
Revisiting Bayesian Network Learning with Small Vertex Cover

Juha Harviainen1 Mikko Koivisto1

1Department of Computer Science, University of Helsinki, Helsinki, Finland

Abstract

The problem of structure learning in Bayesian net-
works asks for a directed acyclic graph (DAG)
that maximizes a given scoring function. Since
the problem is NP-hard, research effort has been
put into discovering restricted classes of DAGs
for which the search problem can be solved in
polynomial time. Here, we initiate investigation
of questions that have received less attention thus
far: Are the known polynomial algorithms close
to the best possible, or is there room for signifi-
cant improvements? If the interest is in Bayesian
learning, that is, in sampling or weighted count-
ing of DAGs, can we obtain similar complexity
results? Focusing on DAGs with bounded vertex
cover number—a class studied in Korhonen and
Parviainen’s seminal work (NIPS 2015)—we an-
swer the questions in the affirmative. We also give,
apparently the first, proof that the counting prob-
lem is #P-hard in general. In addition, we show
that under the vertex-cover constraint counting is
#W[1]-hard.

1 INTRODUCTION

The structure of a Bayesian networks is a directed acyclic
graph (DAG). The task of learning the DAG from given data
is often formulated as maximization of some appropriate
scoring function. Common scoring functions are decom-
posable, meaning that the score of a DAG is obtained as a
sum (or product) of vertex-wise local scores, each of which
only depends on the vertex and its parents in the graph.
This structural property—which isolates the combinatorial
problem from the specifics of the scoring function and the
data—has motivated fruitful algorithmic research. The prob-
lem is known to be NP-hard [Chickering, 1995] even if
every vertex is allowed to have at most two parents. On

the other hand, an optimal n-vertex DAG can be found by
dynamic programming over vertex subsets in time O(2nn2)
under any indegree or other local constraints [Ott et al.,
2004, Singh and Moore, 2005, Silander and Myllymäki,
2006]. For almost two decades, we have seen essentially no
progress in the worst-case time bound, albeit numerous algo-
rithms have been developed for heuristic search [Scanagatta
et al., 2015, Yuan et al., 2011].

Given that the problem is hard in general, we may ask
whether it becomes tractable if we restrict the search space
by some constraints (other than the plain maximum inde-
gree). Taking the viewpoint of parameterized complexity,
the question is whether the complexity of the problem can
be controlled by some parameter of the input or output.
While restricting the input never increases the complexity,
restricting the output (i.e., the search space) may increase
or decrease the complexity. For example, parameterizing by
the treewidth of the DAG appears to only make the problem
harder [Korhonen and Parviainen, 2013]. On the other hand,
parameterizing by the vertex cover number renders the prob-
lem easier [Korhonen and Parviainen, 2015]. Other positive
results are known for polytrees that are close to branchings
[Gaspers et al., 2015] and for DAGs with bounded feed-
back edge number [Ganian and Korchemna, 2021]. Upper
bounds can often be complemented with lower bounds, that
is, parameterized hardness results within the W-hierarchy
[Downey and Fellows, 1995]. Typically, the time complexi-
ties are polynomial in the number of vertices for any con-
stant value of the parameter: Grüttemeier and Komusiewicz
[2022] provide a summary of many complexity results for
different parameters.

In this paper, we put forward two questions that have re-
ceived little attention in previous works on structure learning
in Bayesian networks. First, we ask whether the known pa-
rameterized algorithms are close to the best possible. For
example, if an algorithm with running time O(T) is known,
can we find an algorithm that runs in time O(

√
T)? Such a

speedup would be a significant quantitative improvement,
even if it did not affect the qualitative complexity classi-

Proceedings of the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023), PMLR 216:819–828.

mailto:<juha.harviainen@helsinki.fi>?Subject=Your UAI 2023 paper

fication, which has been the primary interest of previous
works. Second, we ask to what extent the parameterized
complexity results for the optimization problem in ques-
tion can be transferred to related problems of sampling and
weighted counting of DAGs. These variants are motivated
chiefly by the Bayesian approach to learning Bayesian net-
works [Heckerman et al., 1995, Madigan and York, 1995].
Both exact algorithms [Koivisto and Sood, 2004, Tian and
He, 2009, Talvitie et al., 2019, Koivisto and Röyskö, 2020]
and numerous sampling-based approximate methods (see,
e.g., Friedman and Koller [2003], Niinimäki et al. [2016],
Kuipers and Moffa [2017] and references therein) have been
developed. However, these works have not exercised the
parameterized complexity viewpoint.

To initiate the investigation of these question, we focus
on parameterization by the vertex cover number, studied
in the seminal work by Korhonen and Parviainen [2015].
They gave an algorithm running in time n2k+O(1) for any
fixed vertex cover number k. Furthermore, they showed that
the parameterized problem is W[1]-hard, suggesting that
the obtained time bound is qualitatively perhaps the best
possible: the exponent of n must depend on k.

After formalizing the setup in Section 2, we begin in Sec-
tion 3 by giving an algorithm that finds an optimal DAG in
time nk+O(1), thus achieving a nearly quadratic improve-
ment. In Section 4, we turn to the counting variant, with
several results: We start by showing that the basic, uncon-
strained problem is #P-hard; while this result may be un-
surprising, to our knowledge, it has not been proven before.
We then give an analogous #W[1]-hardness result for the
parameterized variant, but also an algorithm running in time
n2k+O(1). In Section 5, we consider the sampling variant.
While the handling of duplicates appears to make counting
more difficult than maximization, we observe that by hav-
ing a control of the number of duplicates enables relatively
efficient rejection sampling. Finally, we end the paper by
pointing directions to future research in Section 6.

2 PROBLEM FORMULATIONS

A Bayesian network is a graphical representation of a mul-
tivariate probability distribution. Its structure is given as
a DAG G = (V,E), where each vertex in V corresponds
to one random variable and the edge set E encodes con-
ditional independence relations between the variables. If
(u, v) is an edge in G, we call u a parent of v and v a
child of u. We write Gv for the parent set of v in G, i.e.,
Gv = {u ∈ V | (u, v) ∈ E}. The joint distribution of the
variables is obtained by specifying a univariate conditional
probability distribution for each vertex v given its parent set
Gv , and then taking the product of these distributions.

In score-based structure learning of Bayesian networks, ev-
ery possible DAGG is associated with a nonnegative weight

f(G) that, roughly speaking, measures how well G fits the
given data. How the weights are obtained from the data and
background knowledge varies depending on the adopted
learning paradigm and performance measures [Koller and
Friedman, 2009, Ch. 18]. Important for our purposes is that
the commonly used weight functions are modular, i.e., they
decompose into a product of vertex-wise weights:

f(G) =
∏
v∈V

fv(Gv).

We consider three different ways to formulate structure
learning as an algorithmic problem. To this end, letD denote
the set of DAGs on the vertex set V . We assume that the
values fv(Gv), for all vertices v and their possible parent
sets Gv, have been precomputed and given as input. We
assume the non-zero representation, in which a weight for
a parent set is (explicitly) given only when it is non-zero.
Furthermore, we assume that the size of this representation
is polynomial in the number of vertices.

First, consider maximizing the weight function:

BAYESIAN NETWORK STRUCTURE LEARNING (BNSL)
Objective: Compute maxG∈D f(G).

While our formulation only asks for the maximum weight,
the algorithms typically also yield a maximizing DAG. To
conform to the common nomenclature used in literature, we
retain the term “learning” in the problem name. Sometimes
BNSL is stated as maximization of an additively decompos-
able scoring function; one obtains this equivalent form by
considering a logarithm of the weight function.

Second, consider weighted counting of DAGs:

BAYESIAN NETWORK STRUCTURE COUNTING (BNSC)
Objective: Compute

∑
G∈D f(G).

In applications, f(G) may equal an unnormalized posterior
probability of G, in which case the sum equals the normaliz-
ing constant. More generally, f(G) may equal a product of
the posterior probability ofG and some other function h(G),
e.g., an indicator function telling whether or not some edges
of interest are present in G [Friedman and Koller, 2003,
Tian and He, 2009]. Then the sum equals the posterior ex-
pectation of h(G), or the posterior probability of the event
of interest in the case of an indicator function.

Third, consider sampling DAGs with probabilities propor-
tionally to the weights:

BAYESIAN NETWORK STRUCTURE SAMPLING (BNSS)
Objective: Sample G ∈ D with Pr(G) ∝ f(G).

Here f(G) typically is an unnormalized posterior proba-
bility of G, albeit one could also consider sampling from
distributions that are biased, e.g., towards some graph fea-
tures in interest; cf. indicators of edge sets discussed above.

820

N1N2 P

Figure 1: One network structure partitioned into a core and
a periphery with a vertex cover N1 of size k = 3.

2.1 STRUCTURAL CONSTRAINTS

In this paper, we focus on the constraint studied by Korho-
nen and Parviainen [2015], the vertex cover number of the
moralized graph. Let GM be the undirected graph obtained
by moralizing G = (V,E), meaning that we add an edge
between u and v if there is a directed edge between them
or they form a v-structure: both of them are parents of the
same vertex without being connected by an edge.

With a slight abuse of terminology, G is said to have a
vertex cover S of size k if all edges in GM have at least one
endpoint in S. The vertex cover number τ(G) of a graph is
the size of the smallest vertex cover of GM. We denote the
set of DAGs G with τ(G) ≤ k by Vk and the constrained
variants of the problems restricted to this set by Vk-BNSL,
Vk-BNSC, and Vk-BNSS.

3 MAXIMIZATION

Observe that the vertices in the vertex cover can have at most
one parent outside the vertex cover: Otherwise, it would no
longer be the vertex cover of the moralized graph as the
parents would be connected. Using this idea, Korhonen
and Parviainen [2015] proposed the following algorithm for
solving the problem: Brute force search over all possible
vertex coversN1 of the graph and the set of their parentsN2.
These two sets are the core of the structure, and the remain-
ing vertices P are the periphery (see Fig. 1). Importantly,
the core and the periphery can be optimized independently.

For the core, they use the exponential-time algorithm to find
its optimal structure in roughly 2|N1|+|N2| ≤ 22k operations
(see, e.g., Silander and Myllymäki [2006]). The vertices in
the periphery are then connected to their best parent sets
in N1, which is achieved efficiently with precomputation:
For each node and a set S of possible parents of size at
most k, find the optimal parent set for the node among the
subsets of S. The total running time of their algorithm is
(2en/k)2knO(1) where n := |V |. The time complexity has
an atypical form because the sets N1 and N2 are unordered,

meaning that there are roughly (nk/(k!))2 possibilities for
the sets. We improve this complexity to 3knk+O(1), achiev-
ing nearly quadratic speedup in n:

Theorem 1. Vk-BNSL can be solved in time 3knk+O(1).

Proof. Recall that a DAG defines a partial order ≥ of the
vertices where v ≥ w if there is a directed path from v to
w. This property is reflexive, antisymmetric, and transitive.
However, some of the vertices can be incomparable under
this partial order if there is no directed path between them.
A linear extension of a partial order extends it such that any
pair of vertices is comparable. For example, any topological
ordering of a DAG is its valid linear extension.

Unlike in the algorithm of Korhonen and Parviainen [2015],
we only brute force over the set N1 and test all of its linear
orders v1 > v2 > · · · > vk in roughly nk operations.
Every DAG has at least one linear extension, and thus the
partial order of N1 in the optimal structure is covered by
at least one of these linear orders. We then complete the
structure of the core using dynamic programming to decide
how the vertices are distributed between N2 and P . The
dynamic programming computes the optimal structure for
the ordered vertices N1 and the first i of the (arbitrarily
ordered) remaining vertices w1, w2, . . . , wn−k ∈ V such
that some subset of N1 has parents.

More formally, let gv(S) be the highest weight for v from a
parent set belonging to S and similarly gv(S, u) the highest
weight such that the parent set is a subset of S ∪ {u} and
contains u. Then, we initialize

opt(∅, 0) :=
k∏

j=1

gvj (v1:(j−1))

and
opt(S, 0) := 0 for all S ⊆ v1:k

with v1:j denoting the sequence v1, v2, . . . , vj . In other
words, opt(∅, 0) is the highest scoring DAG of v1:k whose
one of the linear extensions is v1 > v2 > · · · > vn. As no
other vertices have been added yet, the vertices in N1 lack
parents outside itself.

If a vertex w is assigned to the periphery, it always chooses
the best parent set from N1. Otherwise, it is the parent of
some subset T of the vertices in N1, in which case each
such vertex v picks the best parent set from the union of
its predecessors and w. To prevent cycles, any parent vj
of w must have vj > v` for all v` ∈ T . Hence, we define
opt(S, i) as

opt(S, i) := max
T⊆S

opt(S \ T, i− 1) · r(wi, T), (1)

where r(wi, T) is the factor by which the optimal weight
changes if wi is a parent of T ⊆ N1:

r(wi, T) := gwi

(
{vj | vj > T}

)
·
∏
vj∈T

gvj
(
v1:(j−1), wi

)
gvj
(
v1:(j−1)

)
821

with vj > T if vj > v` for all v` ∈ T .

Now, the highest weight of a DAG that respects the order of
the vertices of N1 can be found as maxS opt(S, n− k). It-
erating over all orders of N1 then covers the set of all DAGs.
We needed to consider 3k sets S and T over the execution of
the algorithm for each of the n− k dynamic programming
layers, and there areO(nk) options for the ordered elements
of N1, giving the total running time 3knk+O(1).

Consider instead the more common (equivalent) problem of
optimizing the logarithm of the weight. Then, Equation 1
can be interpreted as subset convolution over the max–sum
semiring, for which fast algorithms exist assuming that the
values are integers with a bounded absolute value W [Björk-
lund et al., 2007]. In such a case, the values opt(S, i) are
computable in roughly 2kW operations for each fixed i.

Corollary 2. Vk-BNSL can be solved in time 2kWnk+O(1)

if the logarithms of the input weights, in some base, are
integers with absolute value at most W .

This corollary also leads to an approximation algorithm for
the optimal network structure. Suppose that we use loga-
rithms to the base c and round the weights down to the
greatest value whose logarithm is an integer. Each weight
decreases by at most a factor of c, and thus the optimal
DAG using the new weights is at most cn times worse than
with the original weights. Supposing we want to find an a-
approximation, we may choose c = a1/n. Finally, observe
that

logc fv(Gv) =
log2 fv(Gv)

log2 c
=
n · log2 fv(Gv)

log2 a
,

meaning that the logarithms of the weights will not grow
unreasonably large. These observations lead to the following
corollary:

Corollary 3. The weight of the optimal network structure
can be approximated up to a fixed factor a > 1 in time
2kWnk+O(1) if the logarithms of the input weights to the
base 2 have an absolute value at most W .

4 COUNTING

We start by showing that weighted counting of DAGs is hard.
We also prove that the parameterized version is hard, but that
there exists at least a simple albeit slow algorithm for the
problem that outperforms the nonparameterized algorithm.

4.1 GENERAL CASE IS #P-HARD

We prove that the problem is #P-hard: at least as hard as
counting the number of satisfying assignments for a SAT
formula. To show this, we construct a reduction from a

#P-complete problem MONOTONE 2-SAT [Valiant, 1979],
where we are given a conjunction of m clauses of two posi-
tive literals, (a1 ∨ b1) ∧ (a2 ∨ b2) ∧ · · · ∧ (am ∨ bm) with
ai, bi ∈ {x1, x2, . . . , xn}. The objective is to count the
number of its satisfying assignments.

Theorem 4. The BNSC problem is #P-hard.

Proof. Consider the following reduction into counting the
total weight of all DAGs visualized in Figure 2.

We have n+ 2m+ 1 vertices: n vertices X1, X2, . . . , Xn

corresponding to the variables, m vertices C1, C2, . . . , Cm

corresponding to the clauses, one additional node Bi for
each clause Ci, and a single node D for choosing a subset
of positive variables. IfD is a parent ofXj , then we interpret
that as if the variable xj is set to be true, and false otherwise.

Let Vi be the set of two variables in the clause ai ∨ bi, and
define the following weights:

• fCi
(Vi) = 1;

• fBi({Ci}) =M with M := 2n+1 − 1;

• fBi(∅) = 1;

• fD({B1, B2, . . . , Bm}) = 1;

• fXj
({D}) = fXj

(∅) = 1.

First, consider a satisfying assignment of variables (xj).
The parent set of each Bi has to be empty since otherwise
there would be a cycle in the graph: there is a directed path
from Bi to Ci through some Xj . Thus, the weight is 1.

If the assignment (xj) does not satisfy all clauses, each
unsatisfied clause Ci contributes a factor (M + 1) to the
weight of the assignment: vertex Bi can either have Ci as a
parent or have no parents, as there is no path from D to Ci.

Now, the total weight modulo M + 1 gives the number of
satisfying assignments as any unsatisfying one is removed
from the sum and there are exactly 2n assignments.

With some slight modifications, we get even stronger results:

Corollary 5. BNSC is #P-hard even if each vertex can
have at most 2 parents and the weights are either 0 or 1.

Proof. In the original construction,D has exactlym parents.
We fix this by instead constructing a binary tree of at most
2m vertices with the leaf layer connected to the clauses Ci.

For achieving binary weights, we replace the possible edge
between each Bi and Ci by an amplifier that produces a big
number if the edge could be there: For each node Bi, build a
binary tree with n+1 leaf nodes with edges directed towards
Bi. Then, let each leaf node have parent sets {Ci} and ∅
with weight 1. Again, none of them can have parents for a
satisfying assignment, resulting in a weight of 1. However,

822

D

X1 X2 X3 X4

X1 ∨X2 X1 ∨X3 X2 ∨X3 X3 ∨X4

B1 B2 B3 B4

1
1 1

1

M M M M

B4

· · ·

X3 ∨X4

1
1 1 1

1

Figure 2: An example reduction from a MONOTONE 2-SAT instance to Vk-BNSC. Solid edges are always on (weight
1, other choices have weight 0) while dashed edges are either on (weight written next to edge) or off (weight 1). Each
M -weighted edge can be replaced with the binary-weighted component on the right.

each of them has two choices for an unsatisfying assignment,
producing a factor of 2n+1 to the sum of weights. Again,
we take the result modulo M + 1.

4.2 PARAMETERIZED CASE IS #W[1]-HARD

While constructing the same structure with different parti-
tions into N1, N2, and P is not an issue when searching for
the best structure, it certainly is in counting the sum of the
weights of all valid DAGs. Consider, for example, a network
of four nodes v1, v2, v3, and v4 such that v1 and v2 are the
parents of v3, which is the parent of v4. What should be its
canonical representation? If we fix k = 2, then v3 has to be
in N1. However, now v1 and v2 cannot both be in N2 nor
in N1 due to the v-structure and the parameter k. Further
complicating the matter, we can put v4 to P or to N2.

We proceed to show that Vk-BNSC is #W[1]-hard, mean-
ing that no algorithm of time complexity f(k)nO(1) is likely
to exist under typical complexity theoretical assumptions.

Theorem 6. Vk-BNSC is #W[1]-hard even if each vertex
can have at most 2 parents.

Proof. The result follows rather directly from the W[1]-
hardness result of Korhonen and Parviainen [2015] for Vk-
BNSL. Counting the cliques of size k is a #W[1]-complete
problem [Flum and Grohe, 2004], and we show how to adapt
Vk-BNSC into counting them.

For each edge {v, w} of the input graph G = (V,E) for
counting cliques, add a new edge vertex u whose parent set
{v, w} has an indeterminate weight x, an empty parent set

has weight 1, and the weights are 0 otherwise. For vertices
in V , let only the empty parent set have weight 1.

Now, assume that the vertices of N1 form a clique of size k
in G. Then, there are exactly k(k − 1)/2 edge vertices who
can have a weight of x. Assuming all of their weights are
x, then the remaining vertices need to be parentless for the
graph to achieve a positive weight. Additionally, the number
of ways the vertices can be distributed between P and N2 is

k∑
s=0

(
|V |+ |E| − k

s

)
.

On the other hand, a set N1 that is not a k-clique (for k >
3) cannot achieve a weight with a factor xk(k−1)/2: If N1

contains a edge vertices, then there can be at most(
|N1| − a

2

)
+ a =

(
|N1|
2

)
+
a2 − (2 · |N1| − 3)a

2

edge vertices with a parent set of value x. The rightmost
summand is nonnegative only after a ≥ 2 · |N1| − 3, but
on the other hand a ≤ |N1|, meaning that the summand
can be nonnegative only if |N1| ≤ 3. Thus, there are fewer
than

(
k
2

)
parent sets of value x when k > 3 and N1 is not a

k-clique of size k.

Computing the sum
(
k
2

)
+1 times over different values of x

enables us to discover the coefficient of the term xk(k−1)/2

using polynomial interpolation. This is then divided by the
constant number of ways of distributing the vertices between
P and N2 to obtain the number of k-cliques in G.

Curiously, the maximization variant is known to be W[2]-

823

hard by a reduction from SET COVER [Grüttemeier and
Komusiewicz, 2022], but transforming that proof to show
#W[2]-hardness of Vk-BNSC appears challenging due to
having to count each set cover only once.

4.3 EXACT COUNTING

To prevent duplicate counting, we need to determine a canon-
ical decomposition into the sets N1, N2, and P for each
valid structure. We achieve this by demanding that the core
vertices must have children:

Definition 1. A directed acyclic graph G with τ(G) ≤ k
and a partition into sets N1, N2, and P are called a parent
decomposition if all vertices in N1 and N2 have a child.
Furthermore, we require that either |N1| = k or N2 = ∅.

The latter constraint simplifies later proofs. Next, we show
each valid DAG has such a decomposition and bound the
number of ways of decomposing a DAG (used for sampling).

Lemma 7. Each directed acyclic graph G with τ(G) ≤ k
has at least one and at most 2k parent decompositions. The
upper bound is tight up to a polynomial factor in k and is
achieved by a core that is a chain of 3k/2 vertices.

Proof. Take any DAG G with τ(G) ≤ k and its partition
into the setsN1,N2, and P . Note that any childless vertex in
N2 can be moved to P . Similarly, any childless vertex in N1

can be moved to P if its (possible) parent in N2 is moved
to N1. The size of the set N1 does not increase, keeping it
as a valid vertex cover. If |N1| 6= k, we can always move
vertices from N2 to N1 until it becomes full or N2 is empty.

Each parent decomposition of a DAG has the same set of
core vertices N1 ∪N2 but distinct sets N2. Therefore, we
prove the upper bound by bounding the number of possible
sets N2 for any set of core vertices. Furthermore, we show
that a chain — a directed path — has the greatest number of
such sets. First, note that N2 has to be an independent set in
the moralized graph and cannot contain core vertices with
children in P . We proceed to restrict the graph structure
and prove with injections that the maximum number of
independent sets will not decrease.

Pick any independent set in the moralized core. That set re-
mains independent even if we removed all but one outgoing
edge from each vertex before moralization. Thus, we have
restricted ourselves into a directed forest.

Now, consider any tree in the forest. If it is not a chain, there
always exists a vertex v whose ancestors would form multi-
ple chains if v were removed. We show that detaching all but
one of these chains and joining them together into a longer
chain has at least as many independent sets in the moralized
graph using the crucial property that v and its parents form a
clique after moralization. We define the injection as follows:

If none of the parents of v is in the independent set, then the
resulting independent set will remain the same in the longer
chain. Otherwise, replace all descendants of the parent of v
in the independent set by their children. This works because
the parents of v separate the subchains from each other and
only one of them can be in the independent set.

Finally, observe that each chain ends in a vertex with chil-
dren in the periphery since we required the partition to be a
parent decomposition. Such vertices cannot be in N2, mean-
ing that concatenating the chains cannot decrease the num-
ber of parent decompositions. Thus, a single chain core has
the largest number of them. If the chain consists of less than
k vertices, then N2 is empty by the definition of a parent
decomposition. Otherwise, the chain has c vertices and there
are
(

k
c−k
)

ways to choose an independent set of size c− k.
This is maximized when c = 3k/2 and approaches asymp-
totically 2k/

√
kπ/2 by Stirling’s approximation.

To summarize our approach, we iterate over all cores and
its structures, connect N1 to the periphery, and verify that

i it is a valid DAG,

ii each core vertex has a child, and

iii the choice of the set N2 is lexicographically the small-
est for that core (with a fixed vertex ordering).

Before going through with the detailed proof of the algo-
rithm, we need a data structure for efficiently computing the
weights from connecting N1 to the periphery.

Lemma 8. Given a partition into setsN1,N2, and P , a data
structure can be built in time 4knO(1) that allows querying
the total weight of parent set choices for P with exactly the
subset S ⊆ N1 having children in P in time nO(1).

Proof. Index vertices in P = {p1, p2, . . . , pn−|N1|−|N2|}
arbitrarily. We build a dynamic programming table
peri(S, i) describing the total weight of parent set choices
of p1:i with exactly vertices in S ⊆ N1 having children in
P . For notational convenience, we omit N1 and P from the
peri even though it depends on them. The table is initialized
with peri(∅, 0) := 1 and has the recurrence relation

peri(S, i) :=
∑
T⊆S

∑
U⊆S

U⊇S\T

peri(U, i− 1) · fpi
(T).

Here, U is the set of vertices in N1 that p1:(i−1) cover and
T is the parent set of pi.

To further simplify notation, we let

peri(S) := peri(S, n− |N1| − |N2|)

for all S. This is the answer to the query for a given S.

We may now analyze the total complexity of our algorithm:

824

Theorem 9. Vk-BNSC can be solved in time
2(

2k
2)12kn2k+O(1).

Proof. Assume that we have already partitioned the vertices
into N1, N2, and P . We start by iterating over all permu-
tations of N1 ∪ N2 and use that as a topological ordering
for our core DAG. Then, we iterate over parent sets of core
vertices respecting that topological ordering. Finally, we
verify in polynomial time that the topological ordering used
to generate the DAG is the lexicographically smallest one
obtainable from that DAG. This generation of all core DAGs
requires roughly (2k)!2(

2k
2) work, matching the number of

DAGs up to a single exponential factor [Stanley, 1973].

Next, we need to assign edges from the core to the periph-
ery. To this end, iterate over subsets S of N1 that should
have children in P . We consider all such parent set assign-
ments simultaneously by making use of the data structure
of Lemma 8. Consider the graph resulting from any one of
them. Any such graph clearly satisfies the property i. Prop-
erty ii holds if vertices in N2 and N1 \ S have a child in
the core, which is checkable in polynomial time. Finally,
we need to verify that N2 is the lexicographically smallest
possible set for the given structure. The set N2 needs to be
an independent set in the moralized graph without children
in P . To check this, we moralize the core and iterate over
independent subsets T of N1 \ S. If there is a subset of N2

of size |N2| − |T | that is independent of T , then T together
with those vertices is also a valid option for the set N2. Re-
peating this for all T allows us to find the lexicographically
smallest set. If all properties hold, then we add the weight
of the core multiplied by the weight of parent set choices for
P such that exactly S has children in P to the total weight.
Overall, there are 3k choices for the sets S and T .

Finally, there are
(
n
k

)(
n−k
k

)
unordered sets N1 and N2 over

which we need to iterate. Thus, the total running time is
2(

2k
2)12kn2k+O(1).

5 SAMPLING

The exact counting algorithm is unfortunately doubly expo-
nential to avoid duplicate counting, but can we do better in
estimating the sum of weights? It is a common phenomenon
that approximating is computationally simpler than exact
counting (consider, e.g., estimating the permanent of a ma-
trix [Jerrum et al., 2004]). As counting and sampling objects
with probabilities proportional to their weights are inher-
ently connected, we approach the issue through sampling.

We develop a sampling method for network structures using
rejection sampling in which we sample structures from a
superset and then check whether they should be accepted
or rejected. More precisely, we let valid structures appear
multiple times in the superset and demand that exactly one
of the duplicates should be accepted for each structure. This

3

2

1

5

4

N1N2 L1 L2 L3

3

2

1

5

4

Figure 3: A core DAG and its sink-layering.

ensures the correct distribution of accepted samples and
yields an acceptance probability that is the ratio of the total
weight of the structures and the superset. Additionally, the
sum of the weights is estimable by multiplying the empirical
acceptance rate by the weight of the superset.

The key component of our algorithm is the fact of Lemma 7
that each valid DAG has at most 2k parent decompositions.
We use this property to first compute an approximation
of the sum of the weights that is at most 2k times greater
than the exact sum. For this purpose, we iterate over all
partitions of vertices into N1, N2, and P to compute the
sum of weights of network structures that have a parent
decomposition consistent with the partition. In addition, we
further separate the structures by considering the unique
sets S ⊆ N1 that are the sinks of the subgraph induced by
the core, because they need children in the periphery.

Before continuing, we need one more tool to aid dynamic
programming: The sink-layering L = (L1, L2, . . . , L`) of
a DAG is an ordered partition of the vertices such that the
last layer L` contains the sink vertices, L`−1 the sinks after
removing the vertices in L`, and so on. More formally, the
layer Lk comprises of the sinks of the subgraph induced by
V \ (Lk+1 ∪Lk+2 ∪ · · · ∪L`). The concept is illustrated in
Figure 3. This structure lets us to go through the core layer
by layer while only maintaining few subsets of vertices: the
previous layer, used vertices, and the guess for the current
layer. The strategy has been applied succesfully on sampling
and counting DAGs by, for example, Kuipers and Moffa
[2015] and Talvitie et al. [2019].

To efficiently utilize sink-layerings, we require a data struc-
ture that allows us to query the total weight of parent as-
signments for the vertices of the current layer C = Li such
that the union of their parents covers the previous layer
F = Li−1 and is a subset of vertices U =

⋃i−1
j=1 Lj that

have already been used. We denote this sum byW (C,F, U).
Note that these values depend on the chosen sets N1 and N2

(vertices of N1 can have only one parent from N2), but we
omit them from the notation for the sake of readability.

Lemma 10. The values of W (C,F, U) can be computed in
time O

(
42k
)

for given sets of core vertices N1 and N2.

825

Proof. We will iterate over all O(32k) choices for C and U ,
and apply fast subset convolution to obtain the results for
all values of F ⊆ U . This results in each of the 42k values
of W being computed in time that is polynomial in k on
average.

First, initialize W0(C,F, U) = 0 for all F ⊆ U with
the exception of W0(C, ∅, U) = 1. For i > 0, we index
the set C = {v1, v2, . . . , v|C|} arbitrarily, and compute
Wi(C,F, U) as the sum∑

T⊆F

Wi−1(C, T, U) · f̃vi
(
F \ T ⊆ Gvi ⊆ U

)
,

with f̃v(ψ(Gv)) being the sum of weights of parent sets
Gv that satisfy the condition ψ(Gv). In other words, for
v1, v2, . . . , vi to cover a set F of vertices, the parents of
v1, v2, . . . , vi−1 cover a subset of F and vi the rest (and
possibly some vertices that are already covered or outside
F). As the left-hand side and the right-hand side factors
depend only on T and F \ T , respectively, for fixed C, U ,
and i, we can apply fast subset convolution to compute the
value for all choices of F simultaneously. Finally, we let
W (C,F, U) :=W|C|(C,F, U).

We can precompute f̃v in O(42k) time before starting to
compute the values of Wi. Additionally, there are 42k pos-
sible values of C, F , and U , and each Wi(C,F, U) takes
kO(1) time to compute on average, proving the time com-
plexity.

Lemma 11. Given a partition into sets N1, N2, and P
in addition to a subset S of N1, we can compute the total
weight of valid parent set choices for the core such that
exactly the vertices in S are the sinks of the core in time
O(42k).

Proof. Begin by computing the values W (C,F, U) with
core vertices N1 and N2 in time O

(
42k
)
. Inspired by Talvi-

tie et al. [2019], we proceed layer by layer from L1 towards
L`. No layer is empty, so we need to consider at most 2k
layers. Let S be the set (N1∪N2)\S and core(F,U) denote
the total weight of DAGs with a vertex set U such that their
sinks are F . Again, core depends on the sets N1 and N2,
but we omit them for notational convenience. We initialize

core(U,U) :=
∏
v∈U

fv(∅)

for all U ⊆ S: the vertices in in the first layer lack parents.

For the following layers, we guess the previous layer, the
current layer, and the set of used vertices. This results in the
following recurrence for all U,C ⊆ S with U ∩ C = ∅:

core(U ∪ C,C) :=
∑
F⊆U

core(U,F) ·W (C,F, U)

Finally, we need to include S on the last layer by defining

core(N1 ∪N2, S) :=
∑
F⊆S

core(S, F) ·W (S, F, S).

The variable core(N1 ∪ N2, S) now contains the desired
value. There are roughly 42k choices for the sets C, F , and
U , proving the complexity.

Theorem 12. A 2k-approximation of the solution to Vk-
BNSC can be computed in time (4en/k)2knO(1).

Proof. We calculate the 2k-approximation by iterating over
the parent decompositions and the sets S of core vertices
without children in the core. This corresponds to the sum

UB :=
∑

(N1,N2,P)

∑
S⊆N1

core(N1 ∪N2, S)
∑
T⊇S

peri(T).

By Lemma 7, each valid DAG has at least one and at most
2k parent decompositions, proving the accuracy guarantee.

The rightmost sum can be precomputed beforehand for all
S. Then, we compute the values of core for all vertex sets
N1 and N2 of size at most k. By Lemma 11, each of them
takes O

(
42k
)

time to compute, and we consider roughly(
n
k

)(
n−k
k

)
≈ n2k/(k!)2 sets N1 and N2. By Stirling’s ap-

proximation, this takes (4en/k)2knO(1) time in total.

We can now prove our main result on sampling. Hereinafter,
write parG for the number of parent decompositions of G.

Theorem 13. Vk-BNSS can be solved with preprocessing
time (4en/k)2knO(1) and expected sampling time 4knO(1)

using a randomized algorithm.

Proof. Nearly all our data structures use only simple sum-
mation over sets of vertices with constraints. This allows
the use of standard stochastic backtracking routines to sam-
ple from the structures: If the summands are saved in an
array, we can run binary search (after trivial preprocessing)
to move backwards in the dynamic programming tables to
deduce the structure of the graph. As the sizes of the tables
are exponential in k, the running time of the binary search
is only linear in k and logarithmic in n.

First, we sample the partition (N1, N2, P) of the vertices
of the DAG and the set S, and then proceed on figuring out
the structure of the core and the periphery. At this point, the
probability of drawing G is proportional to f(G) · parG.

Finally, we need to prevent sampling the same structure in
multiple ways. This is solved with rejection sampling by
accepting only one parent decomposition for each DAG.
Similar to exact counting, we accept the parent decomposi-
tion if and only if N2 is the lexicographically smallest set
possible among all parent decompositions of G. We iterate

826

over all subsets T of N1 that are independent in the moral-
ized graph, and find |N2| − |T | lexicographically smallest
vertices in N2 that are independent of T . If the current inde-
pendent set N2 is the lexicographically smallest obtainable
set, accept the sample, and otherwise reject it. Thus, the
acceptance probability of a DAG G is 1/ parG ≥ 2−k.

Overall, the probability of accepting a sample is then∑
G∈Vk f(G)∑

G∈Vk f(G) · parG
,

where the normalizing constant is already known, UB.
Therefore, rejection sampling also enables us to estimate
the sum of weights in arbitrary precision by approximating
the acceptance ratio empirically and multiplying by UB.

We say that an algorithm computes an (ε, δ)-approximation
of a quantity if its relative error is at most ε with probability
at least 1− δ. By a result of Dagum et al. [2000], we have
an (ε, δ)-approximation of the acceptance ratio immediately
after getting 1+4(e−2)(1+ ε)ε−2 ln(2/δ) accepted draws.
Thus, we have the following result:

Theorem 14. Vk-BNSC admits (ε, δ)-approximation in
expected time

(
(4en/k)2k + 4kε−2 ln

(
δ−1
))
nO(1).

Proof. The preprocessing takes (4en/k)2knO(1) time, and
sampling takes 4kε−2 ln

(
δ−1
)
nO(1) time on average.

6 CONCLUDING REMARKS

We advanced three problems on learning Bayesian net-
work structures—maximization, weighted counting, and
sampling—parameterized by the vertex cover number of
the moralized DAG. First, we showed a nearly quadratic
speedup on a previous maximization algorithm, thus signifi-
cantly extending the scope of practical instances. Second,
we presented the first parameterized algorithms for the sam-
pling and counting variants, with polynomial running times
for any constant value of the parameter. It remains an open
question whether a quadratic speedup can be achieved also
for these variants. We complemented our algorithmic re-
sults by complexity-theoretical hardness results on weighted
counting both in the general and in the parameterized case.

The difficulties we encountered in avoiding duplicate count-
ing raise an intriguing question: are there parameterized
classes of DAGs where counting is significantly harder than
maximization? One candidate parameter is the number of
edges in the DAG, which renders the exponent of n indepen-
dent of the parameter for maximization [Grüttemeier and
Komusiewicz, 2022]; the problems resemble those of find-
ing and counting paths of desired length, the latter variant
known to be significantly harder [Chen and Flum, 2007].
Overall, counting and sampling have been studied little

compared to the maximization variant, leaving numerous
questions for future research.

Acknowledgements

We thank the reviewers for their suggestions on improv-
ing the paper. This research was partially supported by the
Academy of Finland, grants 316771 and 351156.

References

Andreas Björklund, Thore Husfeldt, Petteri Kaski, and
Mikko Koivisto. Fourier meets Möbius: fast subset con-
volution. In Proceedings of the 39th Annual ACM Sym-
posium on Theory of Computing, pages 67–74. ACM,
2007.

Yijia Chen and Jörg Flum. On parameterized path and chord-
less path problems. In Proceedings of the 22nd Annual
IEEE Conference on Computational Complexity, CCC
2007, pages 250–263. IEEE Computer Society, 2007.

David Maxwell Chickering. Learning Bayesian networks is
NP-complete. In Learning from Data: Artificial Intelli-
gence and Statistics V, pages 121–130. Springer, 1995.

Paul Dagum, Richard M. Karp, Michael Luby, and Shel-
don M. Ross. An optimal algorithm for Monte Carlo
estimation. SIAM J. Comput., 29(5):1484–1496, 2000.

Rodney G. Downey and Michael R. Fellows. Fixed-
parameter tractability and completeness I: basic results.
SIAM J. Comput., 24(4):873–921, 1995.

Jörg Flum and Martin Grohe. The parameterized complexity
of counting problems. SIAM J. Comput., 33(4):892–922,
2004.

Nir Friedman and Daphne Koller. Being Bayesian about
network structure. A Bayesian approach to structure dis-
covery in Bayesian networks. Mach. Learn., 50(1-2):
95–125, 2003.

Robert Ganian and Viktoriia Korchemna. The complexity of
Bayesian network learning: Revisiting the superstructure.
In Advances in Neural Information Processing Systems
34, NeurIPS 2021, pages 430–442, 2021.

Serge Gaspers, Mikko Koivisto, Mathieu Liedloff, Sebas-
tian Ordyniak, and Stefan Szeider. On finding optimal
polytrees. Theor. Comput. Sci., 592:49–58, 2015.

Niels Grüttemeier and Christian Komusiewicz. Learning
Bayesian networks under sparsity constraints: A param-
eterized complexity analysis. J. Artif. Intell. Res., 74:
1225–1267, 2022.

827

David Heckerman, Dan Geiger, and David Maxwell Chick-
ering. Learning Bayesian networks: The combination
of knowledge and statistical data. Mach. Learn., 20(3):
197–243, 1995.

Mark Jerrum, Alistair Sinclair, and Eric Vigoda. A
polynomial-time approximation algorithm for the per-
manent of a matrix with nonnegative entries. J. ACM, 51
(4):671–697, 2004.

Mikko Koivisto and Antti Röyskö. Fast multi-subset trans-
form and weighted sums over acyclic digraphs. In Pro-
ceedings of the 17th Scandinavian Symposium and Work-
shops on Algorithm Theory, SWAT 2020, volume 162 of
LIPIcs, pages 29:1–29:12. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2020.

Mikko Koivisto and Kismat Sood. Exact Bayesian structure
discovery in Bayesian networks. J. Mach. Learn. Res., 5:
549–573, 2004.

Daphne Koller and Nir Friedman. Probabilistic Graphical
Models - Principles and Techniques. MIT Press, 2009.
ISBN 978-0-262-01319-2.

Janne H. Korhonen and Pekka Parviainen. Exact learning of
bounded tree-width Bayesian networks. In Proceedings
of the Sixteenth International Conference on Artificial
Intelligence and Statistics, AISTATS 2013, volume 31
of JMLR Workshop and Conference Proceedings, pages
370–378. JMLR.org, 2013.

Janne H. Korhonen and Pekka Parviainen. Tractable
Bayesian network structure learning with bounded ver-
tex cover number. In Advances in Neural Information
Processing Systems 28, NIPS 2015, pages 622–630, 2015.

Jack Kuipers and Giusi Moffa. Uniform random generation
of large acyclic digraphs. Stat. Comput., 25(2):227–242,
2015.

Jack Kuipers and Giusi Moffa. Partition MCMC for infer-
ence on acyclic digraphs. J. Am. Stat. Assoc., 112(517):
282–299, 2017.

David Madigan and Jeremy York. Bayesian graphical mod-
els for discrete data. Int. Stat. Rev., 63:215–232, 1995.

Teppo Niinimäki, Pekka Parviainen, and Mikko Koivisto.
Structure discovery in Bayesian networks by sampling
partial orders. J. Mach. Learn. Res., 17:57:1–57:47, 2016.

Sascha Ott, Seiya Imoto, and Satoru Miyano. Finding opti-
mal models for small gene networks. In Proceedings of
the Pacific Symposium on Biocomputing, pages 557–567,
2004.

Mauro Scanagatta, Cassio P. de Campos, Giorgio Corani,
and Marco Zaffalon. Learning bayesian networks with

thousands of variables. In Advances in Neural Infor-
mation Processing Systems 28, NIPS 2015, pages 1864–
1872, 2015.

Tomi Silander and Petri Myllymäki. A simple approach for
finding the globally optimal Bayesian network structure.
In Proceedings of the 22nd Conference in Uncertainty in
Artificial Intelligence, UAI 2006. AUAI Press, 2006.

Ajit Singh and Andrew Moore. Finding optimal Bayesian
networks by dynamic programming. Technical report,
Carnegie Mellon University, School of Computer Science,
2005.

Richard P Stanley. Acyclic orientations of graphs. Discrete
Math., 5(2):171–178, 1973.

Topi Talvitie, Aleksis Vuoksenmaa, and Mikko Koivisto.
Exact sampling of directed acyclic graphs from modular
distributions. In Proceedings of the Thirty-Fifth Confer-
ence on Uncertainty in Artificial Intelligence, UAI 2019,
volume 115 of Proceedings of Machine Learning Re-
search, pages 965–974. AUAI Press, 2019.

Jin Tian and Ru He. Computing posterior probabilities of
structural features in Bayesian networks. In Proceedings
of the Twenty-Fifth Conference on Uncertainty in Artifi-
cial Intelligence, UAI 2009, pages 538–547. AUAI Press,
2009.

Leslie G. Valiant. The complexity of enumeration and relia-
bility problems. SIAM J. Comput., 8(3):410–421, 1979.

Changhe Yuan, Brandon M. Malone, and XiaoJian Wu.
Learning optimal bayesian networks using a* search. In
Toby Walsh, editor, Proceedings of the 22nd International
Joint Conference on Artificial Intelligence, IJCAI 2011,
pages 2186–2191. AAAI Press, 2011.

828

	Introduction
	Problem Formulations
	Structural Constraints

	Maximization
	Counting
	General Case is #P-hard
	Parameterized Case is #W[1]-hard
	Exact Counting

	Sampling
	Concluding Remarks

