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Before presenting the proof of the propositions, we need the following definition on Tensor Connect Product (TCP), which
computes the tensor core merging.

Definition 1 (Tensor Connect Product (TCP) [Wang et al., 2017]). Let Zk ∈ Rrk×Ik×rk+1 , k = 1, . . . , N be N 3-order
tensors. The tensor connect product (TCP) between Zk and Zk+1 is defined as,

Z(k,k+1)=fold (L (Zk)×R (Zk+1))

where fold(X) denotes the operation of reshaping the unfolding matrix X back to tensor X and

L(X ) =
(
X(3)

)T ∈ R(rkIk)×rk+1

R(X ) = X(1) ∈ Rrk×(Ikrk+1) .

First, we consider the computation of the Gram matrix using only two core tensors. According to the tensor core merging of
two core tensors Zk and Zk+1, we establish the following lamma.

Lemma 1. Let Zk ∈ Rrk×Ik×rk+1 , k = 1, . . . , N , be 3-rd order tensors. The Gram matrix of Z(k,k+1)
[2] can be computed as

GZ(k,k+1) = Z
(k,k+1),T
[2] Z

(k,k+1)
[2] = Φ(QkQk+1) (1)

where Qk(:, i× rk+1 + j) = vec{(Zk(:, :, i))Zk(:, :, j)
T }, with vec{.} denoting the vectorization operation, and Φ(X) is

a reshape operation by which X ∈ Rm2×n2

is first divided into m× n blocks {Xij}m,n
i,j=1 ∈ Rm×n, then reshaped as

Φ(X) =
[
vec{XT

11} vec{XT
21} . . . vec{XT

mn}
]T

.

1 PROOF OF LEMMA 1

Proof. From TCP in Definition 1, we can express the fiber-wise relation between mode-2 fibers of Zk, Zk+1 and Z(k,k+1)

as

Z(k,k+1)(i, :, j) =

rk+1∑
m=1

Zk+1(m, :, j)⊗Zk(i, :,m) , (2)

with i ∈ [1, rk], j ∈ [1, rk+2] and ⊗ denotes the kronecker product. Then, the (i, j)-th entry of the Gram matrix of Z(k,k+1)
[2]

can be computed as [
Z

(k,k+1),T
[2] Z

(k,k+1)
[2]

]
i,j

=
(
Z(k,k+1)(pi, :, qi)

)T
Z(k,k+1)(pj , :, qj) , (3)
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where pi = ⌈i/rk+1⌉, qi = mod (i− 1, rk+1) + 1. Substituting (2) in (3) and using the property

(A⊗B)(C⊗D) = (AC)⊗ (BD) , (4)

we have that [
Z

(k,k+1),T
[2] Z

(k,k+1)
[2]

]
i,j

= vT
1 v2 , (5)

where
v1 = vec{Zk(pi, :, :)

TZk(pj , :, :)}
v2 = vec{Zk+1(:, :, qi)Zk+1(:, :, qj)

T } .

Therefore, by defining Qk(:, i× rk+1 + j) = vec{(Zk(:, :, i))Zk(:, :, j)
T }, the Gram matrix of Z(k,k+1)

[2] can be computed
as

GZ(k,k+1) = Z
(k,k+1),T
[2] Z

(k,k+1)
[2] = Φ(QkQk+1) (6)

where Φ(X) is a reshape operation by which X ∈ Rm2×n2

is first divided into m × n blocks {Xij}m,n
i,1,1 ∈ Rm×n, then

reshaped as
Φ(X) =

[
vec{XT

11} vec{XT
21} . . . vec{XT

mn}
]T

.

2 PROOF OF PROPOSITION 1

Following (1) in the proof of Lemma 1, for Z≤c ∈ Rr1×
∏c

k=1 Ik×rc+1 which is a subchain obtained by merging c cores
{Zk}ck=1, according to TCP, we can express the fiber-wise relation between mode-2 fibers of Zc and Z≤c−1 as

Z≤c(i, :, j) =

rc∑
m=1

Zc(m, :, j)⊗Z≤c−1(i, :,m) . (7)

With the above recursion equation we have

Z≤c(i, :, j)

=

rc∑
m=1

Zc(m, :, j)⊗

(
rc−1∑
m=1

Zc−1(m, :, j)⊗ . . .

(
r2∑

m=1

Z2(m, :, j)⊗Z1(i, :,m)

))
(8)

Again, using the property in (4), we can obtain that[
Z≤c,T

[2] Z≤c
[2]

]
i,j

= vT
1 Q

T
2 . . .QT

c−1v2 , (9)

where
v1 = vec{Z1(pi, :, :)

TZ1(pj , :, :)}
v2 = vec{Zc(:, :, qi)Zc(:, :, qj)

T }
Qk(:, i× rk+1 + j) = vec{(Zk(:, :, i))Zk(:, :, j)

T }, k = 2, . . . , c− 1

pi = ⌈i/rc+1⌉, qi = mod (i− 1, rc+1) + 1

Then, the Gram matrix of Z≤c
[2] can be computed as

GZ≤c = Z≤c,T
[2] Z≤c

[2] = Φ

(
c∏

k=1

Qk

)
, (10)

where Qk(:, i× rk+1 + j) = vec{(Zk(:, :, i))Zk(:, :, j)
T } for k > 1 and

Q1(:, i× r2 + j)=

{
vec{(Z1(:, :, i))Z1(:, :, j)

T }, c is even

vec{(Z1(:, :, j))Z1(:, :, i)
T }, c is odd
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