for the diff rulesets extracted (as
described in Section 3) from the surrogates. IMD extracts
diff rulesets from JSTs, while the separate surrogate ap-
proach is a special case of IMD corresponding to α = 1.
The height (a.k.a. maximum depth) of the surrogates is re-
stricted to 6 for both of the approaches. We do not perform
the refinement step here as we study it in Section 5.3.

Observations The metrics are reported for 8 datasets in
Table 1 (full version in Appendix). The differences in Pr,
Re, and # rules are also tabulated for better readability.
We also report the fraction of diff samples in Dtest for
each dataset and model pair combination in the “diffs" col-
umn. This value is also the precision of a trivial diff-model
(D̂(x) = 1 ∀x, recall= 1.0), or any diff-model that predicts
diff with probability q (recall= q), e.g., q = 0.5 is a random
guesser. Clearly, diff prediction quality for both approaches
is significantly better than random guessing.

To summarize the table, below we compare the approaches
on the basis of average percentage increase or decrease in
precision and recall (on going from separate to IMD) across
all datasets. We also perform Wilcoxon’s signed rank test
(as recommended by Benavoli et al. [2016]) to verify the
statistical significance of the observed differences.

For precision, we observe a very small drop (1.55% on av-
erage) going from separate surrogates to IMD. Wilcoxon’s
test’s p-value is 0.269, implying no significant difference
(at level 0.05) between the approaches. For recall, we ob-
serve that IMD has 23.45% poorer recall. Wilcoxon’s test
confirms this difference with a p-value of 0.0002, and a sign
test also shows that separate surrogates have higher values
of recall for 22 of the 26 benchmarks.

For the interpretability metrics however, IMD is the clear
winner looking at the columns corresponding to numbers

of rules (# r) and unique predicates (# p, in Appendix). If
we simply average the numbers of rules and predicates to
understand the scale of the difference (with the caveat that
different datasets and model pairs have different complexi-
ties), the average number of rules for separate and IMD are
337.25 and 20.94, and the average numbers of predicates
are 135.41 and 56.10. The corresponding p-values are also
very low (on the order of 10−6).

5.2 COMPARISON WITH OTHER APPROACHES

In this experiment, we compare the quality of prediction
of the true dissimilarity D with respect to other baselines.
The first two baselines are direct approaches (introduced in
Section 3) as they relabel the instances as diff (“1") or non-
diff (“0") and directly fit a classification model on the rela-
beled instances. Out of a huge number of possible models for
this binary classification problem of predicting diff or non-
diff, we choose Decision Tree (with max_depth=6) to be
directly comparable to JST, and Gradient Boosting Classi-
fier (max_depth=6, rest default settings in Scikit-learn)
to provide a more expressive but uninterpretable benchmark.
These choices are made to compare the quality of surrogate-
based diff regions against directly modelled diff regions,
and also to understand if we are significantly compromising
on quality by not using a more expressive or uninterpretable
model. As a third baseline, we compare to diff rulesets ob-
tained from Grounded BRCG [Nair et al., 2021] ruleset sur-
rogates for the two models. The surrogate-based approaches
from the previous subsection, IMD (without refinement) and
separate, are also included for completeness.

Observations We have listed the F1-scores (harmonic mean
of precision and recall) in Table 2, and omitted the M1

vs.M2 column (same as in Table 1) for brevity. Since BRCG
Diff. applies only to binary classification tasks, we only show
it for those. Note that for IMD and separate surrogates, the
precision and recall values are already reported in Table 1.
For the other methods and datasets, precision, recall, and
# rules (if applicable) are in the Appendix. On average,
we observe that IMD achieves a 89.76% improvement in
F1-score over Direct DT, and 98.52% improvement over
the BRCG Diff. approach.2 On the other hand, we do not
observe a large drop in F1-score from the uninterpretable
Direct GB to IMD (−5.87%). Similarly, the precision and
recall differences in Section 5.1 combine to give a−15.26%
decrease in going from separate surrogates to IMD.

We report mean ranks in Table 2 and performed Friedman’s
test following Demšar [2006], which confirms significant
differences between the methods with a p-value on the
order of 0.0006. Next we perform pairwise comparisons
of IMD against the other approaches. The p-values from

2This is computed by removing the second subrow for tictactoe
as F1 score is 0 for both Direct DT and BRCG Diff. and the jump
is infinite. This removal is thus favorable toward them.
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Table 1: Sep. surrogates shows slightly higher recall, but IMD shows comparable performance with much less complexity.

Separate Surrogates IMD

Dataset M1 vs. M2 diffs Pr Re #r Pr Re #r

adult max MLP1-GB 0.20 0.96 0.88 70.0 0.96 0.88 18.0
min MLP2-DT2 0.08 0.45 0.29 155.4 0.46 0.16 17.4

bankm max MLP2-GB 0.26 0.66 0.75 263.6 0.70 0.67 23.0
min MLP1-GNB 0.26 0.74 0.75 345.0 0.71 0.69 34.4

eye max RF1-GNB 0.56 0.65 0.66 1054.0 0.60 0.71 36.2
min LR-MLP1 0.34 0.59 0.53 781.6 0.57 0.39 28.4

heloc max KN1-RF2 0.23 0.40 0.23 373.0 0.40 0.13 15.8
min GB-RF1 0.17 0.30 0.19 234.4 0.25 0.06 14.6

magic max RF1-GNB 0.25 0.75 0.58 362.8 0.75 0.52 25.0
min MLP2-DT2 0.11 0.43 0.36 282.6 0.42 0.17 11.0

redwine max RF1-KN2 0.37 0.46 0.52 627.8 0.52 0.25 29.0
min KN1-GNB 0.52 0.70 0.59 563.6 0.69 0.47 40.4

tictactoe max LR-GNB 0.34 0.76 0.78 109.6 0.76 0.89 24.4
min DT2-KN2 0.06 0.10 0.15 54.0 0.16 0.11 5.8

waveform max LR-DT1 0.18 0.45 0.52 746.0 0.49 0.27 33.2
min MLP1-RF2 0.11 0.17 0.32 725.0 0.10 0.02 9.0

Sep. − IMD

∆Pr ∆Re ∆#r
−0.00 −0.00 −52.0
+0.01 −0.13 −138.0
+0.04 −0.08 −240.6
−0.03 −0.06 −310.6
−0.06 +0.05 −1017.8
−0.02 −0.14 −753.2
+0.00 −0.10 −357.2
−0.05 −0.13 −219.8
+0.00 −0.06 −337.8
−0.01 −0.18 −271.6
+0.06 −0.27 −598.8
−0.01 −0.11 −523.2
−0.00 +0.11 −85.2
+0.05 −0.04 −48.2
+0.04 −0.25 −712.8
−0.07 −0.30 −716.0

Wilcoxon’s signed rank test are 0.00025, 0.043, 0.043, and
0.1594 against separate, BRCG Diff., Direct DT, and Direct
GB respectively. We pit these against the Holm-corrected
thresholds of 0.0125, 0.017, 0.025, 0.05, and observe that
only the first one (IMD vs. separate) is significant for this
set of values. However, we emphasize that although separate
and Direct GB have consistently higher F1-scores than IMD,
the size of the differences is small and IMD is considerably
more interpretable. For the interpretable methods, the av-
erage numbers of rules observed for IMD, Direct DT, and
BRCG Diff. are 16.05, 10.50, 37.69 (separate surrogates
was already discussed in Section 5.1).

We present further experiments (in Appendix) varying the
depth to understand the accuracy-complexity trade-off for
Direct DT, Separate and IMD extensively. While the trade-
offs for Direct DT and IMD are competitive, both of them
are consistently better than Separate. We also discuss quali-
tative comparison between Direct DT and IMD which brings
out the benefit of IMD in placing the diff rules in the context
of the models’ decision logic, as already seen in Figure 2.

5.3 EFFECT OF REFINEMENT

To investigate the effect of the refinement step of IMD (de-
scribed at the end of Section 4.1), we compare diff rulesets
obtained from three variations of the algorithm — IMD with
maximum depth of 6 (IMD6), same as in previous experi-
ments; IMD6 with 1 iteration of refinement (IMD6+1); and
IMD with maximum depth of 7 (IMD7).

Looking at Table 3 (all benchmarks not shown for lack of
space), we observe improvement in precision from IMD6 to
IMD6+1 (11.27% on average), and interestingly, also from

IMD7 to IMD6+1 (4.22% on average). The p-values from
Wilcoxon’s test are on the order of 10−3 for both compar-
isons, validating the significance of the improvement. The
average numbers of rules for the three approaches are 20.93,
28.77, and 41.01 respectively, confirming that IMD6+1 only
refines selectively compared to IMD7.

The results demonstrate that selective splitting of impure
leaf nodes only in predicted diff regions (IMD6+1), im-
proves precision compared to regular tree splitting of all
impure nodes (IMD7). However, this improvement is to be
taken with some caution as it comes at the cost of a consis-
tent drop in recall (15.37% from IMD6 and 25.14% from
IMD7 averaged across all benchmarks). Thus we recom-
mend refinement specifically for scenarios requiring high
precision difference modelling.

Experimental Conclusions IMD has close to the same
F1-scores as the top methods in our comparison, separate
surrogates and the (uninterpretable) Direct GB. At the same
time, IMD yields much more concise results, with an order
of magnitude fewer diff rules than separate surrogates. This
affirms the benefit of sharing nodes in JST, which localizes
differences before divergence. We also see (in SM) how
the features deemed important by JST are close to what the
models also use in their decision logic via feature impor-
tance computations. This establishes our claim that JSTs are
able to achieve two things at once: interpretable surrogates
that can be compared easily for the two models. Refinement
further improves the precision of IMD, but at the cost of
recall and interpretability. Additional experiments (in SM)
also support these conclusions.
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Table 2: Comparison of F1-scores. The mean ranks (↓ the
better) highlight that sep. surr., and Direct GB are most
accurate, but IMD is close with greater interpretability.

Sep. Direct Direct BRCG
Dataset IMD Surr. DT GB Diff.

adult 0.92 0.92 0.92 0.98 0.33
0.23 0.34 0.17 0.61 0.31

bankm 0.68 0.70 0.69 0.77 0.41
0.70 0.75 0.68 0.82 0.41

banknote 0.89 0.89 0.83 0.94 0.27
0.52 0.56 0.57 0.63 0.06

bc 0.39 0.41 0.17 0.00 0.10
0.25 0.37 0.28 0.19 0.13

diabetes 0.32 0.43 0.21 0.35 0.35
0.32 0.41 0.09 0.22 0.30

heloc 0.19 0.29 0.03 0.14 0.37
0.10 0.22 0.02 0.05 0.27

magic 0.62 0.65 0.63 0.78 0.40
0.24 0.39 0.14 0.27 0.20

mushroom 0.75 0.80 0.81 0.97 0.76
0.72 0.80 0.81 0.97 0.74

tictactoe 0.82 0.77 0.77 0.82 0.83
0.12 0.12 0.00 0.09 0.00

mean rank 3.278 2.056 3.694 2.278 3.694

5.4 CASE STUDY

We conclude by demonstrating a practical application of
the method in the fairness area in the advertising domain.
Bias in ad campaigns leads to poor outcomes for companies
not reaching the right audience, and for customers who are
incorrectly targeted. Bias mitigation aims to correct this by
changing models to have more equitable outcomes.

Our IMD method can be used to assess the impact of bias
mitigation on a model. In this case study, a bias mitigation
method was applied to the group of non-homeowners who
had higher predicted rates of conversion (relative to ground
truth). The root node of the JST captures this group. Figure 3
shows a part of the JST (full tree in the Appendix). Although
the non-homeowner group is already over-predicted, the
JST shows that for certain cohorts within the group (those
outside the ages of 25-34), conversions are predicted where
the model before mitigation would not have. Interpretable
model differencing here captures unintended consequences
of model alterations.

6 CONCLUSION

We addressed the problem of interpretable model differenc-
ing, localizing and representing differences between ML
models for the same task. We proposed JST to provide a
unified view of the similarities and dissimilarities between

Table 3: Precision improves on refinement (IMD6+1).

Dataset IMD6 IMD6+1 IMD7

adult 0.96 0.96 0.95
0.46 0.59 0.53

bankm 0.70 0.78 0.77
0.71 0.79 0.74

eye 0.60 0.67 0.62
0.57 0.64 0.57

heloc 0.40 0.45 0.42
0.25 0.25 0.26

magic 0.75 0.80 0.73
0.42 0.55 0.46

redwine 0.52 0.56 0.48
0.69 0.73 0.68

tictactoe 0.76 0.79 0.78
0.16 0.19 0.18

waveform 0.49 0.54 0.49
0.10 0.14 0.17

Figure 3: A subtree of the JST showing an unintended
increase in predicted conversions after bias mitigation
for a cohort of the already over-predicted group of non-
homeowners.

the models as well as a succinct ruleset representation. Ex-
perimental results indicate that the proposed IMD approach
yields a favorable trade-off between accuracy and inter-
pretability in predicting model differences.

The current work is limited to comparing classifiers in terms
of 0-1 dissimilarity. Since IMD is based on decision trees,
its interpretability is limited to domains where the features
are interpretable. While we have chosen to extend greedy
decision tree algorithms due to ease and scalability, the
resulting JSTs accordingly have no guarantees of optimality.

Future work could seek to address the above limitations. To
extend the framework to regression tasks, a potential avenue
is to threshold the difference function D(M1(x),M2(x))
and apply the classification framework presented herein. The
problem of interpretable model differencing for images and
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language remains open. The constituent features for these
modalities are generally not interpretable making the diff
rulesets uninterpretable without additional considerations.
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