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A PROOF OF THE CONSISTENCY OF AETD AND LC-ETD

Since AETD(0) is a special case of LC-ETD(λ, β, ν) with λ = 0, β = 0, and ν = 1, the proof for Theorem 3.1 is also a
special case of the proof for Theorem 3.2, which will be presented below.

We first revisit the update of LC-ETD(λ, β, ν):

θt+1 = θt + αδtzt,

δt = Rt+1 + γφ>t+1θt − φ>t θt,

zt = ρt(γλzt−1 +Mtφt),with z−1 = 0,

Mt = (1− λh(t))Ft + λg(t),

Ft = (1− g(t)) ρt−1Ft−1 + g(t),with F0 = 1,

(A.1)

where h(t) and g(t) are defined as follows:

h(t)
.
=

(
1− β
t+ 1

)ν
and g(t)

.
=

1− β
(t+ 1)ν

with β ∈ [0, 1) and ν ∈ (0, 1], or β = 1 and ν ∈ [0, 1]. Then we present the relationship between Ft, Mt, and the density
ratio with Lemma A.1 and Lemma A.2.

Lemma A.1. Under Assumption 2.1 and 2.2, for any β ∈ [0, 1) and ν ∈ (0, 1], or β = 1 and ν ∈ [0, 1], if
limt→∞ Eµ[Ft|St = s] exists for all s ∈ S, where Ft is defined in Update (A.1), then

lim
t→∞

Eµ[Ft|St = s] =
dπ(s)

dµ(s)

holds for any s ∈ S.

Proof. Let f = [f(s1), · · · , f(s|S|)]
> ∈ R|S|, and f(s) ∈ R is defined as follows:

f(s)
.
= dµ(s) lim

t→∞
Eµ[Ft|St = s], for any s ∈ S, (A.2)
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which exists under our assumptions. Then we have

f(s) = dµ(s) lim
t→∞

Eµ[Ft|St = s]

= dµ(s) lim
t→∞

Eµ [(1− g(t))ρt−1Ft−1 + g(t)|St = s]

= dµ(s)
(

lim
t→∞

(1− g(t))Eµ[ρt−1Ft−1|St = s] + lim
t→∞

g(t)
)

(A.3)

= dµ(s) lim
t→∞

(1− g(t)) lim
t→∞

Eµ[ρt−1Ft−1|St = s] (A.4)

= dµ(s) lim
t→∞

Eµ[ρt−1Ft−1|St = s]

= dµ(s) lim
t→∞

∑
s̄,ā

Pµ(St−1 = s̄, At−1 = ā|St = s)
π(ā|s̄)
µ(ā|s̄)

Eµ[Ft−1|St−1 = s̄]

= dµ(s) lim
t→∞

∑
s̄,ā

Pµ(St−1 = s̄, At−1 = ā, St = s)

Pµ(St = s)

π(ā|s̄)
µ(ā|s̄)

Eµ[Ft−1|St−1 = s̄]

= dµ(s)
∑
s̄,ā

dµ(s̄)µ(ā|s̄)p(s|s̄, ā)

dµ(s)

π(ā|s̄)
µ(ā|s̄)

lim
t→∞

Eµ[Ft−1|St−1 = s̄]

=
∑
s̄,ā

π(ā|s̄)p(s|s̄, ā)dµ(s̄) lim
t→∞

Eµ[Ft−1|St−1 = s̄]

=
∑
s̄

[Pπ]s̄sf(s̄),

where in Eqs. (A.3) and (A.4), we use the assumption that limt→∞ Eµ[Ft|St = s] exists for any s ∈ S and the facts that
limt→∞(1 − g(t)) = 1 and limt→∞ g(t) = 0 for any β ∈ [0, 1) and ν ∈ (0, 1], or β = 1 and ν ∈ [0, 1]. From the last
equation, we have f> = f>Pπ in vector form. Since the expectations of importance-sampling ratios are one and F0 = 1, by
induction, the expectation of Ft will remain one for any t ∈ N. Then we have:

1>f =
∑
s

f(s) =
∑
s∈S

dµ(s) lim
t→∞

Eµ[Ft|St = s]

= lim
t→∞

Eµ[Ft|St] = 1.

By Assumption 2.1, the existence of the target policy’s stationary distribution is unique. From f> = f>Pπ and 1>f = 1,
we can infer that f = dπ , that is,

dµ(s) lim
t→∞

Eµ[Ft|St = s] = dπ(s). (A.5)

Since it holds that dµ(s) > 0 for any s ∈ S by Assumption 2.1, we can divide both sides of Eq. (A.5) by dµ(s) and conclude
the proof.

Lemma A.2. Under the assumptions of Lemma A.1, for any β ∈ [0, 1) and ν ∈ (0, 1], or β = 1 and ν ∈ [0, 1], it holds for
any s ∈ S that

lim
t→∞

Eµ[Mt|St = s] =
dπ(s)

dµ(s)
,

where Mt is defined in Update (A.1).

Proof. We can expand Mt and use the result from Lemma A.1:

lim
t→∞

Eµ[Mt|St = s] = lim
t→∞

Eµ[(1− λh(t))Ft + λg(t)|St = s]

= lim
t→∞

(1− λh(t))Eµ[Ft|St = s] + lim
t→∞

λg(t)

= lim
t→∞

(1− λh(t)) lim
t→∞

Eµ[Ft|St = s] (A.6)

= lim
t→∞

Eµ[Ft|St = s] (A.7)

=
dπ(s)

dµ(s)
, (Lemma A.1)



where, in Eqs. (A.6) and (A.7), we make use of limt→∞ g(t) = limt→∞(1 − β)(t + 1)−ν = 0 and limt→∞ h(t) =
limt→∞(1− β)ν(t+ 1)−ν = 0 for any β ∈ [0, 1) and ν ∈ (0, 1], or β = 1 and ν ∈ [0, 1].

From Lemma A.1 and Lemma A.2, we can see that the expectations of both Ft and Mt converge to the density ratio dπ(s)
dµ(s) .

By utilizing these results, we can prove the consistency of LC-ETD(λ, β, ν) (including AETD(λ)), which is presented in
Theorem A.3.

Theorem A.3 (Restatement of Theorem 3.2). Let Assumptions 2.1-2.3 hold. For any β ∈ [0, 1) and ν ∈ (0, 1], or β = 1
and ν ∈ [0, 1], if limt→∞ Eµ[Ft|St = s] and limt→∞ Eµ[zt|St = s] exist for all s ∈ S, then LC-ETD(λ, β, ν) has the
same expected update as On-policy TD(λ). As a result, LC-ETD(λ, β, ν) is stable and consistent.

Remark A.4. AETD(λ) is stable and consistent, as it is a special case of LC-ETD(λ, β, ν) with β = 0 and ν = 1.

Proof of Theorem A.3. The proof is similar in structure to the proof of Theorem 1 in the work of Sutton et al. (2016). We
start from the update of LC-ETD(λ, β, ν). Specifically, we can rewrite Update (A.1) as follows:

θt+1 = θt + αδtzt

= θt + α
(
Rt+1 + γφ>t+1θt − φ>t θt

)
zt

= θt + α

[ztRt+1

]
︸ ︷︷ ︸

bt

−
[
zt(φt − γφt+1)>

]
︸ ︷︷ ︸

At

θt

 .

(A.8)

Defining A
.
= limt→∞ Eµ[At] and b

.
= limt→∞ Eµ[bt], we analyze LC-ETD(λ, β, ν)’s expected update:

θ̄t+1 = θ̄t + α(b−Aθ̄t). (A.9)

We first analyze the A matrix. Similar to obtain ETD(λ)’s A matrix (Sutton et al., 2016), we have

A = lim
t→∞

Eµ[At] = lim
t→∞

Eµ
[
zt(φt − γφt+1)>|St = s

]
=
∑
s

dµ(s) lim
t→∞

Eµ
[
zt(φt − γφt+1)>|St = s

]
=
∑
s

dµ(s) lim
t→∞

Eµ
[
ρt(γλzt−1 +Mtφt)(φt − γφt+1)>|St = s

]
=
∑
s

dµ(s) lim
t→∞

Eµ [(γλzt−1 +Mtφt)|St = s]Eµ
[
ρt(φt − γφt+1)>|St = s

]
(because, γλzt−1 +Mtφt is independent of ρt(φt − γφt+1)> if St is given)

=
∑
s

dµ(s) lim
t→∞

Eµ [γλzt−1 +Mtφt|St = s]︸ ︷︷ ︸
z(s)∈Rd

Eµ
[
ρk(φk − γφk+1)>|Sk = s

]
=
∑
s

z(s)Eµ
[
ρk(φk − γφk+1)>|Sk = s

]
=
∑
s

z(s)Eπ
[
φk − γφk+1|Sk = s

]>
=
∑
s

z(s)

(
φ(s)− γ

∑
s′

[Pπ]ss′φ(s′)

)>
= Z>(I− γPπ)Φ,



where Z
.
= [z(s1), · · · , z(s|S|)]

> ∈ R|S|×d, and z(s) ∈ Rd is defined by

z(s)
.
= dµ(s) lim

t→∞
Eµ [γλzt−1 +Mtφt|St = s]

= dµ(s) lim
t→∞

Eµ [Mt|St = s]︸ ︷︷ ︸
m(s)

φ(s) + γλdµ(s) lim
t→∞

Eµ [zt−1|St = s]

= m(s)φ(s) + γλdµ(s)
∑
s̄,ā

lim
t→∞

Pµ(St−1 = s̄, At−1 = ā|St = s)Eµ [zt−1|St−1 = s̄, At−1 = ā]

= m(s)φ(s) + γλdµ(s)
∑
s̄,ā

dµ(s̄)µ(ā|s̄)p(s|s̄, ā)

dµ(s)
lim
t→∞

Eµ [zt−1|St−1 = s̄, At−1 = ā]

= m(s)φ(s) + γλ
∑
s̄,ā

dµ(s̄)µ(ā|s̄)p(s|s̄, ā)
π(ā|s̄)
µ(ā|s̄)

lim
t→∞

Eµ
[
γλzt−2 +Mt−1φt−1|St−1 = s̄

]
= m(s)φ(s) + γλ

∑
s̄

(∑
ā

π(ā|s̄)p(s|s̄, ā)

)
z(s̄)

= m(s)φ(s) + γλ
∑
s̄

[Pπ]s̄sz(s̄).

In matrix form, we have

Z> = Φ>Dm + Z>(γλPπ)

= Φ>Dm + Φ>Dm(γλPπ) + Z>(γλPπ)2

= Φ>Dm + Φ>Dm(γλPπ) + Φ>Dm(γλPπ)2 + · · ·
= Φ>Dm(I− γλPπ)−1,

where Dm
.
= diag(m) ∈ R|S|×|S|, m = [m(s1), · · · ,m(s|S|)]

> ∈ R|S|, and m(s) ∈ R is defined as follows:

m(s)
.
= dµ(s) lim

t→∞
Eµ[Mt|St = s], for any s ∈ S,

which exists due to Lemma A.2. Further, from Lemma A.2, we have that

m(s) = dµ(s) lim
t→∞

Eµ[Mt|St = s]

= dµ(s)
dπ(s)

dµ(s)

= dπ(s). (A.10)

In vector form, we have m = dπ .

Plugging m = dπ and Z> = Φ>Dm(I− γλPπ)−1 back to the A matrix, we have

A = Φ>Dπ(I− λγPπ)−1(I− γPπ)Φ,

which is exactly the A matrix of On-policy TD(λ) and known to be stable (Tsitsiklis and Van Roy, 1996). Thus, LC-ETD(λ,
β, ν) and its expected update are also stable by our definition.

Similarly, we can infer that

b = lim
t→∞

Eµ[bt] = Φ>Dπ(I− λγPπ)−1rπ.

Note that this b vector is also the same as On-policy TD(λ). Thus, LC-ETD(λ, β, ν) has the same expected update as
On-policy TD(λ). As a result, LC-ETD(λ, β, ν) is consistent.



B UPDATE RULES

This section include the update rules for the algorithms mentioned in the paper.

Off-policy TD(λ):

θt+1 = θt + αδtzt,

δt = Rt+1 + γφ>t+1θt − φ>t θt,

zt = ρt(γλzt−1 + φt),with z−1 = 0.

Full-IS-TD(λ):

θt+1 = θt + αδtzt,

δt = Rt+1 + γφ>t+1θt − φ>t θt,

zt = ρt(γλzt−1 + Ftφt),with z−1 = 0,

Ft = ρt−1Ft−1,with F0 = 1.

ETD(λ):

θt+1 = θt + αδtzt,

δt = Rt+1 + γφ>t+1θt − φ>t θt,

zt = ρt(γλzt−1 +Mtφt),with z−1 = 0,

Mt = (1− λ)Ft + λ,

Ft = γρt−1Ft−1 + 1,with F0 = 1.

ETD(λ, β):

θt+1 = θt + αδtzt,

δt = Rt+1 + γφ>t+1θt − φ>t θt,

zt = ρt(γλzt−1 +Mtφt),with z−1 = 0,

Mt = (1− λ)Ft + λ,

Ft = βρt−1Ft−1 + 1,with F0 = 1.

Scaled ETD(λ):

θt+1 = θt + αδtzt,

δt = Rt+1 + γφ>t+1θt − φ>t θt,

zt = ρt(γλzt−1 +Mtφt),with z−1 = 0,

Mt = (1− λ)Ft + λ(1− γ),

Ft = γρt−1Ft−1 + (1− γ),with F0 = 1.

Scaled ETD(λ, β):

θt+1 = θt + αδtzt,

δt = Rt+1 + γφ>t+1θt − φ>t θt,

zt = ρt(γλzt−1 +Mtφt),with z−1 = 0,

Mt = (1− λ)Ft + λ(1− β),

Ft = βρt−1Ft−1 + (1− β),with F0 = 1.



AETD(λ):

θt+1 = θt + αδtzt,

δt = Rt+1 + γφ>t+1θt − φ>t θt,

zt = ρt(γλzt−1 +Mtφt),with z−1 = 0,

Mt = (1− λg(t))Ft + λg(t),

Ft = (1− g(t))ρt−1Ft−1 + g(t),with F0 = 1,

g(t) = (t+ 1)−1.

LC-ETD(λ, β, ν):

θt+1 = θt + αδtzt,

δt = Rt+1 + γφ>t+1θt − φ>t θt,

zt = ρt(γλzt−1 +Mtφt),with z−1 = 0,

Mt = (1− λh(t))Ft + λg(t),

Ft = (1− g(t))ρt−1Ft−1 + g(t),with F0 = 1,

h(t) = (1− β)ν(t+ 1)−ν ,

g(t) = (1− β)(t+ 1)−ν .

LC-ETD1(λ, β):

θt+1 = θt + αδtzt,

δt = Rt+1 + γφ>t+1θt − φ>t θt,

zt = ρt(γλzt−1 +Mtφt),with z−1 = 0,

Mt = (1− λh(t))Ft + λg(t),

Ft = (1− g(t))ρt−1Ft−1 + g(t),with F0 = 1,

h(t) = (1− β)β(t+ 1)−β ,

g(t) = (1− β)(t+ 1)−β .

LC-ETD2(λ, ν):

θt+1 = θt + αδtzt,

δt = Rt+1 + γφ>t+1θt − φ>t θt,

zt = ρt(γλzt−1 +Mtφt),with z−1 = 0,

Mt = (1− λg(t))Ft + λg(t),

Ft = (1− g(t))ρt−1Ft−1 + g(t),with F0 = 1,

g(t) = (t+ 1)−ν .

LC-ETD3(λ, β):

θt+1 = θt + αδtzt,

δt = Rt+1 + γφ>t+1θt − φ>t θt,

zt = ρt(γλzt−1 +Mtφt),with z−1 = 0,

Mt = (1− λg(t))Ft + λg(t),

Ft = (1− g(t))ρt−1Ft−1 + g(t),with F0 = 1,

g(t) = (1− β)(t+ 1)−1.



C ADDITIONAL RESULTS AND EXPERIMENTAL DETAILS FOR ONE-STEP
BOOTSTRAPPING

In this section, we provide additional results and experimental details to supplement the results for the one-step case in
the main text. Same as Section 4, we omit the λ argument from all algorithms for notational convenience. Our Python
implementations of the algorithms and environments are publicly available for future research.1

STABILITY OF LC-ETD(β, ν)

We use Baird’s (1995) counterexample to validate the stability of LC-ETD(β, ν). Baird’s counterexample is a seven-state,
two-action MDP with linear features (see Figure C.1), which can illustrate the instability of Off-policy TD(λ) and other
algorithms (Sutton and Barto, 2018; Jiang et al., 2022). In the one-step case, Off-policy TD(0) diverges in this example
for any positive step size as long as γ ∈ [(

√
5− 1)/2, 1]. Here, we choose γ = 0.97. Since the target policy’s stationary

distribution concentrates on the bottom state, the RMSVE error defined previously can only capture the errors of θ7 and
θ8. To also take into account the errors of other dimensions of the parameter vector, we adopt the following root mean
square value error as our metric: ‖v̂θ − vπ‖u, where u

.
= [1/|S|, · · · , 1/|S|]> ∈ R|S| is a uniform distribution. We run

each algorithm for 100,000 steps with the 19 step sizes mentioned in Section 4 and present the results in Figure C.2. The
results are averaged over 100 independent runs, and the shaded region near each learning curve represents the standard error.

From the leftmost plot of Figure C.2, we can see that while the only existing consistent algorithm, Full-IS-TD (the green
dashed line), does not learn at all as in the Two-state and Rooms tasks, LC-ETD1(β) with β ∈ [0.2, 0.8] finds solutions with
much lower errors. A similar observation can be found in LC-ETD2(ν). It is important to note that the importance-sampling
ratio can be zero in this counterexample. This can occur with a probability of 6/7 at any state when the agent chooses the
up action. Consequently, the full IS-ratio product will quickly become zero after some time steps, and the same goes for
most of the incomplete IS-ratio products. As a result, LC-ETD3(β) cannot learn because its followon trace quickly decays
to an extremely small value. For Off-policy TD (the red dotted line), it diverges gradually even with very small step sizes
(the smallest step size is 2−18). The same goes for ETD(β) with β ∈ [0.0, 0.4] (the rightmost plot), validating ETD(β)’s
instability with small β. In summary, the results in Baird’s counterexample highlight the stability of LC-ETD instances and
illustrate the instability of ETD(β) with small β. In addition, they also show the limitation of LC-ETD(β, ν) that it cannot
learn effectively with large ν when importance-sampling ratios are often zero.

EXPERIMENTAL DETAILS ON THE ROOMS TASK

Our continuing Rooms task is extended from the episodic Rooms task proposed by Ghiassian and Sutton (2021). It is
based on the Four Rooms environment (Sutton et al., 1999), which can be partitioned into four parts that are connected by
hallways (see Figure C.3). The Four Rooms environment has 104 states, including four hallway states. The four actions in
this environment will move the agent by 1 state towards the corresponding direction. If an action causes the agent to leave
the boundary, the agent will stay in the current state. The task consists of four sub-tasks. Each sub-task will assign a reward
of 1 to the agent if it arrives or stays at the corresponding hallway state. However, the agent cannot stay in a hallway state

2θ1

+
θ8

2θ2

+
θ8

2θ3

+
θ8

2θ4

+
θ8

2θ5

+
θ8

2θ6

+
θ8

θ7 + 2θ8

upper states

bottom state

Figure C.1: Baird’s counterexample. Each state has two actions. The up action will take the agent to one of the six upper
states with equal probability, while the down action will take the agent to the bottom state. The target policy will choose the
down action with probability 1 at any state (illustrated as the solid lines), while the probability for the behavior policy is 1/7.

1See https://github.com/hejm37/LC-ETD.

https://github.com/hejm37/LC-ETD
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Figure C.2: Results on Baird’s counterexample. The y-axis shows ‖v̂θ − vπ‖u (see text for details).

permanently as there is noise in the interactions. At each time step, there is a probability of 50% that the agent’s action will
be treated as one of the other three actions with equal probability. The agent needs to learn the value functions for the four
target policies while following a uniform random behavior policy. The four target policies will try to go to the four hallway
states. Specifically, each target policy will choose the optimal action to a corresponding hallway state with probability 1− ε
and a random action with probability ε. We set ε to 0.1 in our experiments. The discount factor γ is 0.9. Note that it is hard
to calculate the fixed points analytically in this task. Thus, we applied On-policy TD with tabular features on a trajectory
following the target policy for 2,000,000 steps for each target policy and used the final value function as the ground truth vπ .
Similarly, the on-policy distributions are calculated following each target policy for 2,000,000 steps.

SUPPLEMENTARY RESULTS ON THE ROOMS TASK

To provide a comprehensive performance profile of different one-step algorithms in the Rooms task, we present the mean
results averaged over all runs in Figure C.4. From Figure C.4(a), we can see that ETD, ETD(β), LC-ETD1(β), and LC-
ETD2(ν) are the top-tier algorithms in this case. Among them, ETD, LC-ETD1(β), and LC-ETD2(ν) perform less stable
due to the high variance of this task. Besides, LC-ETD3(β) suffers more from the variance issue and cannot learn efficiently,
but still, it learns much faster and finds much better solutions than Off-policy TD. For Full-IS-TD and Off-policy TD, their
performances are not much different than the IQM results presented in Figure 4(a): The former cannot learn despite being the
only existing consistent algorithm, while the latter converges to a solution with a significant bias. Finally, from Figure C.4(b),
we can see that LC-ETD1(β) and LC-ETD2(ν) are still less sensitive to the decaying parameter compared to ETD(β).

SUPPLEMENTARY RESULTS OF THE BIAS-VARIANCE TRADE-OFF ANALYSIS

In this section, we explain the design choices and provide extra results for the bias-variance trade-off analysis. We first
explain why we choose to study the bias and variance of trajectories of length only 30. For explanation purposes, assume
that we want to analyze the bias and variance of the 2-step full IS-ratio product F1 = ρ0ρ1 in the Two-state task, where the
target policy π will go to the left state from any state with a probability of 0.1, while the probability for the behavior policy
is 0.9. Since both the target and the behavior policies are state-independent, the IS ratio ρt at any time step t could take
a value of 1/9 with a probability of 0.9 while choosing to go to the left state or a value of 9 with a probability of 0.1. To

Eight Sub-tasks
(Moving to each room’s 2 hallways)

Four actions:

Sub-tasks

Four actions:
up

rightleft

down

Four sub-tasks

(to each hallway)

Figure C.3: The Rooms task. Modified from Sutton et al. (1999).
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Figure C.4: Results averaged over all runs on the Rooms task. The y-axis shows RMSVE.

obtain an accurate estimate of the mean of ρ0 with a high probability, we will need way more than 10 seeds. To obtain an
accurate estimate of the mean of F1, we will need way more than 100 seeds. Otherwise, we can only obtain an estimation
with a large bias. Thus, to obtain an accurate bias-variance analysis of different algorithms’ Ft, we run experiments on short
trajectories of length only 30 but with 100,000 seeds.

Next, we provide some additional experiment results to support the above discussion and reveal more insights. Figure C.5
plots the estimated bias and variance of LC-ETD1(β)’s Ft with different numbers of seeds. We can see that with 25 seeds,
we can estimate the bias and variance of F3 well but not of F5 and F10; With 5,500 seeds, the estimations of F5’s and F10’s
biases and variances are improved but still biased; Finally, with 12,000 seeds, we can estimate the bias and variance of F5

well, but that of F10 are still biased. Now, focusing on the results of F3 and F5 in Figure C.5(c), we can see that as the decay
parameter β increases, the bias would decrease, and the variance would increase. In addition, as the time step increases, the
bias decreases, and the variance increases for any fixed β, which implies the consistency of LC-ETD1(β).
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(b) 5,500 seeds
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(c) 12,000 seeds

Figure C.5: The bias and variance of LC-ETD1(β)’s Ft when β varies. Label step n represents results for Fn.



D RESULTS FOR MULTI-STEP BOOTSTRAPPING

In this section, we present results for different algorithms with multi-step bootstrapping. Specifically, we studied two values
of λ: {0.5, 0.9}, which correspond to different levels of bootstrapping. Figures D.1 and D.2 show the results of different
algorithms with multi-step bootstrapping on the Two-state task. The conclusion is similar to the one-step case presented in
Section 4 except that the biases of Off-policy TD (λ) and ETD(λ, β) reduce significantly as λ increases.
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Figure D.1: Results on the Two-state task when λ = 0.5. The y-axis shows RMSVE. The λ argument is omitted in the plots.
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Figure D.2: Results on the Two-state task when λ = 0.9. The y-axis shows RMSVE. The λ argument is omitted in the plots.



Figures D.3 and D.4 show the results of different algorithms with multi-step bootstrapping on the Rooms task. The conclusion
is similar to the one-step case presented in Section 4 except that the biases of Off-policy TD (λ) and ETD(λ, β) reduce
significantly as λ increases.
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Figure D.3: Results on the Rooms task when λ = 0.5. The y-axis shows RMSVE. The λ argument is omitted in the plots.
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Figure D.4: Results on the Rooms task when λ = 0.9. The y-axis shows RMSVE. The λ argument is omitted in the plots.



E STEP SIZE SENSITIVITY

In this section, we provide step-size sensitivity analysis on the Two-state and Rooms tasks. We aggregate the results in
Figure E.1 for convenient comparisons across different dimensions. We will discuss in order the following aspects.

• The effect of an algorithm’s decay parameter (β or ν) on its step-size sensitivity.

• The comparison of the step-size sensitivity of different algorithms on a single task.

• The effect of an algorithm’s bootstrapping parameter (λ) on its step-size sensitivity.

• The comparison of the step-size sensitivity of different algorithms across different tasks.

Firstly, from the top-left corner of Figure E.1, we can see how different values of β affect the step-size sensitivity of
LC-ETD1(0, β). Specifically, on the left extreme (β = 0), LC-ETD1(0, β) becomes Off-policy TD(0), which is the least
sensitive algorithm but converges to solutions with high errors. On the right extreme (β = 1), LC-ETD1(0, β) degenerates
into Full-IS-TD(0), which is the most sensitive and learns extremely slowly. While LC-ETD1(0, β) with all intermediate
values of β achieves significantly lower errors, it also has an intermediate sensitivity to the step size. In summary, the
sensitivity to the step size will increase as the decay parameter increase. This pattern can also be validated in other plots in
the figure except for those completely flat curves that represent no sign of learning of Full-IS-TD(λ).

Next, we compare different one-step (λ = 0) algorithms’ step-size sensitivity on the Two-state task from the top row of
Figure E.1. It’s quite obvious that ETD(0, β) is the least sensitive across different values of the decay parameter, while
LC-ETD3(0, β) is at the other extreme. In addition, their best-performing step sizes for different values of the decay
parameter are quite similar, which is not the case for LC-ETD1(0, β) and LC-ETD2(0, ν). Nevertheless, the latter two
algorithms with a decay parameter with a value of 0.2 exhibit low sensitivity while achieving the lowest error. These
observations remain valid for other rows in the figure.

Further, the leftmost plots of the top three lines provide insights into how different values of λ impact the step-size sensitivity
of LC-ETD1(λ, β). Notably, as λ increases, we observe four significant findings. Firstly, LC-ETD1(λ, β) yields lower
errors across different values of the decay parameter. Secondly, the method becomes increasingly sensitive to step size due
to higher variance. Thirdly, the difference in error between Off-policy TD(λ) (β = 0) and LC-ETD1(λ, β) (0 < β < 1)
diminishes. Finally, the sensitivity curve shifts toward smaller step sizes. These observations are consistent with those found
in LC-ETD2(λ, ν) and ETD(λ, β).

Finally, we compare the sensitivity of one-step (λ = 0) algorithms to step size on two different tasks from the first and
fourth rows of Figure E.1. Our observations reveal that algorithms exhibit greater sensitivity in the Rooms task, which has a
higher variance than the Two-state task. This is especially notable for algorithms previously found to be less sensitive in the
Two-state task. There could be two contributing factors to this observation. Firstly, the shrinkage of the suitable step size
range may become smaller as the task variance increases. Alternatively, the difference could be due to how the results are
summarized. We remind the reader that the results for the Two-state task were averaged over all 100 runs, while the results
for the Rooms task were averaged over the middle 15 runs.

In summary, higher variance can lead to greater sensitivity to the step size. In the case of LC-ETD instances, reducing
variance through a small decay parameter can improve usability. This is supported by the above analysis, which showed
that a small decay parameter resulted in the lowest error while reducing sensitivity to changes in the step-size parameter.
Therefore, using a small decay parameter may be an effective way to optimize the performance of LC-ETD instances.
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Figure E.1: Step-size sensitivity.
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