
On the Convergence of Continual Learning with Adaptive Methods
(Supplementary Material)

Seungyub Han1 Yeongmo Kim1 Taehyun Cho1 Jungwoo Lee1

1Electrical and Computer Engineering Dept., Seoul National University, Seoul, Republic of Korea

A ADDITIONAL BACKGROUNDS AND EXTENDED DISCUSSION

A.1 SUMMARY OF NOTATIONS

Notations Definitions Notations Definitions

x model parameter Ht the union of It and Jt
P previous task nf the number of data points in P
C current task ng the number of data points in C
P dataset of P ⟨·, ·⟩ inner product
C dataset of C L L-smoothness constant

h(x) mean loss of x on entire datasets αHt
adaptive step size for f with Ht

f(x) mean loss of x on P βHt
adaptive step size for g with Ht

g(x) mean loss of x on C Mt memory at time t
fi(x) loss of x on a data point i ∈ P et error of estimate f at time t
gj(x) loss of x on a data point j ∈ C eMt

error of estimate f with Mt

fIt(x) mini-batch loss of x on a batch It fMt
mean loss of x with Mt

gJt
(x) mini-batch loss of x on a batch Jt M[t1:t2] the history of memory from t1 to t2
It minibatch sampled from P Bt memory bias term at t
Jt minibatch sampled from C Γt forgetting term at t
Et total expectation from 0 to time t ΛHt

inner product between ∇fIt and ∇gJt

A.2 REVIEW OF TERMINOLOGY

(Restriction of f) If f : A → B and if A0 is a subset of A, then the restriction of f to A0 is the function

f |A0 : A0 → B

given by f |A0(x) = f(x) for x ∈ A0.

A.3 ADDITIONAL RELATED WORK

Regularization based methods. EWC has an additional penalization loss that prevent the update of parameters from losing
the information of previous tasks. When we update a model with EWC, we have two gradient components from the current
task and the penalization loss.

task-specific model components. SupSup learns a separate subnetwork for each task to predict a given data by superimposing
all supermasks. It is a novel method to solve catastrophic forgetting with taking advantage of neural networks.

Accepted for the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023).

mailto:<seungyubhan@snu.ac.kr>?Subject=On the convergence of continual learning

SGD methods without expereince replay. stable SGD [Mirzadeh et al., 2020] and MC-SGD [Jin et al., 2021] show overall
higher performance in terms of average accuracy than the proposed algorithm. For average forgetting, our method has
the lowest value, which means that NCCL prevents catastrophic forgetting successfully with achieving the reasonable
performance on the current task. We think that our method is focused on reducing catastrophic forgetting as we defined
in the reformulated continual learning problem (12), so our method shows the better performance on average forgetting.
Otherwise, MC-SGD finds a low-loss paths with mode-connectivity by updating with the proposed regularization loss. This
procedure implies that a continual learning model might find a better local minimum point for the new (current) task than
NCCL.

For non-memory based methods, the theoretical measure to observe forgetting and convergence during training does not
exist. Our theoretical results are the first attempt to analyze the convergence of previous tasks during continual learning
procedure. In future work, we can approximate the value of with fisher information for EWC and introduce Bayesian deep
learning to analyze the convergence of each subnetworks for each task in the case of SupSup [Wortsman et al., 2020].

B ADDITIONAL EXPERIMENTAL RESULTS AND IMPLEMENTATION DETAILS

We implement the baselines and the proposed method on Tensorflow 1. For evaluation, we use an NVIDIA 2080ti GPU
along with 3.60 GHz Intel i9-9900K CPU and 64 GB RAM.

B.1 ARCHITECTURE AND TRAINING DETAIL

For fair comparison, we follow the commonly used model architecture and hyperparameters of [Lee et al., 2020, Chaudhry
et al., 2020]. For Permuted-MNIST and Split-MNIST, we use fully-connected neural networks with two hidden layers of
[400, 400] or [256, 256] and ReLU activation. ResNet-18 with the number of filters nf = 64, 20 [He et al., 2016] is applied
for Split CIFAR-10 and 100. All experiments conduct a single-pass over the data stream. It is also called 1 epoch or 0.2
epoch (in the case of split tasks). We deal both cases with and without the task identifiers in the results of split-tasks to
compare fairly with baselines. Batch sizes of data stream and memory are both 10. All reported values are the average
values of 5 runs with diffrent seeds, and we also provide standard deviation. Other miscellaneous settings are the same as in
[Chaudhry et al., 2020].

B.2 HYPERPARAMETER GRIDS

We report the hyper-paramters grid we used in our experiments below. Except for the proposed algorithm, we adopted the
hyper-paramters that are reported in the original papers. We used grid search to find the optimal parameters for each model.

• finetune - learning rate [0.003, 0.01, 0.03 (CIFAR), 0.1 (MNIST), 0.3, 1.0]

• EWC - learning rate: [0.003, 0.01, 0.03 (CIFAR), 0.1 (MNIST), 0.3, 1.0] - regularization: [0.1, 1, 10 (MNIST,CIFAR),
100, 1000]

• A-GEM - learning rate: [0.003, 0.01, 0.03 (CIFAR), 0.1 (MNIST), 0.3, 1.0]

• ER-Ring - learning rate: [0.003, 0.01, 0.03 (CIFAR), 0.1 (MNIST), 0.3, 1.0]

• ORTHOG-SUBSPACE - learning rate: [0.003, 0.01, 0.03, 0.1 (MNIST), 0.2, 0.4 (CIFAR), 1.0]

• MER - learning rate: [0.003, 0.01, 0.03 (MNIST, CIFAR), 0.1, 0.3, 1.0] - within batch meta-learning rate: [0.01, 0.03,
0.1 (MNIST, CIFAR), 0.3, 1.0] - current batch learning rate multiplier: [1, 2, 5 (CIFAR), 10 (MNIST)]

• iid-offline and iid-online - learning rate [0.003, 0.01, 0.03 (CIFAR), 0.1 (MNIST), 0.3, 1.0]

• ER-Reservoir - learning rate: [0.003, 0.01, 0.03, 0.1 (MNIST, CIFAR), 0.3, 1.0]

• NCCL-Ring (default) - learning rate α: [0.003, 0.001(CIFAR), 0.01, 0.03, 0.1, 0.3, 1.0]

• NCCL-Reservoir - learning rate α: [0.003(CIFAR), 0.001, 0.01, 0.03, 0.1, 0.3, 1.0]

B.3 HYPERPARAMETER SEARCH ON βmax AND TRAINING TIME

Table 1: Permuted-MNIST (23 tasks 10000 examples per task), FC-[256,256] and Multi-headed split-CIFAR100, full size
Resnet-18. Accuracies with different clipping rate on NCCL + Ring.

βmax Permuted-MNIST Split-CIFAR100

0.001 72.52(0.59) 49.43(0.65)
0.01 72.93(1.38) 56.95(1.02)
0.05 72.18(0.77) 56.35(1.42)
0.1 72.29(1.34) 58.20(0.155)
0.2 74.38(0.89) 57.60(0.36)
0.5 72.95(0.50) 59.06(1.02)
1 72.92(1.07) 57.43(1.33)
5 72.31(1.79) 57.75(0.24)

Table 2: Permuted-MNIST (23 tasks 10000 examples per task), FC-[256,256] and Multi-headed split-CIFAR100, full size
Resnet-18. Training time.

Methods Training time [s]

Permuted-MNIST Split-CIFAR100

fine-tune 91 92
EWC 95 159

A-GEM 180 760
ER-Ring 109 129

ER-Reservoir 95 113
ORTHOG-SUBSPACE 90 581

NCCL+Ring 167 248
NCCL+Reservoir 168 242

B.4 ADDITIONAL EXPERIMENT RESULTS

Table 3: Permuted-MNIST (23 tasks 60000 examples per task), FC-[256,256].

Method memory size 1 5

memory accuracy forgetting accuracy forgetting

multi-task ✗ 83 - 83 -
Fine-tune ✗ 53.5 (1.46) 0.29 (0.01) 47.9 0.29 (0.01)

EWC ✗ 63.1 (1.40) 0.18 (0.01) 63.1 (1.40) 0.18 (0.01)
stable SGD ✗ 80.1 (0.51) 0.09 (0.01) 80.1 (0.51) 0.09 (0.01)
MC-SGD ✗ 85.3 (0.61) 0.06 (0.01) 85.3 (0.61) 0.06 (0.01)

MER ✓ 69.9 (0.40) 0.14 (0.01) 78.3 (0.19) 0.06 (0.01)
A-GEM ✓ 62.1 (1.39) 0.21 (0.01) 64.1 (0.74) 0.19 (0.01)
ER-Ring ✓ 70.2 (0.56) 0.12 (0.01) 75.8 (0.24) 0.07 (0.01)

ER-Reservoir ✓ 68.9 (0.89) 0.15 (0.01) 76.2 (0.38) 0.07 (0.01)
ORHOG-subspace ✓ 84.32 (1.10) 0.12 (0.01) 84.32 (1.1) 0.11 (0.01)

NCCL + Ring ✓ 74.22 (0.75) 0.13 (0.007) 84.41 (0.32) 0.053 (0.002)
NCCL+Reservoir ✓ 79.36 (0.73) 0.12 (0.007) 88.22 (0.26) 0.028 (0.003)

Table 4: Multi-headed split-CIFAR100, reduced size Resnet-18 nf = 20.

Method memory size 1 5

memory accuracy forgetting accuracy forgetting

EWC ✗ 42.7 (1.89) 0.28 (0.03) 42.7 (1.89) 0.28 (0.03)
Fintune ✗ 40.4 (2.83) 0.31 (0.02) 40.4 (2.83) 0.31 (0.02)

Stable SGD ✗ 59.9 (1.81) 0.08 (0.01) 59.9 (1.81) 0.08 (0.01)
MC-SGD ✗ 63.3 (2.21) 0.06 (0.03) 63.3 (2.21) 0.06 (0.03)
A-GEM ✓ 50.7 (2.32) 0.19 (0.04) 59.9 (2.64) 0.10 (0.02)
ER-Ring ✓ 56.2 (1.93) 0.13 (0.01) 62.6 (1.77) 0.08 (0.02)

ER-Reservoir ✓ 46.9 (0.76) 0.21 (0.03) 65.5 (1.99) 0.09 (0.02)
ORTHOG-subspace ✓ 58.81 (1.88) 0.12 (0.02) 64.38 (0.95) 0.055 (0.007)

NCCL + Ring ✓ 54.63 (0.65) 0.059 (0.01) 61.09 (1.47) 0.02 (0.01)
NCCL + Reservoir ✓ 52.18 (0.48) 0.118 (0.01) 63.68 (0.18) 0.028 (0.009)

Table 5: Multi-headed split-MiniImagenet, full size Resnet-18 nf = 64. Accuracy and forgetting results.

Method memory size 1

memory accuracy forgetting

Fintune ✗ 36.1(1.31) 0.24(0.03)
EWC ✗ 34.8(2.34) 0.24(0.04)

A-GEM ✓ 42.3(1.42) 0.17(0.01)
MER ✓ 45.5(1.49) 0.15(0.01)

ER-Ring ✓ 49.8(2.92) 0.12(0.01)
ER-Reservoir ✓ 44.4(3.22) 0.17(0.02)

ORTHOG-subspace ✓ 51.4(1.44) 0.10(0.01)
NCCL + Ring ✓ 45.5(0.245) 0.041(0.01)

NCCL + Reservoir ✓ 41.0(1.02) 0.09(0.01)

Table 6: Multi-headed split-CIFAR100, full size Resnet-18 nf = 64. Accuracy and forgetting results.

Method memory size 1 5

memory accuracy forgetting accuracy forgetting

Fintune ✗ 42.6 (2.72) 0.27 (0.02) 42.6 (2.72) 0.27 (0.02)
EWC ✗ 43.2 (2.77) 0.26 (0.02) 43.2 (2.77) 0.26 (0.02)

ICRAL ✓ 46.4 (1.21) 0.16 (0.01) - -
A-GEM ✓ 51.3 (3.49) 0.18 (0.03) 60.9 (2.5) 0.11 (0.01)

MER ✓ 49.7 (2.97) 0.19 (0.03) - -
ER-Ring ✓ 59.6 (1.19) 0.14 (0.01) 67.2 (1.72) 0.06 (0.01)

ER-Reservoir ✓ 51.5 (2.15) 0.14 (0.09) 62.68 (0.91) 0.06 (0.01)
ORTHOG-subspace ✓ 64.3 (0.59) 0.07 (0.01) 67.3 (0.98) 0.05 (0.01)

NCCL + Ring ✓ 59.06 (1.02) 0.03 (0.02) 66.58 (0.12) 0.004 (0.003)
NCCL + Reservoir ✓ 54.7 (0.91) 0.083 (0.01) 66.37 (0.19) 0.004 (0.001)

Table 7: permuted-MNIST (23 tasks 10000 examples per task), FC-[256,256]. Accuracy and forgetting results.

Method memory size 1 5

memory accuracy forgetting accuracy forgetting

multi-task ✗ 91.3 - 83 -
Fine-tune ✗ 50.6 (2.57) 0.29 (0.01) 47.9 0.29 (0.01)

EWC ✗ 68.4 (0.76) 0.18 (0.01) 63.1 (1.40) 0.18 (0.01)
MER ✓ 78.6 (0.84) 0.15 (0.01) 88.34 (0.26) 0.049 (0.003)

A-GEM ✓ 78.3 (0.42) 0.21 (0.01) 64.1 (0.74) 0.19 (0.01)
ER-Ring ✓ 79.5 (0.31) 0.12 (0.01) 75.8 (0.24) 0.07 (0.01)

ER-Reservoir ✓ 68.9 (0.89) 0.15 (0.01) 76.2 (0.38) 0.07 (0.01)
ORHOG-subspace ✓ 86.6 (0.91) 0.04 (0.01) 87.04 (0.43) 0.04 (0.003)

NCCL + Ring ✓ 74.38 (0.89) 0.05 (0.009) 83.76 (0.21) 0.014 (0.001)
NCCL+Reservoir ✓ 76.48 (0.29) 0.1 (0.002) 86.02 (0.06) 0.013 (0.002)

Table 8: Single-headed split-MNIST, FC-[256,256]. Accuracy and forgetting results.

Method memory size 1 5 50

memory accuracy forgetting accuracy forgetting accuracy forgetting

multi-task ✗ 95.2 - - - - -
Fine-tune ✗ 52.52 (5.24) 0.41 (0.06) - - - -

EWC ✗ 56.48 (6.46) 0.31 (0.05) - - - -
A-GEM ✓ 34.04 (7.10) 0.23 (0.11) 33.57 (6.32) 0.18 (0.03) 33.35 (4.52) 0.12 (0.04)

ER-Reservoir ✓ 34.63 (6.03) 0.79 (0.07) 63.60 (3.11) 0.42 (0.05) 86.17 (0.99) 0.13 (0.016)

NCCL + Ring ✓ 34.64 (3.27) 0.55 (0.03) 61.02 (6.21) 0.207 (0.07) 81.35 (8.24) -0.03 (0.1)
NCCL+Reservoir ✓ 37.02 (0.34) 0.509 (0.009) 65.4 (0.7) 0.16 (0.006) 88.9 (0.28) -0.125 (0.004)

Table 9: Single-headed split-MNIST, FC-[400,400] and mem. size=500(50 / cls.). Accuracy and forgetting results.

Method accuracy

multi-task 96.18
Fine-tune 50.9 (5.53)

EWC 55.40 (6.29)
A-GEM 26.49 (5.62)

ER-Reservoir 85.1 (1.02)
CN-DPM 93.23
Gdumb 91.9 (0.5)

NCCL + Reservoir 95.15 (0.91)

Table 10: Single-headed split-CIFAR10, full size Resnet-18 and mem. size=500(50 / cls.). Accuracy and forgetting results.

Method accuracy

iid-offline 93.17
iid-online 36.65
Fine-tune 12.68

EWC 53.49 (0.72)
A-GEM 54.28 (3.48)

GSS 33.56
Reservoir Sampling 37.09

CN-DPM 41.78

NCCL + Ring 54.63 (0.76)
NCCL + Reservoir 55.43 (0.32)

Table 11: Single-headed split-CIFAR100, Resnet18 with nf = 20. Memory size = 10,000. We conduct the experiment with
the same setting of GMED [Jin et al., 2021].

Methods accuracy

Finetune 3.06(0.2)
iid online 18.13(0.8)
iid offline 42.00(0.9)
A-GEM 2.40(0.2)

GSS-Greedy 19.53(1.3)
BGD 3.11(0.2)

ER-Reservoir 20.11(1.2)
ER-Reservoir + GMED 20.93(1.6)

MIR 20.02(1.7)
MIR + GMED 21.22(1.0)

NCCL-Reservoir 21.95(0.3)

C THEORETICAL ANALYSIS

In this section, we provide the proofs of the results for nonconvex continual learning. We first start with the derivation of
Equation 5 in Assumption 3.1.

C.1 ASSUMPTION AND ADDITIONAL LEMMA

Derivation of Equation 5. Recall that

|fi(x)− fi(y)− ⟨∇fi(y), x− y⟩| ≤ L

2
∥x− y∥2. (1)

Note that fi is differentiable and nonconvex. We define a function g(t) = fi(y + t(x− y)) for t ∈ [0, 1] and an objective
function fi. By the fundamental theorem of calculus,∫ 1

0

g′(t)dt = f(x)− f(y). (2)

By the property, we have

|fi(x)− fi(y)− ⟨∇fi(y), x− y⟩|

=

∣∣∣∣∫ 1

0

⟨∇fi(y + t(x− y)), x− y⟩dt− ⟨∇fi(y), x− y⟩
∣∣∣∣

=

∣∣∣∣∫ 1

0

⟨∇fi(y + t(x− y))−∇fi(y), x− y⟩dt
∣∣∣∣ .

Using the Cauchy-Schwartz inequality,∣∣∣∣∫ 1

0

⟨∇fi(y + t(x− y))−∇fi(y), x− y⟩dt
∣∣∣∣

≤
∣∣∣∣∫ 1

0

∥∇fi(y + t(x− y))−∇fi(y)∥ · ∥x− y∥dt
∣∣∣∣ .

Since fi satisfies Equation 4, then we have

|fi(x)− fi(y)− ⟨∇fi(y), x− y⟩|

≤
∣∣∣∣∫ 1

0

L∥y + t(x− y)− y∥ · ∥x− y∥dt
∣∣∣∣

= L∥x− y∥2
∣∣∣∣∫ 1

0

tdt

∣∣∣∣
=

L

2
∥x− y∥2.

Lemma C.1. Let p = [p1, · · · pD], q = [q1, · · · , qD] be two statistically independent random vectors with dimension D.
Then the expectation of the inner product of two random vectors E[⟨p, q⟩] is

∑D
d=1 E[pd]E[qd].

Proof. By the property of expectation,

E[⟨p, q⟩] = E[
D∑

d=1

pdqd]

=

D∑
d=1

E[pdqd]

=

D∑
d=1

E[pd]E[qd].

C.2 PROOF OF MAIN RESULTS

We now show the main results of our work.

Proof of Lemma 4.1. To clarify the issue of EMt [EIt [et|Mt]] = 0, let us explain the details of constructing replay-memory
as follows. We have considered episodic memory and reservoir sampling in the paper. We will first show the case of episodic
memory by describing the sampling method for replay memory. We can also derive the case of reservoir sampling by simply
applying the result of episodic memory.

Episodic memory (ring buffer). We divide the entire dataset of continual learning into the previous task P and the current
task C on the time step t = 0. For the previous task P , the data stream of P is i.i.d., and its sequence is random on
every trial (episode). The trial (episode) implies that a continual learning agent learns from an online data stream with
two consecutive data sequences of P and C. Episodic memory takes the last data points of the given memory size m
by the First In First Out (FIFO) rule, and holds the entire data points until learning on C is finished. Then, we note that
Mt = M0 for all t ≥ 0 and M0 is uniformly sampled from the i.i.d. sequence of P . By the law of total expectation, we
derive EM0⊂P [EIt [∇fIt(x

t)|M0]] for any xt, ∀t ≥ 0.

EM0⊂P

[
EIt

[
∇fIt(x

t)|M0

]]
= EM0⊂P

[
∇fM0

(xt)
]
.

It is known that M0 was uniformly sampled from P on each trial before training on the current task C. Then, we take
expectation with respect to every trial that implies the expected value over the memory distribution M0. We have

EM0⊂P

[
∇fM0

(xt)
]
= ∇f(xt)

for any xt, ∀t. We can consider ∇fMt
(xt) as a sample mean of P on every trial for any xt, ∀t ≥ 0. Although xt is

constructed iteratively, the expected value of the sample mean for any xt, EM0⊂P [∇fM0
(xt)] is also derived as ∇f(xt).

Reservoir sampling. To clarify the notation for reservoir sampling first, we denote the expectation with respect to the
history of replay memory M[0:t] = (M0, · · · ,Mt) as EM[0:t]

. This is the revised version of EMt
. Reservoir sampling is

a trickier case than episodic memory, but EM[0:t]
[EIt [et|Mt]] = 0 still holds. Suppose that M0 is full of the data points

from P as the episodic memory is sampled and the mini-batch size from C is 1 for simplicity. The reservoir sampling
algorithm drops a data point in Mt−1 and replaces the dropped data point with a data point in the current mini-batch from
C with probability p = m/n, where m is the memory size and n is the number of visited data points so far. The exact
pseudo-code for reservoir sampling is described in [1]. The replacement procedure uniformly chooses the data point which
will be dropped. We can also consider the replacement procedure as follows. The memory Mt for P is reduced in size 1 from
Mt−1, and the replaced data point dC from C contributes in terms of ∇gdC

(xt) if dC is sampled from the replay memory.
Let Mt−1 = [d1, · · · , d|Mt−1|] where | · | denotes the cardinality of the memory. The sample mean of Mt−1 is given as

∇fMt−1(x
t−1) =

1

|Mt−1|
∑
di

∇fdi(x
t−1). (3)

By the rule of reservoir sampling, we assume that the replacement procedure reduces the memory from Mt−1 to Mt with
size |Mt−1| − 1 and the set of remained upcoming data points Ct ∈ C from the current data stream for online continual
learning is reformulated into Ct−1 ∪ [dC]. Then, dC can be resampled from Ct−1 ∪ [dC] to be composed of the minibatch
of reservoir sampling with the dfferent probability. However, we ignore the probability issue now to focus on the effect of
replay-memory on ∇f . Now, we sample Mt from Mt−1, then we get the random vector ∇fMt(x

t) as

∇fMt(x
t) =

1

|Mt|

|Mt−1|∑
j=1

Wij∇fdj (x
t), (4)

where the index i is uniformly sampled from i ∼ [1, · · · , |Mt−1|], and Wij is the indicator function that Wij is 0 if i = j
else 1.

The above description implies the dropping rule, and Mt can be considered as an uniformly sampled set with size |Mt| from
Mt−1. There could also be Mt = Mt−1 with probability 1− p = 1−m/n. Then the expectation of ∇fMt

(xt) given Mt−1

is derived as

EMt [∇fMt(x
t)|Mt−1] = p

 1

|Mt−1|

|Mt−1|∑
i

1

|Mt|

|Mt−1|∑
j=1

Wij∇fdj (x
t)

+ (1− p)
(
∇fMt−1(x

t)
)

= ∇fMt−1
(xt).

When we consider the mini-batch sampling, we can formally reformulate the above equation as

EMt∼p(Mt|Mt−1)

[
EIt⊂Mt

[
∇fIt(x

t)|Mt

]
|Mt−1

]
= ∇fMt−1(x

t). (5)

Now, we apply the above equation recursively. Then,

EM1∼p(M1|M0)

[
· · ·EMt∼p(Mt|Mt−1)

[
EIt⊂Mt

[
∇fIt(x

t)|Mt

]
|Mt−1

]
· · · |M0

]
= ∇fM0(x

t). (6)

Similar to episodic memory, M0 is uniformly sampled from P . Therefore, we conclude that

EM0,··· ,Mt
[∇fMt

(xt)] = ∇f(xt) (7)

by taking expectation over the history M[0:t] = (M1,M2, · · · ,Mt).

Note that taking expectation iteratively with respect to the history M[t] is needed to compute the expected value of gradients
for Mt. However, the result EM0,··· ,Mt

[EIt [et|Mt]] = 0 still holds in terms of expectation.

Furthermore, we also discuss that the effect of reservoir sampling on the convergence of C. Unlike we simply update g(x)
by the stochastic gradient descent on C, the datapoints d ∈ M ∩ C have a little larger sampling probability than other
datapoints dC−M ∈ C −M . The expectation of gradient norm on the averaged loss E∥∇g(xt)∥2 is based on the uniform
and equiprobable sampling over C, but the nature of reservoir sampling distort this measure slightly. In this paper, we focus
on the convergence of the previous task C while training on the current task C with several existing memory-based methods.
Therefore, analyzing the convergence of reservoir sampling method will be a future work.

Proof of Lemma 4.2. We analyze the convergence of nonconvex continual learning with replay memory here. Recall that
the gradient update is the following

xt+1 = xt − αHt
∇fIt(x

t)− βHt
∇gJt

(xt)

for all t ∈ {1, 2, · · · , T}. Let et = ∇fIt(x
t) −∇f(xt). Since we assume that f, g is L-smooth, we have the following

inequality by applying Equation 5:

f(xt+1) ≤ f(xt) + ⟨∇f(xt), xt+1 − xt⟩+ L

2
∥xt+1 − xt∥2

= f(xt)− ⟨∇f(xt), αHt
∇fIt(x

t) + βHt
∇gJt

(xt)⟩+ L

2
∥αHt

∇fIt(x
t) + βHt

∇gJt
(xt)∥2

= f(xt)− αHt
⟨∇f(xt),∇fIt(x

t)⟩ − βHt
⟨∇f(xt),∇gJt

(xt)⟩

+
L

2
α2
Ht

∥∇fIt(x
t)∥2 + L

2
β2
Ht

∥∇gJt
(xt)∥2 + LαHt

βHt
⟨∇fIt(x

t),∇gJt
(xt)⟩

= f(xt)− αHt
⟨∇f(xt),∇f(xt)⟩ − αHt

⟨∇f(xt), et⟩ − βHt
⟨∇fIt(x

t),∇gJt
(xt)⟩+ βHt

⟨∇gJt
(xt), et⟩

+
Lα2

Ht

2
∥∇f(xt)∥2 + Lα2

Ht
⟨∇f(xt), et⟩+

Lα2
Ht

2
∥et∥2 +

Lβ2
Ht

2
∥∇gJt

(xt)∥2 + LαHt
βHt

⟨∇fIt(x
t),∇gJt

(xt)⟩

= f(xt)−
(
αHt

− L

2
α2
Ht

)
∥∇f(xt)∥2 + L

2
β2
Ht

∥∇gJt
(xt)∥2 − βHt

(1− αHt
L)⟨∇fIt(x

t),∇gJt
(xt)⟩

+
(
Lα2

Ht
− αHt

)
⟨∇f(xt), et⟩+ βHt

⟨∇gJt
(xt), et⟩+

L

2
α2
Ht

∥et∥2. (8)

To show the proposed theoretical convergence analysis of nonconvex continual learning, we define the catastrophic forgetting
term Γt and the overfitting term Bt as follows:

Bt = (Lα2
Ht

− αHt
)⟨∇f(xt), et⟩+ βHt

⟨∇gJt
(xt), et⟩,

Γt =
β2
Ht

L

2
∥∇gJt(x

t)∥2 − βHt(1− αHtL)⟨∇fIt(x
t),∇gJt(x

t)⟩.

Then, we can rewrite Equation 8 as

f(xt+1) ≤ f(xt)−
(
αHt

− L

2
α2
Ht

)
∥∇f(xt)∥2 + Γt +Bt +

L

2
α2
Ht

∥et∥2. (9)

We first note that Bt is dependent of the error term et with the batch It. In the continual learning step, an training agent cannot
access ∇f(xt), then we cannot get the exact value of et. Furthermore, Γt is dependent of the gradients ∇fIt(x

t),∇gIt(x
t)

and the learning rates αHt
, βHt

.

Taking expectations with respect to It on both sides given Jt, we have

EIt

[
f(xt+1)

]
≤ EIt

[
f(xt)−

(
αHt −

L

2
α2
Ht

)
∥∇f(xt)∥2 + Γt +Bt +

L

2
α2
Ht

∥et∥2
∣∣∣Jt]

≤ EIt

[
f(xt)−

(
αHt

− L

2
α2
Ht

)
∥∇f(xt)∥2 + L

2
α2
Ht

∥et∥2
]
+ EIt

[
Γt +Bt

∣∣∣Jt] .
Now, taking expectations over the whole stochasticity we obtain

E
[
f(xt+1)

]
≤ E

[
f(xt)−

(
αHt

− L

2
α2
Ht

)
∥∇f(xt)∥2 + Γt +Bt +

L

2
α2
Ht

∥et∥2
]
.

Rearranging the terms and assume that 1
1−LαHt/2

> 0, we have

(
αHt −

L

2
α2
Ht

)
E∥∇f(xt)∥2 ≤ E

[
f(xt)− f(xt+1) + Γt +Bt +

L

2
α2
Ht

∥et∥2
]

and

E∥∇f(xt)∥2 ≤ E

[
1

αHt
(1− L

2 αHt
)

(
f(xt)− f(xt+1) + Γt +Bt

)
+

αHt
L

2(1− L
2 αHt

)
∥et∥2

]

≤ E

[
1

αHt
(1− L

2 αHt
)

(
f(xt)− f(xt+1) + Γt +Bt

)
+

αHt
L

2(1− L
2 αHt

)
σ2
f

]
.

Proof of Theorem 4.3. Suppose that the learning rate αHt is a constant α = c/
√
T , for c > 0, 1− L

2 α = 1
A > 0. Then, by

summing Equation 7 from t = 0 to T − 1, we have

min
t

E∥∇f(xt)∥2 ≤ 1

T

T−1∑
t=0

E∥∇f(xt)∥2

≤ 1

1− L
2 α

(
1

αT

(
f(x0)− f(xT) +

T−1∑
t=0

(E [Bt + Γt])

)
+

L

2
ασ2

f

)

=
1

1− L
2 α

(
1

c
√
T

(
∆f +

T−1∑
t=0

(E [Bt + Γt])

)
+

Lc

2
√
T
σ2
f

)

=
A√
T

(
1

c

(
∆f +

T−1∑
t=0

E [Bt + Γt]

)
+

Lc

2
σ2
f

)
. (10)

We note that a batch It is sampled from a memory Mt ⊂ M which is a random vector whose element is a datapoint
d ∈ P ∪ C. Then, taking expectation over It ⊂ Mt ⊂ P ∪ C implies that E[Bt] = 0. Therefore, we get the minimum of
expected square of the norm of gradients

min
t

E∥∇f(xt)∥2 ≤ A√
T

(
1

c

(
∆f +

T−1∑
t=0

E[Γt]

)
+

Lc

2
σ2
f

)
.

Proof of Lemma 4.4. To simplify the proof, we assume that learning rates αHt
, βHt

are a same fixed value β = c′/
√
T .

The assumption is reasonable, because it is observed that the RHS of Equation 7 is not perturbed drastically by small
learning rates in 0 < αHt

, βHt
≤ 2/L ≪ 1. Let us denote the union of Mt over time 0 ≤ t ≤ T − 1 as M =

⋃
t Mt. By

the assumption, it is equivalent to update on M ∪ C. Then, the non-convex finite sum optimization is given as

min
x∈Rd

h|M∪C(x) =
1

ng + |M |
∑

i∈M∪C

hi(x), (11)

where |M | is the number of elements in M . This problem can be solved by a simple SGD algorithm [Reddi et al., 2016].
Thus, we have

min
t

E∥∇h|M∪C(x
t)∥2 ≤ 1

T

T∑
t=0

E∥∇h|M∪C(x
t)∥2 ≤

√
2∆h|M∪C

L

T
σh|M∪C

. (12)

Lemma C.2. For any C ⊂ D ⊂ M ∪ C, define ω2
h|D as

ω2
h|D = sup

x
Ej∈D∥∇hj(x

t)−∇h|M∪C(x
t)∥2].

Then, we have

E∥∇gJt
(xt)∥2 ≤ E∥∇h|M∪C(x

t)∥2 + sup
C⊂D⊂M∪C

ω2
h|D . (13)

Proof of Lemma C.2. We arrive at the following result by Jensen’s inequality

sup
x
EJt⊂C∥∇gJt

(xt)−∇h|M∪C(x
t)∥2 = sup

x
EJt⊂C

[
∥Ej∈Jt

[∇hj(x
t)]−∇h|M∪C(x

t)∥2
]

(14)

≤ sup
C⊂D⊂M∪C

sup
x
EJt⊂D

[
∥Ej∈Jt

[∇hj(x
t)]−∇h|M∪C(x

t)∥2
]

(15)

≤ sup
C⊂D⊂M∪C

[
sup
x
Ej∈D[∥∇hj(x

t)−∇h|M∪C(x
t)∥2]

]
(16)

= sup
C⊂D⊂M∪C

ω2
h|D . (17)

By the triangular inequality, we get

E∥∇gJt
(xt)∥2 ≤ E∥∇gJt

(xt)−∇h|M∪C(x
t)∥2 + E∥∇h|M∪C(x

t)∥2 (18)

≤ E∥∇h|M∪C(x
t)∥2 + sup

C⊂D⊂M∪C
ω2
h|D . (19)

For continual learning, the model x0 reaches to an ϵ-stationary point of f(x) when we have finished to learn P and start
to learn C. Now, we discuss the frequency of transfer and interference during continual learning before showing Lemma
4.5. It is well known that the frequencies between interference and transfer have similar values (the frequency of constraint
violation is approximately 0.5 for AGEM) as shown in Appendix D of [Chaudhry et al., 2019]. Even if memory-based
continual learning has a small memory buffer which contains a subset of P , random sampling from the buffer allows to have
similar frequencies between interference and transfer.

In this paper, we consider two cases for the upper bound of E[Γt], the moderate case and the worst case. For the moderate
case, which covers most continual learning scenarios, we assume that the inner product term ⟨∇fIt(x

t),∇gJt
(xt)⟩

has the same probabilities of being positive (transfer) and negative (interference). Then, we can approximate
E[⟨∇fIt(x

t),∇gJt(x
t)⟩] ≈ 0 over all randomness. For the worst case, we assume that all ⟨∇fIt(x

t),∇gJt(x
t)⟩ has

negative values.

Proof of Lemma 4.5. For the moderate case, we derive the rough upper bound of E[Γt]:

E [Γt] = E
[
β2
Ht

L

2
∥∇gJt(x

t)∥2 − βHt(1− αHtL)⟨∇fIt(x
t),∇gJt(x

t)⟩
]

(20)

≈ E
[
β2
Ht

L

2
∥∇gJt(x

t)∥2
]

(21)

= O

(
E
[
β2L

2
∥∇gJt(x

t)∥2
])

(22)

By plugging Lemma C.2 into E[Γt], we obtain that

E[Γt] ≤ O

(
E
[
β2L

2
∥∇gJt

(xt)∥2
])

(23)

= O

(
E
[
β2L

2
∥∇h|M∪C(x

t)∥2 + β2L

2
sup

C⊂D⊂M∪C
ω2
h|D

])
. (24)

We use the technique for summing up in the proof of Theorem 1, then the cumulative sum of catastrophic forgetting term is
derived as

T−1∑
t=0

E[Γt] ≤
T−1∑
t=0

β2L

2
O

(
E
[
∥h|M∪C(x

t)∥2
]
+ sup

C⊂D⊂M∪C
ω2
h|D

)
(25)

≤ β2L

2

T−1∑
t=0

O

(
1

β

[
h|M∪C(x

t)− h|M∪C(x
t+1)

]
+

Lβ

2
σ2
h|M∪C

+ sup
C⊂D⊂M∪C

ω2
h|D

)
(26)

≤ β2L

2
O

(
1

β
∆h|M∪C

+
TLβ

2
σ2
h|M∪C

+ T sup
C⊂D⊂M∪C

ω2
h|D

)
(27)

= O

(
β∆h|M∪C

+
TLβ3

2
σ2
h|M∪C

+ Tβ2 sup
C⊂D⊂M∪C

ω2
h|D

)
. (28)

Now, we consider the randomness of memory choice. Let D∗ be as follows:

D∗ = argmax
C⊂D⊂P∪C

β∆h|D +
TLβ3

2
σ2
h|D . (29)

Then, we obtain the following inequality,

T−1∑
t=0

E[Γt] ≤ O

(
β∆h|D∗ +

TLβ3

2
σ2
h|D∗ + Tβ2 sup

C⊂D⊂M∪C
ω2
h|D

)
(30)

≤ O

(
β∆h|D∗ +

TLβ3

2
σ2
h|D∗ + Tβ2 sup

C⊂D⊂P∪C
ω2
h|D

)
. (31)

Rearranging the above equation, we get

T−1∑
t=0

E[Γt] ≤ O

(
T

(
Lβ3

2
σ2
h|D∗ + β2 sup

C⊂D⊂P∪C
ω2
h|D

)
+ β∆h|D∗

)
. (32)

For the moderate case, we provide the derivations of the convergence rate for two cases of β as follows.

When β < α = c/
√
T , the upper bound always satisfies

T−1∑
t=0

E[Γt]√
T

≤ 1√
T
O

(
1

T

(
Lβ

2
σ2
h|D∗ +

1√
T

sup
C⊂D⊂P∪C

ω2
h|D

)
+

1√
T
∆h|D∗

)
< O

(
1

T 3/2
+

1

T

)
.

For β ≥ α = c/
√
T , we cannot derive a tighter bound, so we still have

T−1∑
t=0

E[Γt]√
T

≤ 1√
T
O

(
T

(
Lβ3

2
σ2
h|D∗ + β2 sup

C⊂D⊂P∪C
ω2
h|D

)
+ β∆h|D∗

)
= O

(√
T +

1√
T

)
.

For the worst case, we assume that there exists a constant cf,g which satisfies cf,g∥∇gJt
(xt)∥ ≥ ∥∇fIt(x

t)∥.

E [Γt] = E
[
β2
Ht

L

2
∥∇gJt

(xt)∥2 − βHt
(1− αHt

L)⟨∇fIt(x
t),∇gJt

(xt)⟩
]

(33)

≤ E
[
β2
Ht

L

2
∥∇gJt

(xt)∥2 + βHt
(1− αHt

L)∥∇fIt(x
t)∥∥∇gJt

(xt)∥
]

(34)

≤ E
[
β2L

2
∥∇gJt(x

t)∥2 + βcf,g∥∇gJt(x
t)∥2

]
(35)

= O
(
E
[(
β2 + β

)
∥∇gJt

(xt)∥2
])

. (36)

By plugging Lemma C.2 into E[Γt], we obtain that

E[Γt] ≤ O
(
E
[(
β2 + β

)
∥∇gJt

(xt)∥2
])

(37)

= O

((
β2 + β

)
E
[
∥∇h|M∪C(x

t)∥2 + sup
C⊂D⊂M∪C

ω2
h|D

])
. (38)

We use the technique for summing up in the proof of Theorem 1, then the cumulative sum of catastrophic forgetting term is
derived as

T−1∑
t=0

E[Γt] ≤
T−1∑
t=0

(
β2 + β

)
O

(
E
[
∥h|M∪C(x

t)∥2
]
+ sup

C⊂D⊂M∪C
ω2
h|D

)
(39)

≤
(
β2 + β

) T−1∑
t=0

O

(
1

β

[
h|M∪C(x

t)− h|M∪C(x
t+1)

]
+

Lβ

2
σ2
h|M∪C

+ sup
C⊂D⊂M∪C

ω2
h|D

)
(40)

≤
(
β2 + β

)
O

(
1

β
∆h|M∪C

+
TLβ

2
σ2
h|M∪C

+ T sup
C⊂D⊂M∪C

ω2
h|D

)
(41)

= O

(
(β + 1)∆h|M∪C

+
TLβ2(β + 1)

2
σ2
h|M∪C

+ Tβ(β + 1) sup
C⊂D⊂M∪C

ω2
h|D

)
. (42)

For the worst case, we provide the derivations of the convergence rate for two cases of β as follows.

When β < α = c/
√
T , the upper bound always satisfies

T−1∑
t=0

E[Γt]√
T

≤ 1√
T
O

(
Lc+

√
T√

T
σ2
h|D∗ + (

√
T + c) sup

C⊂D⊂P∪C
ω2
h|D +

√
T + c√
T

∆h|D∗

)
< O

(
1

T
+

1√
T

+ 1

)
.

For β ≥ α = c/
√
T , we cannot derive a tighter bound, so we still have

T−1∑
t=0

E[Γt]√
T

≤ 1√
T
O

(
T

(
Lβ2(β + 1)

2
σ2
h|D∗ + β(β + 1) sup

C⊂D⊂P∪C
ω2
h|D

)
+ (β + 1)∆h|D∗

)
= O

(√
T +

1√
T

)
.

Even if we consider the worst case, we still have O(1) for the cumulative forgetting E[Γt] when β < α. This implies that
we have the theoretical condition for control the forgetting on f(x) while evolving on C. In the main text, we only discuss
the moderate case to emphasize f(x) can be converged by the effect of transfer during continual learning, but we have also
considered the worst case can be well treated by our theoretical condition by keeping the convergence of f(x) over time as
follows.

Proof of Corollary 4.6. By Lemma 4.5, we have
T−1∑
t=0

E[Γt]√
T

< O

(
1

T 3/2
+

1

T

)
for β < α for the moderate case. Then, we can apply the result into RHS of the inequality in Theorem 4.3 as follows.

min
t

E∥∇f(xt)∥2 ≤ A√
T

(
1

c

(
∆f +

T−1∑
t=0

E [Γt]

)
+

Lc

2
σ2
f

)

=
A/c√
T

(
∆f +

Lc2

2
σ2
f

)
+

A/c√
T

T−1∑
t=0

E[Γt]

= O

(
1

T 3/2
+

1

T
+

1

T 1/2

)
= O

(
1√
T

)
.

In addition, we have the convergence rate of f(x) for the worst case as follows:

min
t

E∥∇f(xt)∥2 = O(1), (43)

which implies that f(x) can keep the convergence while evolving on C.

Proof of Corollary 4.7. To formulate the IFO calls, Recall that T (ϵ)

T (ϵ) = min {T : min E∥∇f(xt)∥2 ≤ ϵ}.

A single IFO call is invested in calculating each step, and we now compute IFO calls to reach an ϵ-accurate solution.

A√
T

(
1

c

(
∆f +

T−1∑
t=0

E [Γt]

)
+

Lc

2
σ2
f

)
→ ϵ.

When β < α, we get

IFO calls = O

(
1

ϵ2

)
.

Otherwise, when β ≥ α, we cannot guarantee the upper bound of stationary decreases over time. Then, we cannot compute
IFO calls for this case.

D DERIVATION OF EQUATIONS IN ADAPTIVE METHODS IN CONTINUAL LEARNING

Derivation for A-GEM Let the surrogate ∇g̃Jt
(xt) as

∇g̃Jt
(xt) = ∇gJt

(xt)−
〈

∇fIt(x
t)

∥∇fIt(x
t)∥

,∇gJt
(xt)

〉
∇fIt(x

t)

∥∇fIt(x
t)∥

, (44)

where αHt = α(1− ⟨∇fIt (x
t),∇gJt (x

t)⟩
∥∇fIt (x

t)∥2) and βHt = α for Equation 3.

Then, we have

E[Γt] = E
[
β2
Ht

L

2
∥∇g̃Jt

(xt)∥2 − βHt
⟨∇fIt(x

t),∇g̃Jt
(xt)⟩

]
= E

[
β2
Ht

L

2

(
∥∇gJt

(xt)∥2 − 2
⟨∇fIt(x

t),∇gJt
(xt)⟩2

∥∇fIt(x
t)∥2

+
⟨∇fIt(x

t),∇gJt
(xt)⟩2

∥∇fIt(x
t)∥2

)
− βHt

⟨∇fIt(x
t),∇g̃Jt

(xt)⟩
]

= E
[
β2
Ht

L

2

(
∥∇gJt(x

t)∥2 − ⟨∇fIt(x
t),∇gJt

(xt)⟩2

∥∇fIt(x
t)∥2

)
− βHt

(
⟨∇fIt(x

t),∇gJt(x
t)⟩ − ⟨∇fIt(x

t),∇gJt(x
t)⟩
)]

= E
[
β2
Ht

L

2

(
∥∇gJt(x

t)∥2 − ⟨∇fIt(x
t),∇gJt

(xt)⟩2

∥∇fIt(x
t)∥2

)]
. (45)

Now, we compare the catastrophic forgetting term between the original value with ∇gJt(x
t) and the above surrogate.

E
[
β2
Ht

L

2

(
∥∇gJt

(xt)∥2 − ⟨∇fIt(x
t),∇gJt

(xt)⟩2

∥∇fIt(x
t)∥2

)]
< E

[
β2
Ht

L

2
∥∇gJt

(xt)∥2 − βHt
⟨∇fIt(x

t),∇gJt
(xt)⟩

]
.

Then, we can conclude that E[Γt] with the surrogate of A-GEM is smaller than the original E[Γt].

Derivation of optimal Γ∗
t and β∗

Ht
For a fixed learning rate α, we have

0 =
∂E[Γt]

∂βHt

= E
[
∂Γt

∂βHt

]
= E

[
βHt

L∥∇gJt
(xt)∥ − (1− αL)⟨∇fIt(x

t),∇gJt
(xt)⟩

]
.

Thus, we obtain

β∗
Ht

=
(1− αHtL)⟨∇fIt(x

t),∇gJt(x
t)⟩

L∥∇gJt
(xt)∥2

=
(1− αHtL)ΛHt

L∥∇gJt
(xt)∥2

,

Γ∗
t = − (1− αHtL)⟨∇fIt(x

t),∇gJt(x
t)⟩

2L∥∇gJt
(xt)∥2

= − (1− αHtL)ΛHt

2L∥∇gJt
(xt)∥2

.

E OVERFITTING TO REPLAY MEMORY

In Lemma 4.2, we show the expectation of stepwise change of upper bound. Now, we discuss the distribution of the upper
bound by analyzing the random variable Bt. As Bt is computed by getting

Bt = (Lα2
Ht

− αHt
)⟨∇f(xt), et⟩+ βHt

⟨∇gJt
(xt), et⟩.

The purpose of our convergence analysis is to compute the upper bound of Equation 7, then we compute the upper bound of
Bt.

Bt ≤ (Lα2
Ht

− αHt
)∥∇f(xt)∥∥et∥+ βHt

∥∇gJt
(xt)∥∥et∥.

It is noted that the upper bound is related to the distribution of the norm of et. We have already know that E[et] = 0, so we
consider its variance, Var(∥et∥) in this section. Let us denote the number of data points of P in a memory M0 as mP . We
assume that M0 is uniformly sampled from P . Then the sample variance, Var(∥et∥) is computed as

Var(∥et∥) =
nf −mP

(nf − 1)mP
σ2
f

by the similar derivation with Equation 14. The above result directly can be applied to the variance of Bt. This implies
mt is a key feature which has an effect on the convergence rate. It is noted that the larger mP has the smaller variance
by applying schemes, such as larger memory. In addition, the distributions of et and ∇fIt(x

t) are different with various
memory schemes. Therefore, we can observe that memory schemes differ the performance even if we apply same step sizes.

References

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient lifelong learning with
A-GEM. In 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9,
2019. OpenReview.net, 2019.

Arslan Chaudhry, Naeemullah Khan, Puneet Dokania, and Philip Torr. Continual learning in low-rank orthogonal subspaces.
Advances in Neural Information Processing Systems, 33, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

Xisen Jin, Arka Sadhu, Junyi Du, and Xiang Ren. Gradient-based editing of memory examples for online task-free continual
learning. Advances in Neural Information Processing Systems, 34:29193–29205, 2021.

Soochan Lee, Junsoo Ha, Dongsu Zhang, and Gunhee Kim. A neural dirichlet process mixture model for task-free continual
learning. In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net, 2020.

Seyed Iman Mirzadeh, Mehrdad Farajtabar, Razvan Pascanu, and Hassan Ghasemzadeh. Understanding the role of training
regimes in continual learning. In Advances in Neural Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, 2020.

Sashank J. Reddi, Ahmed Hefny, Suvrit Sra, Barnabás Póczos, and Alexander J. Smola. Stochastic variance reduction for
nonconvex optimization. In Proceedings of the 33nd International Conference on Machine Learning, ICML 2016, New
York City, NY, USA, June 19-24, 2016, pages 314–323, 2016. URL http://proceedings.mlr.press/v48/
reddi16.html.

Mitchell Wortsman, Vivek Ramanujan, Rosanne Liu, Aniruddha Kembhavi, Mohammad Rastegari, Jason Yosinski, and Ali
Farhadi. Supermasks in superposition. Advances in Neural Information Processing Systems, 33:15173–15184, 2020.

http://proceedings.mlr.press/v48/reddi16.html
http://proceedings.mlr.press/v48/reddi16.html

	Additional Backgrounds and Extended Discussion
	Summary of notations
	Review of terminology
	Additional Related work

	Additional Experimental Results and Implementation Details
	Architecture and Training detail
	Hyperparameter grids
	Hyperparameter Search on max and Training Time
	Additional Experiment Results

	Theoretical Analysis
	Assumption and Additional Lemma
	Proof of Main Results

	Derivation of Equations in Adaptive Methods in Continual Learning
	Overfitting to replay Memory

