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Abstract

Point processes often have a natural interpretation
with respect to a continuous process. We propose
a point process construction that describes arrival
time observations in terms of the state of a latent
diffusion process. In this framework, we relate the
return times of a diffusion in a continuous path
space to new arrivals of the point process. This
leads to a continuous sample path that is used to
describe the underlying mechanism generating the
arrival distribution. These models arise in many dis-
ciplines, such as financial settings where actions
in a market are determined by a hidden continuous
price or in neuroscience where a latent stimulus
generates spike trains. Based on the developments
in Itd’s excursion theory, we propose methods for
inferring and sampling from the point process de-
rived from the latent diffusion process. We illus-
trate the approach with numerical examples using
both simulated and real data. The proposed meth-
ods and framework provide a basis for interpreting
point processes through the lens of diffusions.

1 INTRODUCTION

Point processes are a powerful modeling tool for describing
patterns of arrivals, with applications ranging from envi-
ronmental and biological sciences to financial markets and
social behavior [Bjork et al.,|1997| Rizoiu et al., 2017} |Sub+t
ramanian et al.|[2020} Stoyan and Penttinen, 2000]. Often, a
point process is represented through an intensity function,
which is a function that describes the expected number of
arrivals. This function is the primary mechanism for inter-
preting the properties of the process, with standard models
such as the Poisson process and the Hawkes process as pri-
mary examples. However, considering only the intensity
function may not provide a complete understanding of the
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Figure 1: Decomposition of a sample path into distributions
of Brownian excursions. Dashed line represents the true
signal and solid lines represent possible excursions between
observations of arrival times indicated by circle markers.

underlying cause of arrivals of points

In many cases, a point process may be related to a contin-
uous process. The choice of the continuous process is also
motivated by applications. To list a few examples, neuron
spike trains may be related to the first passage time of an un-
derlying chemical concentration surpassing a threshold [[Sac{
erdote and Zucca, |2003]]. Similarly, intracellular events are
considered to be a function of a protein concentration ex-
ceeding a threshold and bursty transcription relates to the
continuous movement of underlying molecules [|[Ghusinga
et al.. 2017, Lammers et al., 2020]. In an economic setting,
one can think of information flow in a market, and the en-
suing point process generated by orders of agents on an
exchange as a function of the information flow [Babus and
Kondor, [2018]]. All of these models consider a multi-scale
approach such that the point process is generated as a func-
tion of the unobservable continuous process. Developing
inference methods for recovering a possible continuous pro-
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cess could provide additional insights into the point process
being studied. This leads us to the motivation of this work,
where we focus on continuous stochastic processes defined
by Itd diffusions and relate these paths to the arrival times
of the point process. Specifically, we consider a decomposi-
tion into paths known as excursions — paths that begin and
end at a reference state and are constrained to stay above
or below the reference state for their entirety. The length
of an excursion correspond to an interarrival time of the
point process. This decomposition is illustrated in Figure [I]
where the sample path is decomposed into excursions from
the reference state of 0, marked by arrivals of the point
process. The original idea for constructing such a process
was introduced by [[t6|[[1972], where the decomposition of
sample paths into excursions was used as an alternative tool
to stochastic calculus for studying diffusions. It6 addition-
ally raised the question of what continuous process could
represent observations of arrival times, which is what we
contribute towards in this work [[Watanabel [2010]].

Motivating Example Consider events in a market where
individuals are buying and selling a group of assets by plac-
ing bids and asks. We can model this as a marked point
process where the mark is given by the type of action (bids
or asks) and the price at which the asset is requested. Then,
we can assume that the different arrivals are associated with
an unobserved, fair price that governs the asset — bids
are placed when the asset is below its fair price and asks
are placed when the asset is above the fair price. These
excursions above and below the fair price give rise to the
point process structure, and that is what we aim to model
through this framework. The multi-dimensional case then
corresponds to the point process of multiple, correlated as-
sets in a market. The parameters recovered then correspond
to the diffusion that models the unobserved fair price.

1.1 RELATED WORK

A number of research directions are related to understanding
point processes through continuous processes, and, in the
particular case of Brownian motion, the most relevant is the
study of first hitting times (FHT). The FHT problem was
originally posed by Albert Shiryaev regarding whether there
exists a boundary such that the stopping time of a Brownian
motion at such a boundary is distributed according to an
exponential distribution [[Potiron, 2021]]. |/Anuloval [[1981]]
answered the question affirmatively for a series of barriers
but did not make any consideration of the regularity of the
barriers. Theoretical investigation of this problem has led
to numerous computational approaches for computing the
FHT density for arbitrary boundaries (e.g. [Jaimungal et al.,
2014, [Zucca and Sacerdotel 2009]]). A feasible computa-
tional solution for estimating the drift of a process with a
desired FHT density was provided by |Ichiba and Kardaras
[2011]] who described a representation for the distribution in
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terms of an expectation but did not consider the problem of
estimation. While these works consider methods of finding
the appropriate boundary, they deviate from our goal of re-
covering a continuous latent process due to the fact that the
state of the process must be reset after the arrival of each
point. Since excursions begin and end at the same location,
studying the excursion distribution allows one to reconstruct
the full continuous path. We discuss the similarities between
the proposed method and the FHT problem in greater detail
in Section[5.3]

The second relevant line of work is based on Itd’s descrip-
tion of Brownian paths through excursions [[td} [2020]]. Us-
ing this framework, Itd described point processes over the
space of excursions as a technique for analyzing properties
of diffusions. Watanabe|[[1987]] considered a mathematical
construction of semimartingales through their excursions.
Recent approaches considered further analyses and appli-
cations in finance [Ananova et al., 2020]. Closely related
is the Azéma martingale which provides an estimate of
the value of a Brownian motion when only observing the
sign of its excursion [(Cetinl 2012]. This has found applica-
tions in pricing Parisian options and estimating firm default
risk [Cetin} 2012]. See Watanabe|[2010] for a more compre-
hensive history on excursions and the development of 1t6’s
excursion theory. However, the related question regarding
estimating a diffusion from its excursion lengths has not yet
been answered through a computationally feasible frame-
work, which is the main purpose of this work. A closely
related line of work concerns filtering problems where the
observation is a point process with an intensity function
given by a diffusion. A Cox process can be understood
as a Poisson process with a stochastic intensity function.
Jaiswal et al. [2020] described a method for computing
the posterior distribution of a Cox process with intensity
given by diffusion through solving a stochastic PDE. These
methods can also be seen as filtering problems where the
observation model is a point process with a latent continu-
ous process. Unfortunately, the approach generally requires
solving computationally intractable equations for comput-
ing the posterior. To mitigate this issue|Lloyd et al.[[2015]]
describes modulating the intensity function with a Gaussian
process and describes a variational inference approach for
optimizing the parameters.

Other applications of these ideas have also been considered,
particularly in the case of the FHT. In survival modeling,
the first hitting time of a diffusion at some region of the
domain is used to determine the end of the life of a particu-
lar process. [Roberts and Sangalli|[2010] proposes a method
for recovering diffusions based on survival data with the
assumption of underlying diffusion. The approach is based
on a Markov-Chain Monte Carlo method for estimating the
posterior density given the survival times and the hazard
function is estimated with respect to the diffusion. The con-
tinuous process can represent the state of, for example, an



engine throughout its lifetime, and can be useful for gaining
an interpretation of the stresses faced by the engine. Maystre
and Russo| [2022] considered modeling the survival distri-
bution in terms of the first hitting time of a discrete time
Markov process and related this procedure to a temporal
difference learning problem in reinforcement learning.

1.2 CONTRIBUTIONS

We propose a modeling framework based on t6’s excursion
theory that represents a point process over the line as a
decomposition of a diffusion in terms of excursions where
the excursion length corresponds to the interarrival time.
Our contributions are then the following:

1. We extend the point process modeling framework
based on the diffusion process, where the time stamps
are determined by excursions;

2. We provide an inference algorithm for the model;

3. We demonstrate the versatility of the framework by pre-
senting applications to many classes of distributions;

4. We illustrate the framework’s utility and interpretabil-
ity on a variety of synthetic and real data experiments.

2 BACKGROUND

To provide the initial exposition, we will assume our class of
continuous processes are solutions of the one-dimensional
stochastic differential equations (SDEs) driven by Wiener
processes. We suppose that the latent process Z; is the solu-
tion to the SDE given by

where W, is a standard Brownian motion. The object of
interest in this work is to model the drift function .

2.1 DEFINITIONS

Here we provide the definitions that link the point process
to the diffusion in (I). Our overall goal in estimation is to
find a p such that the corresponding excursion length distri-
bution is the same as the interarrival time distribution of the
point process. Therefore, we will study the properties of ex-
cursions to describe the method. We follow the terminology
of |Pitman and Yor [2007]] to introduce the definitions and
defer to that manuscript for a more comprehensive study on
the implications of Brownian excursions.

Consider a sample path Z; satisfying (I)). An excursion set
can be thought of as the subsets of Z; that exceed a particular
function f(t). The length of the excursion is then related to
the times that Z; first hits and surpasses f(¢) and the time
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that Z; returns to f(t). Define the set of hitting times by

H, = { s < t} 2)

and then consider the local time at f(t) as

t1
— 1y e <cds.
/026 |Zo—f(5)|<e @S

The local time is an increasing function that, heuristically,
describes the amount of time the process Zs, s < t has spent
at f(s), s < t up to time ¢. We next define the inverse local
time as Ty = inf{t > 0 : L; > £},¢ > 0 which describes
the time at which Z, has spent ¢ time at f(¢). An excursion
straddling (7,-, 7¢) is then defined as

sup {r | Z, = f(r)}

rel0,s]

Lt = lim
e—0

el = {Zs:s € (r-,70)} 3)

where 7,- is the left-sided limit of the inverse local time.
We note that the space of all excursions is not relevant for
our purposes of modeling due to the topological properties
of @). To give an example, taking Z; as standard Brow-
nian motion starting at zero and f(¢) = 0 results in H;
being a perfect set with properties that are not practical for
a modeling task. From an applied perspective, very small
excursions would not be observed due to limitations on the
resolution of measuring devices used to collect data. In-
stead, one usually considers a subset of excursion paths that
have some relevance, such as excursions of minimum length
or minimum heightﬂ In/Ananova et al.| [2020], excursions
reaching a minimum height of 4, described as J-excursions,
were considered. Under this construction, e’ allows us to
decompose continuous sample paths given by Z; into dif-
ferent excursions with excursion lengths indexed by /. This
generates a Poisson process where excursion lengths define
the interarrival times of the point process.

To illustrate these concepts, we again refer to Figure ([T where
the original sample path representing Z; (blue) is decom-
posed into excursions above and below the line f(t) = 0.
The arrival times (yellow circles) describe the end of an
excursion, the last point in H;. Finally, multiple samples
of excursions (grey) with length 7, — 7,— are illustrated to
describe the relationship to the true excursion of Z;. For the
remainder of the text, we will suppose that f(¢) = 0 for all
t and consider the set of times H; when Z; returns to 0.

2.2 ASSUMPTIONS

We state a few more properties to ensure we can compute
valid excursion densities. These are conditions on the drift
so that the interarrival time of the excursion is finite, which
in turn guarantees that the measure is a valid density.

!This is the interpretation of the excursion measure given by
D. Williams, see |Yen and Yor| [2013| Chapter 6] for a detailed
description.



1. The diffusion must be recurrent; i.e. P(7 = o0) =
0. This is guaranteed if lim,, ., S(a,t) = oo and
lim,—, o S(a,t) = —oo where

da:) db

a
S(a,t) = / exp /
0 0
for all ¢,
The measure counting the number of excursions must
be finite; that is, we do not consider excursions that
have negligible length.

’ _QM(Iv t)
o(x,t)

. Novikov’s condition E[e2 Jo 12:I°d] < oo for Gir-
sanov’s theorem to hold.

Existence of a ¢-continuous strong solution to (I, that
is u, o are Lipshitz [@ksendal, 2003, Theorem 5.2.1].

A final assumption that we consider is that o(¢) = 1. This is
not necessary, but as noted later in the text, by introducing an
additional parameter § regarding the minimum height of the
excursion, there exists an estimation ambiguity between the
o and § parameters. To circumvent the estimation ambiguity,
we consider recovering the transformed process given by the
Lamperti transform which results in the diffusion with unit
volatility. Additional details are presented in the Appendix.
We also note that the drift x can depend on history or on
an additional process, but we leave the drift in its standard
form for ease of exposition.

3 METHOD

We now describe the inference method for finding ¢ given
a set of interarrival times. We define the interarrival times
as the set Ty = {71,...,7n} and relate them to the set
Hby 7, = Hiiﬂ) - Hgi), H,Ei) being the i™ arrival time
in ascending order up to time ¢. For example, T; would
contain elements that are exponentially distributed in the
case of a Poisson process. As mentioned in the previous
section, we remove small excursions by only considering
excursions with a minimum height by redefining H; s =
{r € Hy | maxee(r,_,,r) Zs — f(s) > 0} in (@) for
some > 0. We consider a minimum height so that the
density remains absolutely continuous with respect to the
Lebesgue measure on the positive real line. To outline the
method, we first state the excursion length distribution of
standard Brownian motion with minimum height 6. We
then perform a change of measure to find the excursion
length distribution of a diffusion with drift given by . We
represent the drift i by a neural network and optimize for
its parameters via stochastic gradient descent and maximum
likelihood estimation on observations of excursion lengths
given by interarrival times. In the remaining of the text, we
will denote a general excursion as e and the excursion at
time ¢ as e;.
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3.1 EXCURSION LENGTH DENSITY OF
BROWNIAN MOTION

Excursion times from 0 to § and back to 0 have the distribu-
tion given by the inverse Laplace transform of E[e =] =
e=2V2A8 Taking the inverse Laplace transform, we obtain
a zero shifted Lévy distribution with scale parameter as 462
and PDF of

De(T39) = (5\/%exp (
T

Additional details regarding this derivation are provided in
the Appendix. Note that if ¢ is included in the density of
then § and o are unidentifiable, motivating the previously
stated assumption on ¢ = 1. In some cases, it may be
easier to optimize one than the other, e.g. when simulating
excursions with variance o is easier than excursions of a
minimum height J, but we will focus on a minimum height
4. With the Brownian excursion length density in mind, we
now consider a change of measure for the drifted case.
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3.2 CHANGE OF MEASURE FOR EXCURSION
LENGTH DENSITY OF DIFFUSION

We consider an approach inspired by Ichiba and Kardaras
[2011} Section A.1] where the authors use a change of mea-
sure technique to compute the density of the FHT of a
diffusion. Let e; be the value of a Brownian excursion of
length 7 at time ¢. The excursion length density of a diffu-
sion follows an expectation of a Radon-Nikodym derivative
between the base measure on the space of d-excursions Q%
and the diffusion measure P*.

Proposition 1 (Diffusion Excursion Density). Let Z; satisfy
an SDE with drift . such that Z, is recurrent at zero. Then
the density of the excursion lengths T of Z; is given by:

pz(T) = pe(T3;0) %

T 1 T
exp (/ wules, t;0)dey — f/ uz(et,t;O)dt) )
0 2 Jo

&)

Intuition of Proof. The proof follows a change of measure
argument. The full proof is in the Appendix. U

During optimization, p. does not need to be computed since
it is a constant with respect to the input data Z;. However, if
we consider § as a parameter for the optimization, we may
include it in the computation of the likelihood. As noted,
we may also consider non-unit o, but this comes at the
expense of identifiability of §. This results in a modification
of the expectation over sample paths which should have the
corresponding o. Finally, we require that the drift must be
recurrent for the density to integrate to 1. Numerically, we



enforce this condition by adding a regularizer that constrains
the density to approximately integrate to 1.

Evidence Lower Bound Following Jensen’s inequality,
for maximizing (3] for given data, we can also optimize

log p.(756) > log pe(7;8)+

T 1 T
]EQ% {/0 ules, t;0)de; — 5/0 12 (et G)dt]

(©)

and therefore we need only to maximize (6) rather than (5).
This may be beneficial in scenarios where numerical errors
may make the calculation of the exponential unstable. We
detail an algorithm for estimating the drift ;¢ from data in
Algorithm

Algorithm 1 Inference for latent diffusion from arrival times
1: T

Input:

[r040,...

Initialize Parameters: Parameters of drift p(z, t), step
size At, total time 7', initial state X, minimum height
¢ and variance o, number of points in expectation K.
Sample K Brownian excursions using Vervaat trans-
form [Vervaat, |1979] of a Brownian bridge and the
Euler-Maruyama method E = {e; } ;.

Filter E by discarding e; where maxe; < 4.
Numerically compute (6) for the data T with excursions
E computed above.

Maximize (6) using gradient decent with respect to the
parameters of p and 6.

: Repeat for N iterations

Sequences of interarrival times:
N

3.3 MULTIDIMENSIONAL PROCESSES

The approach extends to multidimensional diffusions that
have interacting components, where we consider excursions
away from each axis. The idea is illustrated in Figure [2]
where a diffusion in the 2-D plane generates excursions from
either axis, each axis corresponding to a different mark. This
leads to a dependence between the two classes through the
drift function. Our approach for calculating the correspond-
ing p from the data is analagous to the 1-dimensional case
where we compute expectations over Brownian excursions
with the same lengths as the interarrival time observations
and repeat over each dimension. In this case, Z; is a d-
dimensional diffusion. From there, the likelihood of the data
is maximized using a single multi-dimensional drift function
that governs the relationships between the different marked
processes. To estimate the drift from observations of the
interarrival times of different coordinates, we compute the
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Class B > b B
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Figure 2: Schematic of the multidimensional framework.
Left: the 2-dimensional latent diffusion crosses the axes
producing points in the point process. Right: arrival times
of the point process generated by the diffusion process on
the left. Up triangles represent excursions from the y-axis
and left triangles represent excursions from the z-axis.
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Figure 3: Example of estimated log-normal renewal pro-
cess with samples generated from learned diffusion. Left:
histogram of samples compared with the true density and
estimated density. Right: learned sample paths with excur-
sion lengths corresponding to the histogram. The dashed
line corresponds to 4.

change of measure as in (§) jointly over all components:

Hp
/(vk lf““))/\T

@) 7): 5)

pz(T(l) e

exp (

1 (Vi 7 @) AT
—5/0 u*u(et,tﬂ)dt) D

Eq, (e, t; 0)de;

0

where e; is a multidimensional excursion process with the
excursion length of the 7™ component being 7(*). Specifi-
cally, e; has zeros only at the time points where the corre-
sponding component has a realization.

4 SIMULATING POINT PROCESSES

Simulating realizations of the proposed point process fol-
lows from existing simulation techniques for diffusions
stopped at a boundary. For example, when solving certain



linear elliptic PDEs, the solution is based on computing
the first hitting time of diffusion on the boundary of the
domain [Gobet and Menozzi, 2010]. We propose a method
based on the Euler-Maruyama method where excursions are
simulated by computing full sample paths and finding the
times when an excursion occurs. Importantly, this allows for
both sampling the full sample path based on the fitted drift
and obtaining samples of interarrival times. We summarize
the heuristic for the sampling procedure in Algorithm [2]
Figure 3] shows an example of estimating a log-normal dis-
tribution. The figure on the left shows the histogram of
samples in blue, the model probabilities computed using (5)
in orange, and the true density for a log-normal distribu-
tion in green. On the right, samples of different trajectories
whose excursions to the blue dotted line result in interarrival
times distributed according to the left.

Algorithm 2 Sampling arrival times

1: Input: Parameters of drift u(x,t), step size At, total
time 7', initial state X, minimum height § and variance
o

2: Sample using Euler-Maruyama a sample path from X
to X using step size At and variance o At:

Xip1 ~ N(Xt + p(Xe, t)At, 0 At)

3: Compute the set o = {X; =0:s € [0,7]}

4: Filter 79 — 75 where 75 = 7 \ {t; € 7o
maxti<5<ti+1 Xs < 5}

5: Return. Set of arrival times 7.

The simulation algorithm for a more complicated process
follows a similar procedure, for example, the drift term
w(x, t) can be replaced by the history-dependent function
w(t, Hy), which we discuss further in the Appendix.

S5 PRACTICAL CONSIDERATIONS

Here we discuss some practical considerations regarding
the model. We first describe how partitioning the space
of excursions can lead to a marked point process without
resorting to a d-dimensional latent process. We then describe
a result regarding the family of interarrival distributions the
method can represent, We finally describe the relationship
between the FHT problem and the excursions approach.

5.1 MULTI-DIMENSIONAL POINT PROCESS
FROM A SINGLE ONE-DIMENSIONAL
DIFFUSION

A unique property of the proposed method is the ability to
represent a multi-dimensional point process with a single
one-dimensional latent diffusion process. The main idea

comes from partitioning the measure on the space of ex-
cursions to correspond to different classes. In the simplest
case, the arrival can come from an excursion above or be-
low the reference level. The structure that should be main-
tained is a natural ordering between the marks of the point
process for discrete marks. For example, in the case of a
two-dimensional process, one set of marks should always be
greater than the other. This can then correspond to the run-
ning maximum and running minimum times. Note that this
differs from the d-dimensional process that was described
in Section 3.3] which assumes a d-dimensional noise source.
We describe potential applications in a financial setting in
the Appendix where bids and asks in an opaque market are
generated by the running maximum or running minimum
process.

5.2 EXPRESSIVENESS

A relevant question asks how expressive the class of interar-
rival times generated by excursions is. We characterize this
in the following remark:

Remark 1. Consider an excursion length distribution for a
fixed 0 as py s with support on R and a distribution that
we wish to approximate using the excursion length of an
Ito diffusion as p,. Define the function space such that the
excursion distribution is a density as a subset of Lipschitz
functions Exc C Lip(Ry, D). For a fixed integration time
T, the excursions of the diffusion with drift |1 can represent
Dy Iif the 1-Wasserstein distance between the two is less than

T2 T e
sup —Ex,~0 / ndX; — 7/ u2dt|.
peExc(R4,D) 2 0 2 0

Intuition of Proof. This follows bounding the Wasserstein
distance using Pinsker’s inequality. The full proof is in the
Appendix. O

The remark allows for a simple condition on whether a
distribution can be approximated by the proposed method
for fixed integration time and excursion height. The 1-
Wasserstein distance is easy to calculate since it is the dif-
ference between the CDFs, making the remark useful in
practice since one can certify whether a distribution can
be represented using the change of measure. More gener-
ally, [Pitman and Yor| [2007, Section 6] discusses the appli-
cability of functions of Brownian excursions representing
the full class of stable Lévy processes at the cost of relaxing
many of the assumptions on the drift of the process.

5.3 COMPARING EXCURSIONS AND FIRST
HITTING TIMES

We now describe in greater detail the similarities and dif-
ferences between studying excursions and FHTs related
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Figure 4: Schematic comparing excursions (top) with first
hitting times (bottom). The excursions result in a continu-
ous path whereas the first hitting time approach results in
discontinuous paths that need to be reset after each arrival.

to the motivation of this work. Figure ] provides a quali-
tative description of the difference between the excursion
representation we consider here and the first hitting time
approach.

Interpretations of Excursions and Hitting Times Ex-
cursions and hitting times share many similarities, since
an excursion may be seen as the FHT to § and back to 0
again. This relationship is specified in detail in the propo-
sition found in the Appendix where the Laplace transform
of the first hitting time distribution is given. In that sense,
the primary reason to consider one representation versus
the other is the interpretation of the underlying phenomena
being observed. The first hitting time density requires the
assumption that the particle is returned to its original state
at t = 0 for every subsequent arrival. This makes the full
sample path discontinuous since the particle must hit a level
& # X and then instantly return to X. On the other hand,
considering an excursion from a level yields a continuous
sample path for a full sequence of observations. Existing lit-
erature has considered this relationship, as in/Ananova et al.
[2020l Proposition 3.4] where a sample path of diffusion
can be reconstructed from excursions.

Densities Described by Laplace Transforms The prob-
lem of FHT and excursions are closely related, since both
concern properties of diffusion as they approach different
regions of the state space. Both have been historically stud-
ied through their Laplace transforms. For a univariate au-
tonomous SDE, there exists a Sturm-Liouville problem as-
sociated with the Laplace transform of the excursion length
distribution [ Yen and Yor, 2013[. The FHT density has also
been studied through the same mathematical formulation.
However, working with the Laplace transform represen-
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tation is difficult as it is necessary to invert the Laplace
transform to obtain the density. Inverting the Laplace trans-
form is numerically unstable and also prone to numerical
errors. We present a detailed description of the approach in
the Appendix.

Connection to the Running-Maximum and the Draw-
down Processes Finally, one important property of excur-
sions is the relationship between the running maximum of
a Brownian motion and the zeros of a reflected Brownian
motion. Specifically, the identity

sup Wy — W, 2 |W|

s<t
where W, is Brownian motion. This allows the interpretation
where excursions are related to times the process reaches its
running maximum. This interpretation is not possible when
considering only FHT where the diffusion must be reset at
each arrival.

6 EXPERIMENTS

We now consider the modeling framework in a number of
synthetic and real data experiments. The first set of exper-
iments is based on observing the zero times of different
diffusions. These experiments examine how well the true
drift can be recovered using the proposed estimator. The
baseline for these experiments is a standard SDE regression
algorithm that does not consider Brownian excursions but
instead considers Brownian bridges. The second set of ex-
periments analyzes the proposed estimator in representing
the interarrival distributions of canonical renewal processes.
Finally, we provide a real example regarding a physical
process where the underlying behavior is posited to be re-
lated to a continuous process. In this case, we consider how
well the learned diffusion agrees with the latent factor that’s
known to cause the point process.

6.1 RECOVERY OF DRIFT FROM EXCURSION
LENGTHS

In order to validate the method in the context of a latent
diffusion, we consider a series of experiments on how well
the method can recover the drift of the latent diffusion. This
would correspond to a real scenario where the data are gen-
erated according to excursions of a diffusion. We observe
{(:,m;}}, where m € N is the mark corresponding to
the dimension where the excursion occurs. We compute this
for different choices of y and compute the mean squared
error (MSE) between the estimated /i and the true p. The
observation are generated by first simulating a diffusion and
finding the zero times of the sample paths. We provide full
details on the different models in the Appendix. The results
are illustrated in Figure [5] where we compare the estima-
tion based on maximizing the likelihood of diffusion with
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Figure 6: Comparison of QQ plots for Poisson process, Weibull, Gamma, and log-normal renewal processes. All are fit
using MLE with 200 samples from the specified renewal process.

unknown drift based on a path integral estimator. The differ-
ence between the estimators is that the proposed one uses
the expectation over excursions whereas the other considers
Brownian bridges. The Brownian bridges do not use the
complete information of the problem, and therefore result in
higher errors as well as higher variances than the Brownian
excursions.

History and Exogenous Signal Dependent Processes
We consider an extension of the previous experiment in
the 1-dimensional case where we recover the coefficient of
the drift when it is dependent on either the history of hitting
times or on an observed exogenous signal. Specifically, we
define a drift of the following form

w(Xe, St) = —Xi +wp(t — S)

where w is the coefficient of interest and ¢ (-) is a known
kernel that influences the drift based on the observed history
or exogenous process. We choose ¢ to be the exponential
kernel defined as ¢ = exp (— (t — S¢) /n) with n a fixed
parameter. In the case of history dependence, S; is given
as H; while the exogenous process is given by a randomly
generated signal generated using uniform increments, full
details are given in the Appendix. We compare the squared
error of the estimated value of w to the true value of w as
recovered by the same Brownian bridge estimator and by
the proposed excursion estimator in Table|T]
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w=0.5 w=1 w =2

Hisory BB 0:247(0.003)  0.999(0.012)  3.996(0.021)
YUEx  0.0990.091)  0.067(0.068)  0.903(0.376)
oyt BB 0:248(0.003) 0.997(0.018)  3.786(0.580)
P Ex  0.148(0.090) 0.069(0.113) 1.301(2.012)

Table 1: Squared error (1 —w)? of the history coefficient for
the Brownian bridge estimator (BB) versus the Brownian
excursion estimator (Ex).

The results again suggest that the proposed estimator
achieves better performance than the relevant baseline of
regressing a SDE to the data.

6.2 ESTIMATING AND SAMPLING POINT
PROCESSES

Next, we are interested in determining how well the pro-
posed method can represent some canonical point processes.
In this case, we consider the homogeneous Poisson pro-
cess, a Gamma renewal process, a Weibull renewal process,
and a log-normal renewal process with 40 samples with 5
realizations in each sample for a total of 200 points. Full
parameters of the distributions are given in the Appendix.
This experiment tests both inference (Algorithm [I)) and the
sampling (Algorithm[2). We plot a QQ plot of the samples
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Figure 8: Average of learned sample on ¢ € [1.5, 2] paths
compared with the true stimulus. Spikes of the transformed
learned stimulus generally align with the true stimulus.

generated by the excursion lengths versus the theoretical
quantiles in Figure[6] The figures suggest that the estimation
and sampling methods are able to capture the distributions
of the point process.

6.3 REAL DATA

Finally, we consider a neuroscience dataset where the firing
of mouse neurons is recorded as a function of an external
stimulus as described in|Tripathy et al. [2013]]. Full details
of the dataset are in the Appendix. Our main goal for this
experiment is to determine how well the model can fit this
data and more importantly determine whether we can use the
estimated latent path Z; as a signal that relates the original
stimulus to the observed neuron spike times. We illustrate
these findings in Figures [7] and [§] where we compare the
histograms of the averaged point processes generated by
the true data samples and the estimated excursion process
(Figure [7) and compare the learned stimulus to the true
stimulus (Figure[8). The learned stimulus was obtained by
transforming the sampled path Z; to Z; = alog(E[Z,]) + b
where a, b are computed according to least squares with
respect to the true stimulus. We use the log transformation
since the peaks of the stimulus correspond to new arrivals
whereas the zeros of the learned process correspond to new
arrivals — applying the log then transforms the zeros to
peaks. In both cases, the alignment of the spikes between
the learned and the true signal is well maintained.

7 DISCUSSION

We proposed a framework that allows for interpreting the

arrivals of a point process in terms of a latent diffusion.
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We described extensions to cases where the point process
is multi-dimensional and depends on history or an exoge-
nous signal. The numerical results suggest that the estimator
and the framework is useful for modeling a variety of point
processes and outperforms standard SDE regression tech-
niques. Additionally, the results on neural data demonstrate
the applicability of the proposed framework in scenarios
where recovery of the unobserved continuous latent pro-
cess is beneficial for analyzing a particular temporal point
process.

Limitations The framework has a number of limitations
as well. While we empirically validated the ability to recover
the correct drift, we have no identifiability proof that guar-
antees the true drift will be recovered. In cases where the 1,
6§, and ¢ are all parameters, for example, identifiability does
not hold, and restricting to a smaller class of parameters is
necessary. Proving consistency of the estimator could be
considered for follow-up work. On a practical front, there
are many situations where having an interpretation in terms
of a continuous process is not appropriate. In these cases,
more traditional point process models, such as those that
rely on intensities, should be considered for the modeling
task.
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