
On Inference and Learning With Probabilistic Generating Circuits

Juha Harviainen1 Vaidyanathan Peruvemba Ramaswamy2 Mikko Koivisto1

1Department of Computer Science, University of Helsinki, Helsinki, Finland
2Faculty of Informatics, TU Wien, Vienna, Austria

Abstract

Probabilistic generating circuits (PGCs) are eco-
nomical representations of multivariate probability
generating polynomials (PGPs). They unify and
extend decomposable probabilistic circuits and de-
terminantal point processes, admitting tractable
computation of marginal probabilities. However,
the need for addition and multiplication of high-
degree polynomials incurs a significant additional
factor in the complexity of inference. Here, we
give a new inference algorithm that eliminates this
extra factor. Specifically, we show that it suffices
to keep track of the highest degree coefficients
of the computed polynomials, rendering the al-
gorithm linear in the circuit size. In addition, we
show that determinant-based circuits need not be
expanded to division-free circuits, but can be han-
dled by division-based fast algorithms. While these
advances enhance the appeal of PGCs, we also dis-
cover an obstacle to learning them from data: it
is NP-hard to recognize whether a given PGC en-
codes a PGP. We discuss the implications of our
ambivalent findings and sketch a method, in which
learning is restricted to PGCs that are composed
of moderate-size subcircuits.

1 INTRODUCTION

Much recent research on probabilistic modeling has focused
on the computational tractability of inference. A class of
inference queries—such as marginal probabilities or most
probable explanations—is said to be tractable in a model
family if any query can be computed in time polynomial
in the model size. For this concept to be useful, one would
require succinct yet expressive models.

To this end, two significant model families supporting
tractable marginal probability queries are (decomposable)

probabilistic circuits (PCs) [Choi et al., 2020] and determi-
nantal point processes (DPPs) [Borodin and Rains, 2005,
Kulesza and Taskar, 2012]. PCs unify a range of models
composed of conditional independences and mixture dis-
tributions, including arithmetic circuits [Darwiche, 2003],
sum-product networks [Peharz et al., 2019, Poon and Domin-
gos, 2011], probabilistic sentential decision diagrams [Kisa
et al., 2014], and cutset networks [Rahman and Gogate,
2016]. DPPs, on the other hand, represent global negative
correlations among the variables through the determinant
of a kernel matrix. The two families are distinct: there are
PCs whose representations as DPPs are exponentially larger,
and vice versa [Zhang et al., 2020]. Another recent model
family is the mixture of all trees that supports tractable like-
lihood computation and estimation of marginals [Selvam
et al., 2023].

Both decomposable PCs and DPPs can be succinctly repre-
sented by probabilistic generating circuits (PGCs) [Zhang
et al., 2021]. A PGC encodes a probability distribution into a
probability generating polynomial (PGP) using a circuit that
consists of four types of nodes: sum nodes, product nodes,
indeterminates, and constants. The key difference to PCs is
that the sum nodes in PGCs can also take negative weights.
This significantly boosts the expressiveness of the model
family: a circuit with negation can be exponentially smaller
than a monotone circuit representing the same polynomial
[Valiant, 1980]. The ability to economically represent DPPs
is (just) one remarkable incarnation of this power of PGCs.

Marginal probabilities remain tractable in PGCs: they can be
computed by a single pass over the circuit, using arithmetic
over univariate polynomials [Zhang et al., 2021, Thm 1].
However, since the degree of the polynomials can be as large
as the number of variables—say, hundreds or thousands in
practice—the computational overhead can be significant in
comparison to the highly efficient inference algorithms avail-
able for decomposable PCs [Peharz et al., 2020]. While the
expensive polynomial arithmetic can be avoided in special,
somewhat basic PGC architectures (called SimplePGCs)
[Zhang et al., 2021], slow inference hampers the deploy-

Proceedings of the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023), PMLR 216:829–838.

mailto:<juha.harviainen@helsinki.fi>?Subject=Your UAI 2023 paper

ment of more general PGCs.

As the first contribution of this paper, we give a new infer-
ence algorithm. Our algorithm is linear in the circuit size,
thus removing the extra factor due to polynomial arithmetic.
While this complexity is the best possible for PGCs given as
explicit circuits, one might hope for even faster algorithms
if the circuit admits a smaller, implicit representation. The
determinant of an n×n matrix is a prime example: it can be
evaluated in time O(n3) using division, whereas division-
free circuits, practical for moderate n, have size Ω(n4); see,
e.g., Bird’s [2011] algorithm.1 As a second contribution,
we show that PGCs that involve determinants, indeed, need
not be compiled into explicit division-free circuits—we can
employ the fastest division-based algorithms!

The latter half of this paper investigates the task of learn-
ing a PGC from data. We consider the setting in which the
structure of the circuit is given but model parameters—the
weights of the addition nodes—are to be fitted to the data.
Here a standard method would be to (locally) maximize a
penalized likelihood function using (stochastic) gradient de-
scent; implementing this method is straightforward [Zhang
et al., 2021, Sect. 5] when all points in the “natural” pa-
rameter space are feasible solutions, i.e., the PGC encodes
a PGP. Unfortunately, allowing arbitrary negative weights
turns out to jeopardize that method: as we will show, not
only there exist infeasible PGCs, but recognizing whether
a given PGC is feasible is NP-hard. As a remedy, we end
our paper by sketching a framework for learning restricted
classes of PGCs: we argue that optimization or sampling in
the parameter space can be made computationally feasible
for PGCs that are composed of moderate-size subcircuits
using the sum, product, and hierarchical composition opera-
tions [Zhang et al., 2021, Prop. 2 and 3].

In this paper, we restrict ourselves to analytic, theoretical
considerations. While we can expect our inference algo-
rithms, no doubt, bring orders-of-magnitude speedups in
practice, there remain numerous intriguing implementation
issues related to, e.g., numerical stability and good use of
modern hardware; these are best addressed by devoted engi-
neering research (cf. Peharz et al. [2020]). Likewise, we ex-
pect that implementing and experimenting with the sketched
approach to learn PGCs will require a significant dedicated
effort, which is beyond the present work.

2 PRELIMINARIES

This section reviews the main concepts of PGCs, following
Zhang et al. [2021].

1The asymptotically fastest known division-free algorithms
reduce the additional factor from n to around n0.3 [Kaltofen and
Villard, 2005].

2.1 REPRESENTATION

Let X1, . . . , Xn be binary random variables and Pr(·) a
probability distribution over them. Then, the probability
generating polynomial (PGP) of the distribution with inde-
terminates z1, . . . , zn is

g(z1, . . . , zn) :=
∑

S⊆{1,...,n}

cSz
S ,

where zS =
∏
i∈S zi and

cS = Pr
(
{Xi = 1}i∈S , {Xi = 0}i 6∈S

)
.

Probability generating circuits (PGCs) are one way for
representing these polynomials. They are directed acyclic
graphs (DAGs) with edges oriented towards a single sink
node, and each node has four options for its type:

©+ : Sum of two real-weighted inputs;

©× : Product of two inputs;

©c : Constant real value c;

©zi : Indeterminate zi.

The scope of a node in a PGC is the set of indeterminates on
which the node depends (i.e., the descendants in the graph).
The scope of a PGC is the scope of its sink node. We may
refer to a scope by the index set of the indeterminates. The
size of a PGC is the number of edges in the graph.

As an example, Figure 1 contains the joint probability table
and one possible PGC for the generating polynomial

0.15z1z2z3 + 0.025z2z3 + 0.15z1z3

+ 0.025z3 + 0.25z1z2 + 0.05z2 + 0.3z1 + 0.05
(1)

that stems from rewriting the polynomial in the form

0.025(1 + 6z1)(1 + z2)(2 + z3)− 0.05z1z2 .

2.2 COMPOSITION

Let fk be a PGP with scope Sk, for k = 1, . . . , `. We obtain
a new PGP with scope S1 ∪ · · · ∪S` by any of the following
composition operations [Zhang et al., 2021]:

Sum: w1f1 + · · ·+ w`f`, where the weights wk are non-
negative and sum up to 1.

Product: f1 · · · f` for pairwise disjoint scopes Sk.

Hierarchical: h(f1, . . . , f`) for pairwise disjoint scopes
Sk and some `-variate PGP h.

As an example of a hierarchical composition, consider the
generating polynomial

h(y1, . . . , y`) = det
(
I + Ldiag(y1, . . . , y`)

)
. (2)

830

X1 X2 X3 Pr(·)

0 0 0 0.050
1 0 0 0.300
0 1 0 0.050
1 1 0 0.250
0 0 1 0.025
1 0 1 0.150
0 1 1 0.025
1 1 1 0.150

(a) Joint probability table

+

× ×

×+

+ +

z1 z2

z1

z2 z3

1

1 2

0.025 −0.05

1

1 1

6

1 1

(b) One possible PGC

Figure 1: The joint probability table and one possible PGC for the polynomial of Eq. (1).

of a DPP with kernel L. Now, let f1, . . . , f` be PGPs
with disjoint scopes that partition the set of indeterminates
z1, . . . , zn. By the substitutions yk := fk we obtain an n-
variate PGP. Referring to the representations of the involved
polynomials as circuits, Zhang et al. [2021] call the com-
pound model a determinantal PGC (DetPGC).

2.3 INFERENCE

PGCs support polynomial-time marginal probability queries.
The idea is to extract a particular coefficient of a univariate
polynomial obtained by assigning appropriate values to the
indeterminates of the circuit. For a univariate polynomial
p(t) = b0 + b1t + · · · + bnt

n, we write coefd p(t) for the
coefficient bd of the term td.

Lemma 1 (Zhang et al. [2021]). Let Pr(·) be a probability
distribution with a PGP g(z1, . . . , zn). For disjoint index
sets A,B ⊆ {1, . . . , n}, define a univariate polynomial in
an indeterminate t by

gA,B(t) :=g
(
{zi= t}i∈A, {zi= 0}i∈B , {zi= 1}i 6∈A∪B

)
.

Then, the marginal probabilities are given by

Pr
(
{Xi = 1}i∈A, {Xi = 0}i∈B

)
= coef |A| gA,B(t) .

We can compute the marginal probability for a given query
(A,B) by a bottom-up pass through the PGC: first we set
each indeterminate (in source nodes) to t, 0, or 1; then
in sum and product nodes, respectively, we add and mul-
tiply the two polynomials represented by the child sub-
circuits. Since two degree-n polynomials can be added
in time O(n) and multiplied in time O(n log n log log n)
[Cantor and Kaltofen, 1991, Schönhage and Strassen,
1971], the polynomial gA,B(t) can be computed in time
O(mn log n log log n) in a circuit of size m. Note that any
terms of degree higher than n can be safely ignored as they
get cancelled out eventually by the definition of a PGP.

3 FASTER INFERENCE

We present three improved algorithms for answering
marginal probability queries (A,B) in PGCs. Our algo-
rithms make use of Lemma 1, however avoiding the per-
node arithmetic on univariate polynomials.

Our first algorithm is based point evaluations and applies to
arbitrary PGCs. Evaluating a PGC of sizem in a given point
takes time O(m). Since, the corresponding univariate poly-
nomial (after the substitution) is of degree at most |A| ≤ n,
it is uniquely determined by n+ 1 evaluations over different
values of the variable t.

Theorem 2. Any marginal probability in a PGC of size m
and n variables can be computed in time O(mn).

Proof. Evaluate the circuit at the points t = 0, 1, . . . , |A|.
This takes O(mn) time. Finally, apply fast polynomial in-
terpolation [Horowitz, 1972] in time O(n log2 n). Since the
circuit mentions each indeterminate at least once, we have
m ≥ n. The asymptotic bound follows.

Remark 1. The algorithm only needs a way to evaluate the
circuit in a given point—the evaluation method need not
restrict its operations to additions and multiplications. Sup-
posing one evaluation takes time T , any marginal probabilty
can be computed in time O(Tn).

3.1 LINEAR-TIME INFERENCE

We next further expedite the computations by a factor of n,
yielding a truly linear running time O(m). Our algorithm
requires that the PGC is decomposable:

Definition 1. A product node in a PGC is decomposable if
its children have disjoint scopes. A PGC is decomposable if
all its product nodes are decomposable.

Decomposable PGCs are a significant subclass of PGCs. All
example PGCs considered in this and previous work Zhang

831

Algorithm 1: Fast inference in decomposable PGCs
Input :A PGC with a sink node s after the substitution.
Output :A pair (v, d).
if s has children then

Call Algorithm 1 with the children as sink nodes;
Save outputs as (v1, d1) and (v2, d2);
if s is a product node then

return (v1, d1)× (v2, d2);
else

return w1 · (v1, d1) + w2 · (v2, d2) with w1, w2

being the corresponding weights for addition;
if s has value c then

return (c, 0);
return (1, 1);

et al. [2021] are decomposable. Note that the composition
operations (Section 2.2) preserve decomposability.

The key observation is that for every node in the circuit, the
degree of the corresponding univariate polynomial is at most
|A|, as the scopes are disjoint.2 This observation allows us
to only track the coefficients of the highest degree terms
(with a slight abuse of terminology allowing zero-valued
coefficients—we consider t2−t2 to have degree 2 in a sense,
with a coefficient 0).

The algorithm operates on a semiring 〈R×(N∪{0}),+,×〉
where the elements (v, d) describe the coefficient v of the
highest degree term td that has been seen. Thus, the oper-
ators are defined as follows: Let (v1, d1) and (v2, d2) be
elements of this semiring. Then,

(v1, d1) + (v2, d2) :=

(v1, d1), if d1 > d2,

(v2, d2), if d1 < d2,

(v1 + v2, d1), if d1 = d2

and
(v1, d1)× (v2, d2) := (v1v2, d1 + d2) .

We also define scalar multiplication by w ∈ R for the
weighted addition: w · (v, d) := (wv, d).

Similar structures have been used before, e.g., for counting
optimal variable assignments in graphical models [Mari-
nescu and Dechter, 2019] and with infinitesimal numbers in
probabilistic programming [Martires et al., 2023].

The algorithm proceeds by replacing t by (1, 1) and any
constant c by (c, 0). Then, the sum and product nodes are
evaluated using the operations of the semiring as described
in Algorithm 1. Clearly, the whole process takes O(m) time.

We claim that the desired coefficient is obtained from the

2A non-decomposable PGC may contain a product node that
corresponds to a multivariate polynomial where some indetermi-
nate has degree larger than 1. Such terms cancel out at the end.

output (v, d) by the function

ϕ|A|(v, d) :=

{
v, if d = |A|,
0, otherwise.

The results are proven formally in the following theorem:

Theorem 3. Any marginal probability in a decomposable
PGC of size m can be computed in time O(m).

Proof. We prove that Algorithm 1 computes the marginal
probability correctly by induction on the size of the circuit.
Consider the four types the sink node can have:

• Constant c: The polynomial is c and the corresponding
semiring element (c, 0). In both cases the output will
be c if and only if |A| = 0 and 0 otherwise.

• Indeterminate zi: Similar to above with semiring ele-
ment (1, 1) and |A| = 1.

• Addition: Let p and q be the univariate polynomials
that are the inputs of the node and w1 and w2 the
corresponding weights for addition. The equality

coef |A|(w1 ·p+w2 ·q) = w1 ·coef |A| p+w2 ·coef |A| q

implies that it suffices to compute the sum of the co-
efficients from two smaller circuits. A straightforward
case analysis for the outputs of the subcircuits proves
the result.

• Multiplication: Similar to addition, let p and q be the
input polynomials and (v1, d1) and (v2, d2) the outputs
for the subcircuits, respectively. Additionally, letAp be
the set of indeterminates with zi = t in the subcircuit
of p, and Aq this set for q. The circuit is decomposable,
and thus Ap and Aq are disjoint. If Ap ∪Aq = A, then

coef |A|(p · q) = (coef |Ap| p)(coef |Aq| q) ,

and by induction,

(coef |Ap|p)(coef |Aq|q) =ϕ|Ap|(v1, d1) · ϕ|Aq|(v2, d2)

=ϕ|Ap|+|Aq|(v1v2, d1 + d2)

=ϕ|Ap∪Aq|(v1v2, d1 + d2)

=ϕ|A|(v1v2, d1 + d2) .

Otherwise

coef |A|(p · q) = ϕ|A|(v1v2, d1 + d2) = 0

because d1 + d2 < |A|, completing the proof.

To see why the linear-time algorithm can fail in a non-
decomposable PGC, consider the PGP

1
3 (z1z2 + z1z3 + z2z3) = 1

3

(
(z1 + z2)(z1 + z3)− z21

)
.

832

Assigning z1 = t and z2 = z3 = 1 yields a term z21 = t2 on
the right-hand side. This disrupts the computation because
z21 is always cancelled out when the formula is expanded,
but the algorithm still finds a semiring element (0, 2).

However, it is possible to modify the algorithm to allow
overlap between the scopes. Let (v, d) be the output from
evaluating Algorithm 1 with zi = t for all i on a PGC. Then,
µ := max{0, d− n} measures the degree of disjointness of
the PGC in a sense, higher values meaning more overlap. It
is also an upper bound for the degree of disjointness of all
its subcircuits. This suggests that maintaining µ+ 1 largest
coefficients suffices for evaluating marginal probabilities
in general PGCs in time O(mµ logµ log logµ) with fast
polynomial multiplication — nearly linear time in m for
moderately small overlap. In the extreme, this reduces to
the algorithm of Zhang et al. [2021] as it needs to maintain
all terms of the polynomial.

3.2 INFERENCE FOR DETERMINANTAL FORMS

We next present faster inference for PGCs containing deter-
minants. We first define the form we require the circuit to
have:

Definition 2. Let P = (pij) be a matrix where each entry
is a polynomial over indeterminates y1, . . . , y` of degree at
most one, that is,

pij = pij0 +
∑
k∈Sij

pijkyk ,

with some scopes Sij ⊆ {1, . . . , `} and real coefficients
pijk. We say that P is scope-disjoint if each indeterminate
yk appears in at most one row or column, that is, k ∈ Sij
implies that k 6∈ Srs if r 6= i and s 6= j.

Remark 2. The degree restriction is here for convenience
of exposition. Definition 2 and Algorithm 2 can be extended
in a straightforward manner to matrices where the entries
are multilinear polynomials, the running time scaling with
the number of terms in the polynomials.

For example, in the DPP representation in Eq. (2) the matrix
I + Ldiag(y1, . . . , y`) with a kernel L = (lij) is scope-
disjoint, since its diagonal and off-diagonal entries are, re-
spectively, of the form 1 + liiyi and lijyj .

A more complex example is provided by the matrix

1

13

y1 + 2y2 y1 y1 −y1
1 + y2 −y3 y5 0
y2 1 2 y4
−y2 0 y5 0

 ,

demonstrating that scope-disjoint matrices are more expres-
sive than those of DPPs: Here, the probability that yk = 0
for all k is zero, whereas for DPPs this has to be nonzero.

(Verifying that the determinant of the matrix is a PGP is left
as an exercise to the reader.)

More generally, the properties of a scope-disjoint matrix
guarantee that its determinant is a multilinear polynomial,
thus holding potential to encode a probability distribution.

Definition 3. A PGC is a determinantal PGC if it is a hier-
archical composition h(f1, . . . , f`), where h = detP with
a scope-disjoint square matrix P over ` indeterminates and
f1, . . . , f` are PGPs with disjoint scopes over z1, . . . , zn.
We call P the parent matrix and each fk a child PGP.

Consider the problem of computing the marginal probability
in a determinantal PGC for a given query (A,B). So far,
we have considered two different approaches. One is to
apply Theorem 2 and Remark 1: first evaluate the PGC in
O(n) points, and then perform one univariate polynomial
interpolation at the end. The other approach is to represent
the determinant as an explicit PGC which incurs overhead
due to the size of division-free circuits. Could we evaluate
the determinant with fast algorithms without the need for
multiple evalutations, getting the best of both worlds?

We achieve this by an approach similar to the fast inference
of PGCs: we only track the highest-degree terms. However,
the fast algorithms for the determinant are designed for
real matrices, so we need to find a way of incorporating
the information about the degrees of the terms. Note that
because the matrix is scope-disjoint, each fk must appear in
P in at most one row (column). Thus, we can safely ignore
entries on that row (column) that do not contain fk as a term,
as degree |A| cannot be achieved without picking an entry
containing fk from that row (column). It turns out this is
sufficient for the fast computation of marginal probabilities.
This is more formally represented in Algorithm 2 and proven
in Theorem 4.

As an example of the execution of Algorithm 2, consider the
earlier matrix where each yk is substituted by fk(zk) = zk.
Then, the transformation of P into R with A = {1, 2, 3}
and B = {4} goes as follows:
z1 + 2z2 z1 z1 −z1
1 + z2 −z3 z5 0
z2 1 2 z4
−z2 0 z5 0

 7→

0 0 1 −1
0 −1 0 0
1 0 2 0
−1 0 1 0

Now, the only permutations with a nonzero value are
(4, 2, 1, 3) and (4, 2, 3, 1), encoding terms z1z2z3z5 and
2z1z2z3 in the determinant of P .

Theorem 4. Any marginal probability in a determinantal
PGC can be computed in timeO(m3+m2`+T`), assuming
the parent matrix is of size m×m and in each child PGP
any marginal probability can be computed in time T .

Proof. Consider Algorithm 2. All for-loops can clearly be

833

Algorithm 2: Fast inference in determinantal PGCs
Input : A determinantal PGC over X1, . . . , Xn, with an

m×m parent matrix (pij) and child PGPs
f1, . . . , f`; disjoint subsets A,B ⊆ {1, . . . , n}.

Output : The probability of {Xi = 1}i∈A, {Xi = 0}i∈B .
for k = 1, . . . , ` do

Ak ← the intersection of A and the scope of fk;
Bk ← the intersection of B and the scope of fk;
ck ← the marginal probability for (Ak, Bk) in fk;

for i = 1, . . . ,m do
row i ← {k : fk appears only on row i and Ak 6= ∅};

for j = 1, . . . ,m do
colj ← {k : fk appears only on column j and Ak 6= ∅};

c0 ← 1;
for i = 1, . . . ,m do

for j = 1, . . . ,m do
rij ← 0;

for each k ∈ {0} ∪ Sij do
if row i, colj ⊆ {k} then

rij ← rij + pijkck;
return the determinant of the matrix (rij)

implemented to run in the claimed time. It remains to show
that the algorithm is correct.

By Lemma 1, it is sufficient to show that for the matrix
R = (rij) we have

detR = coef |A| detP (t) , (3)

where the entries of P (t) are given by

pij(t) = pij
(
{zi = t}i∈A, {zi = 0}i∈B , {zi = 1}i6∈A∪B

)
;

here we view each entry of P as a multivariate polynomial
in the indeterminates z1, . . . , zn. For convenience, we omit
showing the dependence on the sets A and B in the notation.

Recall that the determinant can be written as the sum

detR =
∑
σ

sgn(σ)

m∏
i=1

ri,σ(i)

over the permutations σ on {1, . . . ,m}, where sgn(σ) is
the sign of the permutation. Fix an arbitrary permutation σ.
It suffices to show that

m∏
i=1

ri,σ(i) = coef |A|

m∏
i=1

pi,σ(i)(t) . (4)

Let Aij :=
⋃
k∈Sij Ak. Say that a permutation σ partitions

A if |A| =
∑m
i=1 |Ai,σ(i)|.

Assume first that σ does not partition A. Then the right-
hand side of Eq. (4) is zero, as the degree of the polynomial
cannot reach |A|. Accordingly, we can select an fk such
that Ak 6= ∅ and k 6∈ Si,σ(i) for all i. Because P is scope-
disjoint, we can further select an i such that fk appears

only on row i or column j := σ(i). Now, as k 6∈ Sij but
k ∈ row i or k ∈ col j , the algorithm assigns rij to zero,
thus rendering the left-hand side of Eq. (4) zero, as desired.

For the rest of the proof, assume that σ partitions A. Since
P is scope-disjoint, we care only about the highest-degree
terms in the factors of the product on the right-hand side of
Eq. (4). Therefore, it can be rewritten as

m∏
i=1

coef |Ai,σ(i)| pi,σ(i)(t).

Consider a single factor of this product. By Lemma 1 and the
definition of pij , the coefficient corresponds to a weighted
sum over the precomputed marginal probabilities ck:

coef |Aij | pij(t) =
∑

k∈{0}∪Sij
Ak=Aij

pijk · ck,

where A0 := ∅.

We separate two cases: If Aij = ∅, then all indetermi-
nates appear only in other rows and columns. Thus, row i =
col j = ∅ and

rij =
∑

k∈{0}∪Sij

pijk · ck ,

as desired.

Otherwise Aij 6= ∅. Then we can have Ak = Aij for at
most one k ∈ Sij , since the scopes of fk are disjoint.

Now, if such a k exists, then

coef |Aij | pij(t) = pijk · ck .

But because we assumed that σ partitions A, and because P
is scope-disjoint, the indeterminates in A \Aij must appear
in other columns and rows. Thus, row i, col j ⊆ {k} and,
thereby, the algorithm correctly assigns rij to pijk · ck.

Otherwise, no such k exists and there is an l ∈ Sij with a
nonempty set Al ⊆ Aij \ Ak. Now, l ∈ row i or l ∈ col j ,
meaning that

rij = 0 = coef |Aij | pij(t),

concluding the proof.

4 LEARNING

Let us now turn to the task of finding parameter values for a
given PGC structure so as to (locally) maximize a penalized
likelihood function. Or, equally, consider the task of draw-
ing a sample of parameter values (approximately) from a
posterior distribution obtained by multiplying the likelihood
by a prior. If the parameters were subject to only simple

834

constraints, such as nonnegativity, then one could apply
standard gradient-based optimization methods or Markov
chain Monte Carlo methods, such as those implemented in
Adam [Kingma and Ba, 2015] and Stan [Carpenter et al.,
2017]. Unfortunately, in our case the constraints are compli-
cated: as we will show next, checking whether a given PGC
encodes a probability distribution is NP-hard. Motivated by
this obstacle, we end this section with a sketch of how to
learn PGCs that composed of moderate-size subcircuits.

4.1 RECOGNIZING FEASIBLE PGCS IS HARD

We call a PGC feasible if it encodes a PGP, that is, all the
coefficients in the generating polynomial are nonnegative.
Thus, for recognizing that a given PGC is infeasible, it
would be sufficient to exhibit a negative coefficient. While a
single coefficient can be efficiently extracted using inference
algorithms, it turns out to be hard to figure out, which of the
exponentially many coefficients one should compute:

Theorem 5. Recognizing whether a given PGC is infeasible
is an NP-complete problem.

Proof. We prove the statement with a reduction from k-
CNF-SAT by showing that efficient recognition would yield
an efficient algorithm for k-CNF-SAT. The main idea is
to encode the SAT instance into a PGC that is infeasible
exactly when it has a solution. We will ignore normalizing
the distribution here: it is easy to do by dividing by the
value obtained from assigning each indeterminate to 1. See
Figure 2 for a visualization of the construction given in the
following paragraphs.

Essentially, we are building a probability mass function that
expresses the number of unsatisfied clauses for each truth
assignment. We start by associating each truth assignment

{xi = 1}i∈S , {xj = 0}j 6∈S

with the monomial
∏
i∈S zi = zS . A truth assignment is

unsatisfying if any of the clauses is unsatisfied. This leads
to the following idea: Add weight −1 to all assignments
and then, for each clause, increment the weight of every
assignment that does not satisfy the clause. Thus, only a
satisfying assignment has weight −1.

Initializing all assignments with−1 corresponds to the prod-
uct

−(1 + z1)(1 + z2) · · · (1 + zn) . (5)

Next, encode the clauses into polynomials such that the set
of terms in it matches the set of unsatisfying truth assign-
ments for it: A positive literal xi has to be false (1) and a
negative literal x̄j true (zj). For example, clause x1∨x2∨x̄3
corresponds to

1 · 1 · z3 · (1 + z4)(1 + z5) · · · (1 + zn) .

+

+

C1 C2 C3

(1 + z1)(1 + z2) · · · (1 + zn)

1 −1−1

1 1 1

C3 = x1 ∨ x4 ∨ xn

×

× (1 + z2)(1 + z3)(1 + z5) . . . (1 + zn−1)

1 z4 1

(x1) (x4) (xn)

{
xi 7→ 1,

xi 7→ zi

Figure 2: An example of our reduction from a k-CNF-SAT
instance C1 ∧C2 ∧C3 to recognizing whether a given PGC
is infeasible.

Now, if any clause is unsatisfied for a truth assignment,
the corresponding term is added at least once to Eq. (5),
and thus it is no longer negative. However, the term of a
truth assignment satisfying all clauses remains negative after
taking the sum over all clauses. If we were able to find it
in polynomial time, we would have solved k-CNF-SAT
efficiently.

Remark 3. Equivalently, recognizing whether a given PGC
is feasible is a co-NP-complete problem.

Note that we actually showed a slightly stronger result: the
constructed circuit is decomposable, so recognizing such
infeasible PGCs is NP-complete as well.

The hardness result in itself would leave open the possibility
of finding a (worst-case) moderately exponential algorithm
running, e.g., in timeO(1.23nm). However, the reduction to
CNF-SAT is sufficiently tight to render that difficult. Indeed,
such an algorithm would give an equally fast algorithm for
CNF-SAT, thus refuting the conjectured strong exponential
time hypothesis [Impagliazzo and Paturi, 2001]:

Corollary 6. Assuming the strong exponential time hypoth-
esis holds, no algorithm can recognize feasible PGCs in
time O(cn) for any c < 2.

835

4.2 LEARNING COMPOUND CIRCUITS

We next sketch an approach to learn compound PGCs that
are composed of moderate-size subcircuits. The key obser-
vation is that in such models, the check for feasibility can
be done separately for each subcircuit.

Suppose we are given a PGC that is composed of some
PGCs with generating polynomials g1, . . . , gs, recursively
using the sum, product, and hierarchical composition. We
view each gj as a function of its weight parameters, which
we denote by θj . We refer to θ = (θ1, . . . , θs) as a solution.
Recall that if every gk is a PGP, then also the compound
PGC encodes a PGP.

Consider the following template algorithm, which can be
instantiated either to local optimization or to approximate
posterior sampling:

1. Initialize. Let θ be any feasible solution; e.g., assign
all weights a nonnegative value from the range [0, 1].

2. Move. Let θ′ be a candidate solution in a local neigh-
borhood of θ; e.g., take a small step in the direction of
the gradient of the likelihood.

3. Accept or reject. If gj is a PGP for all j, update θ to θ′.

4. Iterate. Go to step 2.

In the next paragraphs we discuss each step in detail.

Initialization with nonnegative weights guarantees that the
PGC encodes a PGP (up to a normalizing constant). Ideally,
there would be no need to select a “good” initial solution, as
the iterations would quickly move the solution to regions of
high likelihood or posterior. An implicit assumption here is
that such good regions can be—at least in theory—reached
also from poor initial solutions. Characterizing the con-
nectiveness of the feasible region is a question for future
research.

Efficient moves can be critical for the performance of the
algorithm. A simple implementation would generate a can-
didate solution in a random walk manner, perturbing the val-
ues in the current solution only in one or a few dimensions.
While this would be extremely fast, it would also miss the
opportunity to generate better candidates by computation-
ally more demanding algorithms. Namely, the accept–reject
step that follows is expected to dominate the computational
complexity. It would be beneficial to generate candidates
that are feasible with good probability. For gradient-based
moves it would be useful if the inference algorithms sup-
port automated differentiation; it is not immediate what the
status of our present algorithms is with this respect.

Deciding whether to accept or reject the proposed candidate
solution is the most (or only) nontrivial step of this algo-
rithm. Here we assume that the feasibility of the candidate
was not ensured in the move step, but was left to be checked
for in this step. Clearly, feasibility needs to be checked only

for those subcircuits whose weights were changed; the num-
ber of affected subcircuits can be small or large depending
on the type of the move. The main challenge is that decid-
ing whether a subcircuit encodes a PGP is hard problem:
by Corollary 6, in the worst case, the running time of our
algorithm would scale as 2s for a subcircuit on s variables.
On the positive side, the complexity is practical when s is
small, say s < 20. In practice, it may be harder to ensure
that a candiate is feasible (no polynomial-size certificate)
than verifying that the candidate is infeasible—finding fast,
practical algorithms for these tasks is an intriguing research
question. It is worth noting that feasiblity checks need to
be faster than likelihood computations, which also can be
relatively expensive if there is a large number of data points.

In the present form, the algorithm template does not specify
any stopping rule. One can apply any criteria commonly
used in local optimization and Markov chain simulation (to
approximate sampling from a posterior). However, since
each iteration is expected to be computationally expensive,
the number of iterations may have to be kept relatively
small in practice. This setting favors parallel schemes, such
as annealed importance sampling [Neal, 2001], supposing
multiple processors are available.

5 CONCLUDING REMARKS

Probabilistic generating circuits (PGCs) are a recently pro-
posed model class that subsumes probabilistic circuits (PCs)
and determinantal point processes (DPPs) [Zhang et al.,
2021]. In this paper, we took a closer look at the computa-
tional complexity of inference and learning in PGCs.

We observed that in a PGC on n random variables, any
marginal probability can be computed by n+ 1 point eval-
uations of the circuit, followed by a single, relatively inex-
pensive polynomial interpolation. Compared to a previous
algorithm, the saving in the asymptotic complexity is by
a factor logarithmic in n. In practice, for n in hundreds or
thousands, we may expect an orders-of-magnitude speedup
given the simplicity of scalar arithmetic, as compared to
multiplication of polynomials.

In determinantal PGCs, our inference algorithm would
circumvent the requirement to represent determinants as
division-free circuits, an idea suggested in a previous work.
But, we gave an even faster algorithm that avoids multiple
point evaluations and interpolation altogether. We showed
that, in essence, it suffices to evaluate a single determinant
of a matrix with real-valued entries.

Using similar ideas, we also gave a linear-time inference al-
gorithm in what we call decomposable PGCs. This removes
a factor of n from the time complexity of our evaluation–
interpolation algorithm. Arguably, decomposable PGC are
a significant subclass of PGCs: they are strictly more ex-
pressive than PCs and DPPs [Zhang et al., 2021, implied by

836

the proof of Thm 2], and the class is closed under the three
composition operations.

As to the learning of PGCs from data, we pointed out a
notable obstacle: it is NP-hard to recognize whether even a
decomposable PGC encodes a probability distribution. On
the other hand, we sketched an approach to learn PGCs com-
posed of moderate-size subcircuits. Our inspection suggests
that standard methods of (stochastic) local search may be
practical, in particular if typical instances of the NP-hard
recognition problem can be solved fast in practice.

Author Contributions

All authors collaborated on writing the paper. The faster
inference algorithms for decomposable, determinantal, and
general PGCs were devised by J. Harviainen, V. Peruvemba
Ramaswamy, and M. Koivisto, respectively. J. Harviainen
gave the NP-completeness proof, and the learning algorithm
was outlined by M. Koivisto.

Acknowledgements

Research supported by grants from the Academy of Finland
(projects 316771 and 351156) and the Austrian Science
Fund (project W1255).

References

Richard S. Bird. A simple division-free algorithm for com-
puting determinants. Inf. Process. Lett., 111(21-22):1072–
1074, 2011.

Alexei Borodin and Eric M. Rains. Eynard-Mehta theorem,
Schur process, and their pfaffian analogs. J. Stat. Phys.,
121(3–4):291–317, 2005.

David G. Cantor and Erich Kaltofen. On fast multiplication
of polynomials over arbitrary algebras. Acta Inform., 28
(7):693–701, 1991.

Bob Carpenter, Andrew Gelman, Matthew D Hoffman,
Daniel Lee, Ben Goodrich, Michael Betancourt, Marcus
Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell. Stan:
A probabilistic programming language. J. Stat. Softw., 76
(1), 2017.

YooJung Choi, Antonio Vergari, and Guy Van den Broeck.
Probabilistic circuits: A unifying framework for tractable
probabilistic models. http://starai.cs.ucla.
edu/papers/ProbCirc20.pdf, 2020. Accessed:
2023-01-30.

Adnan Darwiche. A differential approach to inference in
Bayesian networks. J. ACM, 50(3):280–305, 2003.

Ellis Horowitz. A fast method for interpolation using pre-
conditioning. Inf. Process. Lett., 1(4):157–163, 1972.

Russell Impagliazzo and Ramamohan Paturi. On the com-
plexity of k-SAT. J. Comput. Syst. Sci., 62(2):367–375,
2001.

Erich Kaltofen and Gilles Villard. On the complexity of
computing determinants. Comput. Complex., 13(3-4):
91–130, 2005.

Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In Proceedings of the Third Inter-
national Conference on Learning Representations, ICLR
2015, 2015.

Doga Kisa, Guy Van den Broeck, Arthur Choi, and Adnan
Darwiche. Probabilistic sentential decision diagrams. In
Proceedings of the Fourteenth International Conference
on Principles of Knowledge Representation and Reason-
ing, KR 2014. AAAI Press, 2014.

Alex Kulesza and Ben Taskar. Determinantal point pro-
cesses for machine learning. Found. Trends Mach. Learn.,
5(2-3):123–286, 2012.

Radu Marinescu and Rina Dechter. Counting the optimal
solutions in graphical models. In Advances in Neural
Information Processing Systems 32, NeurIPS 2019, pages
12091–12101, 2019.

Pedro Zuidberg Dos Martires, Luc De Raedt, and Angelika
Kimmig. Declarative probabilistic logic programming
in discrete-continuous domains. CoRR, abs/2302.10674,
2023.

Radford M. Neal. Annealed importance sampling. Stat.
Comput., 11(2):125–139, 2001.

Robert Peharz, Antonio Vergari, Karl Stelzner, Alejandro
Molina, Martin Trapp, Xiaoting Shao, Kristian Kersting,
and Zoubin Ghahramani. Random sum-product networks:
A simple and effective approach to probabilistic deep
learning. In Proceedings of the Thirty-Fifth Conference
on Uncertainty in Artificial Intelligence, UAI 2019, vol-
ume 115 of Proceedings of Machine Learning Research,
pages 334–344. AUAI Press, 2019.

Robert Peharz, Steven Lang, Antonio Vergari, Karl Stelzner,
Alejandro Molina, Martin Trapp, Guy Van den Broeck,
Kristian Kersting, and Zoubin Ghahramani. Einsum net-
works: Fast and scalable learning of tractable probabilistic
circuits. In Proceedings of the 37th International Con-
ference on Machine Learning, ICML 2020, volume 119
of Proceedings of Machine Learning Research, pages
7563–7574. PMLR, 2020.

Hoifung Poon and Pedro M. Domingos. Sum-product net-
works: A new deep architecture. In Proceedings of the

837

http://starai.cs.ucla.edu/papers/ProbCirc20.pdf
http://starai.cs.ucla.edu/papers/ProbCirc20.pdf

Twenty-Seventh Conference on Uncertainty in Artificial
Intelligence, UAI 2011, pages 337–346. AUAI Press,
2011.

Tahrima Rahman and Vibhav Gogate. Learning ensembles
of cutset networks. In Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence, pages 3301–3307.
AAAI Press, 2016.

Arnold Schönhage and Volker Strassen. Schnelle multiplika-
tion großer zahlen. Computing, 7(3-4):281–292, 1971.

Nikil Roashan Selvam, Honghua Zhang, and Guy Van den
Broeck. Mixtures of all trees. In Proceedings of The 26th
International Conference on Artificial Intelligence and
Statistics, AISTATS 2023, volume 206 of Proceedings of
Machine Learning Research, pages 11043–11058. PMLR,
25–27 Apr 2023.

Leslie G. Valiant. Negation can be exponentially powerful.
Theor. Comput. Sci., 12:303–314, 1980.

Honghua Zhang, Steven Holtzen, and Guy Van den Broeck.
On the relationship between probabilistic circuits and de-
terminantal point processes. In Proceedings of the Thirty-
Sixth Conference on Uncertainty in Artificial Intelligence,
UAI 2020, volume 124 of Proceedings of Machine Learn-
ing Research, pages 1188–1197. AUAI Press, 2020.

Honghua Zhang, Brendan Juba, and Guy Van den Broeck.
Probabilistic generating circuits. In Proceedings of the
38th International Conference on Machine Learning,
ICML 2021, volume 139 of Proceedings of Machine
Learning Research, pages 12447–12457. PMLR, 2021.

838

	Introduction
	Preliminaries
	Representation
	Composition
	Inference

	Faster Inference
	Linear-time Inference
	Inference for Determinantal Forms

	Learning
	Recognizing Feasible PGCs Is Hard
	Learning Compound Circuits

	Concluding Remarks

