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Abstract

A simple approach to test for conditional indepen-
dence of two random vectors given a third random
vector is to simultaneously test for conditional in-
dependence of every pair of components of the two
random vectors given the third random vector. In
this work, we show that conditioning on additional
components of the two random vectors that are
independent given the third one increases the tests’
effect sizes while leaving the validity of the over-
all approach unchanged. We leverage this result to
derive a practical pairwise testing algorithm that
first chooses tests with a relatively large effect size
and then does the actual testing. We show both
numerically and theoretically that our algorithm
outperforms standard pairwise independence test-
ing and other existing methods if the dependence
within the two random vectors is sufficiently high.

1 INTRODUCTION

Let X,Y and Z be real-valued random vectors. We are in-
terested in testing whether X and Y are independent given
Z. This task arises in numerous research areas such as
ecology [Legendre and Legendre, 2012], genetics [Piepho,
2005], Earth sciences [Runge et al., 2019] or causal discov-
ery [Spirtes et al., 2000, Peters et al., 2017] and is statisti-
cally much more difficult than unconditional independence
testing [Bergsma, 2004, Shah and Peters, 2020].

In this paper, we consider the case where X and Y are mul-
tivariate. This case is of high practical relevance and occurs,
for instance, when a researcher assorts variables to differ-
ent groups based on semantic proximity. For example, they
might want to determine whether two sectors in the econ-
omy behave independently on the stock market given certain

∗Equal contribution, order chosen uniformly at random.

external influences. We also envision that this multivariate
case might be relevant for vector-valued causal inference,
where one is interested in causal relations between groups of
variables and not between individual variables [Wahl∗ et al.,
2022]. There are several conditional independence tests that
work in this multivariate setting (for an overview on such
tests see Chatterjee [2022], Josse and Holmes [2016] and
Li and Fan [2020]). Generally speaking, one can split such
tests into two groups: First, tests that directly incorporate the
multivariate nature of X and Y . Second, tests that are based
on aggregating the univariate test statistics corresponding to
the pairs of components Xi and Yj .

A relatively old representative of the first group is the partial
Mantel test [Smouse et al., 1986], whose underlying test
statistic is the partial correlation between the vectorized
distance matrices of X and Y controlled for the vectorized
distance matrix of Z. A more recent example is the partial
distance correlation test from Székely and Rizzo [2014].
This test is based on projecting (suitably centered) distance
matrices of X and Y onto the orthogonal complement of
the (suitably centered) distance matrix of Z and then cal-
culating a certain scalar product with respect to both these
projections.

Other representatives of the first group measure the distance
between conditional distributions or quantities derived there-
from. For example, some representatives use the conditional
mutual information [Runge, 2018], the Hellinger distance
[Su and White, 2008] or the smoothed empirical likelihood
ratio [Su and White, 2014]; another approach employs con-
ditional characteristic functions [Su and White, 2007].

Kernel-based approaches constitute another important class
of examples in the first group. Fukumizu et al. [2007] sug-
gest to use the Hilbert-Schmidt norm of the normalized
conditional cross-covariance operator. Zhang et al. [2011]
propose a simple test based on the kernel matrices of X,Y ,
and Z which they call the kernel-based conditional indepen-
dence test (KCIT). Strobl et al. [2019] propose speed-ups
of the KCIT.
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For tests in the second group, that is, tests that are based
on aggregating univariate test statistics, two representatives
are the generalized covariance measure [Shah and Peters,
2020] and its weighted extension [Scheidegger et al., 2022].
In both instances, the authors first introduce the respective
dependence measures for univariate X and Y . The main
idea behind both univariate dependence measures is to first
regress X onto Z and Y onto Z using a user-defined regres-
sion method and to then calculate a covariance-like measure
between the residuals of both regressions. For multivari-
ate X and Y , the authors then propose to aggregate the
respective measures for every pairs of components Xi and
Yj conditioned on Z.

The pairwise approach employed by the second group of
tests has several advantages: Firstly, it allows to easily con-
struct multivariate tests using univariate tests only; in par-
ticular, one can use classical ideas from the multiple testing
literature to control the probability of a false positive. Sec-
ondly, the pairwise approach is flexible and allows for a
wide variety of univariate test statistics. Thirdly, pairwise
testing is fast if the employed univariate tests are fast.

In this paper, we further investigate the pairwise approach.
We propose a new pairwise conditional independence testing
procedure in which the conditioning vectors Z are enlarged
by (estimated) components of X and Y that are condition-
ally independent given Z. We show that this new approach
yields larger effect sizes, that is, larger underlying depen-
dence measures than simple pairwise conditional indepen-
dence testing and, if the within-X or within-Y dependence
is large, more statistical power.

We structure the paper as follows. In Section 2 we review the
notion of conditional independence. In Section 3 we discuss
several pairwise approaches including our novel approach.
In Section 4 we give a theoretical justification for our ap-
proach. In Section 5 we present numerical experiments and
in Section 6 we provide a short summary and outlook.

2 PRELIMINARIES

In this section, we introduce our notation and review the def-
inition of conditional independence. Moreover, we review
some elementary properties of conditional independence.

2.1 NOTATION

Let X := (X1, . . . , XdX
), Y := (Y1, . . . , YdY

) and Z :=
(Z1, . . . , ZdZ

) denote dX -, dY -, and dZ-dimensional real-
valued random vectors, respectively. For any set of indices
A ⊆ {1, . . . , dX}, we write Ac to denote the complement
ofA in {1, . . . , dX} and |A| to denote the number of indices
in A. Moreover, we write XA to denote the vector that only
consists of components of X whose indices are contained
in A; we use similar notations for Y and Z.

Following Kim et al. [2022] and Neykov et al. [2021], let
PX,Y ,Z denote the joint distribution of (X,Y ,Z). Simi-
larly, let PX,Y |Z=z denote the conditional distribution of
(X,Y ) | Z = z, and let PX|Z=z and PY |Z=z stand for
the conditional distributions of X | Z = z and Y | Z = z
respectively. Furthermore, let PX , PY and PZ denote the
marginal distributions of X,Y , and Z respectively. We
write EPX,Y ,Z

to denote the expectation with respect to the
joint distribution PX,Y ,Z .

We assume that PX,Y ,Z is absolutely continuous with
respect to the Lebesgue measure, and we write pX,Y ,Z

for the corresponding density; we denote the densities
corresponding to the other distributions in an analogous
way. Slightly overloading notation, we write pX,Y |Z=Z ,
pX|Z=Z , and pY |Z=Z to denote the respective random vari-
able that, based on the realization of Z, chooses a particular
pX,Y |Z=z , pX|Z=z and pY |Z=z , respectively.

2.2 MULTIVARIATE CONDITIONAL
INDEPENDENCE

We say that X and Y are independent given Z and denote
this fact by

X ⊥⊥ Y | Z (1)

if and only if

pX,Y |Z=z(x,y) = pX|Z=z(x) · pY |Z=z(y) (2)

for all x,y, z such that pZ(z) > 0 [Dawid, 1979]. To
express the negation of statement (1), we write X 6⊥⊥ Y |
Z.

In the following, we review some properties of condi-
tional independence which are useful in the context of
this work (see e.g., Pearl [2009]). For any set of indices
B ⊆ {1, . . . , dY }, the following properties are valid:

• Decomposition: X ⊥⊥ Y | Z =⇒X ⊥⊥ YB | Z.
• Contraction: X ⊥⊥ YB | Z & X ⊥⊥ YBc |

(Z,YB) =⇒X ⊥⊥ Y | Z.
• Weak Union: X ⊥⊥ Y | Z =⇒ X ⊥⊥ YBc |

(Z,YB)

These three properties allow us to decompose the multi-
variate conditional independence statement from (1) into
several univariate conditional independence statements. For
example, applying the decomposition property to statement
(1) always gives

Xi ⊥⊥ Yj | Z ∀i ∈ {1, . . . , dX}, ∀j ∈ {1, . . . , dY }.
(3)

It is well known that the reverse implication does not neces-
sarily hold (that is, statement (3) does not necessarily imply
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statement (1)). However, there are assumptions under which
the reverse implication does indeed hold. We discuss two
such assumptions in Sections A.2 and A.3 of the Supple-
mentary Material (SM).

2.3 CONDITIONAL MUTUAL INFORMATION

In this section, we review the information-theoretic notion
of conditional mutual information and discuss its relation to
conditional independence [Cover and Thomas, 2006].

Under the assumptions from Section 2.1, the conditional
mutual information between random vectors X and Y given
Z is defined by

I(X;Y |Z) := EPX,Y ,Z
log

pX,Y |Z=Z(X,Y )

pX|Z=Z(X) · pY |Z=Z(Y )
.

The conditional mutual information encodes the entire de-
pendence structure between two random vectors conditioned
on a third random vector. In particular, I(X;Y |Z) = 0
if and only if X ⊥⊥ Y | Z. Moreover, it holds that
I(X;Y |Z) ≥ 0.

In addition, the conditional mutual information satisfies a
chain rule. It holds that

I(X;Y |Z) =

dX∑
i=1

I(Xi;Y |X1, . . . , Xi−1,Z).

Here, the notation X1, . . . , Xi−1 means the empty set if
i = 1.

3 PAIRWISE INDEPENDENCE TESTING
WITH INCREASED EFFECT SIZES

In this section, we first present the classical pairwise in-
dependence testing approach as, for example, used by
Shah and Peters [2020], and then, we introduce our novel
approach. We discuss our approach both with and with-
out the assumption that some conditional independencies
Xi ⊥⊥ Yj | Z are known a priori.

3.1 STANDARD PAIRWISE INDEPENDENCE
TESTING

In the finite sample setting, we as-
sume to have n independent observations
(X(1),Y (1),Z(1)), . . . , (X(n),Y (n),Z(n)), where
each observation is distributed according to the unknown
distribution PX,Y ,Z . Our goal is to statistically test whether
X ⊥⊥ Y | Z is true or false. That is, we perform the
hypothesis test

H0 : X ⊥⊥ Y | Z vs. H1 : X 6⊥⊥ Y | Z (4)

using the n observations. Here,H0 is the null hypothesis and
H1 is the alternative hypothesis. To execute this hypothesis
test, one can first do the similar hypothesis test

H′0 : ∀i, j : Xi ⊥⊥ Yj | Z vs.
H′1 : ∃i, j : Xi 6⊥⊥ Yj | Z. (5)

and rejectH0 if and only if one rejectsH′0.

This "induced" test forH0 has valid level α ∈ (0, 1) if the
original test has valid level α.

Lemma 1. If the test corresponding toH′0 has valid level
α ∈ (0, 1) at sample size n, then the induced test for H0

has valid level α at sample size n. This result is also true
in a pointwise asymptotic and uniformly asymptotic sense
(see Section C.1 of the SM for more precise formulations of
these two notions).

Proof. The intuition is as follows (see Section C.1 of the
SM for the details): If H0 is true but rejected, then H′0 is
true (by the discussion in Section 2.2) and had been rejected
(by the definition of the "induced" test). Thus, every type
I error with respect to H0 is a type I error with respect to
H′0.

To obtain a test for H′0 that has valid level, one can first
calculate and then aggregate all univariate test statistics Tij
with i ∈ {1, . . . , dX} and j ∈ {1, . . . , dY } that correspond
to the null hypotheses

H(ij)
0 : Xi ⊥⊥ Yj | Z.

To aggregate these test statistics one can use ideas from the
multiple testing literature. For example, one can apply the
Bonferroni method to control the familywise error rate of
all the tests induced by the Tij’s. One can then reject H′0
if at least one of the tests induced by the Tij’s has been
rejected at the adjusted significance level. This test forH′0
has valid level α if the familywise error rate of the tests
induced by the Tij’s has been bounded by α. Instead of the
Bonferroni method, one can also define a meta test statistic
by taking the maximum of the absolute values of the Tij’s.
To control the probability of false positives, one can, for
instance, use analytical results [Nadarajah et al., 2019] or a
multiplier bootstrap [Chernozhukov et al., 2013, Shah and
Peters, 2020].

3.2 NOVEL PAIRWISE APPROACH WITH A
PRIORI KNOWN CONDITIONAL
INDEPENDENCIES

In this section, we present our novel approach to multivariate
independence testing which is based on a modified version
ofH′0. The main idea behind this modification is to enlarge
the conditioning sets by those components of X and Y that
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we know to be independent given Z. The rationale behind
this idea is that these extra conditions increase the effect
sizes of the remaining tests. We defer this result to Section
4 and here only provide a glimpse of it in Example 1.

To fix notation, let S(Xi) contain all indices corresponding
to the components of Y that are independent of Xi given
Z, i.e.1,

S(Xi) := {j ∈ {1, . . . , dY } : Xi ⊥⊥ Yj | Z}.

Similarly,

S(Yj) := {i ∈ {1, . . . , dX} : Xi ⊥⊥ Yj | Z}.

Furthermore, assume that we have a priori knowledge of
arbitrary but fixed subsets Qi ⊆ S(Xi) and Q′j ⊆ S(Yj)
for all i ∈ {1, . . . , dX} and j ∈ {1, . . . , dY }. These subsets
are allowed to be empty. However, if all of them are empty,
then our proposed approach is the same as the one from
Section 3.1.

As Proposition 1 shows, additionally conditioning on
YQi\{j} or XQ′j\{i} increases the effect size of the test
Xi ⊥⊥ Yj | Z. Because of this result, we propose to replace
the hypothesis test in (5) with

H′′0 : ∀i, j : Xi ⊥⊥ Yj | (Z,Sij) vs.
H′′1 : ∃i, j : Xi 6⊥⊥ Yj | (Z,Sij) , (6)

where Sij is depending on the user’s choice either equal
to YQi\{j} or XQ′j\{i}.

2 To choose between YQi\{j} or
XQ′j\{i}, we suggest to take the vector with the larger num-
ber of components.

As before, we propose to rejectH0 if and only if we reject
H′′0 . This new "induced" test for H0 again has valid level
α ∈ (0, 1) if the test forH′′0 has valid level α.

Lemma 2. If the test corresponding toH′′0 has valid level
α ∈ (0, 1) at sample size n, then the induced test for H0

has valid level α at sample size n. This result is again true
in a pointwise asymptotic and uniformly asymptotic sense.

Proof. The proof is similar to the one of Lemma 1. We just
need to show that X ⊥⊥ Y | Z impliesXi ⊥⊥ Yj | (Z,Sij)
for all i ∈ {1, . . . , dX} and j ∈ {1, . . . , dY }. For that, let
i ∈ {1, . . . , dX} and j ∈ {1, . . . , dY } be arbitrary but fixed
indices. Without loss of generality, let Sij = YQi\{j}. Now,
rewriting X ⊥⊥ Y | Z to X ⊥⊥ (YQi\{j},Y(Qi\{j})c) |
Z, we can use the weak-union property (see Section 2.2)
to infer that X ⊥⊥ Y(Qi\{j})c | (Z,YQi\{j}), which by
the decomposition property implies that Xi ⊥⊥ Y(Qi\{j})c |

1For simplified notation, we do not include Z and Y (or X)
in the notation "S(Xi)" (respectively "S(Yj)").

2We do not allow that Sij = YQi\{j} ∪ XQ′j\{i}
, as this

invalidates our theoretical reasoning behind increasing effect sizes
in Section 4.

(Z,YQi\{j}). Because j ∈ (Qi \ {j})c, we can apply the
decomposition property again and obtain that Xi ⊥⊥ Yj |
(Z,YQi\{j}). As i and j were arbitrary, we obtain the result.
(For more details, see Section C.2 in the SM).

To obtain a test with valid level α ∈ (0, 1) for H′′0 , we
suggest to use the same techniques that we discussed in
Section 3.1; so again, one may use the Bonferroni method
or the maximum absolute test statistic (or something else).

In the following example, we illustrate our new approach
and sketch why it leads to larger effect sizes.

Example 1. Let (X1, Y1, Y2,Z) have a multivariate normal
distribution with univariate components X1, Y1, Y2 and a
possibly multivariate Z. Assume that X1 ⊥⊥ Y1 | Z holds
and suppose that we want to test X1 ⊥⊥ (Y1, Y2) | Z. The
usual pairwise approach would calculate and aggregate test
statistics corresponding to

X1 ⊥⊥ Y1 | Z & X1 ⊥⊥ Y2 | Z,

while we propose to use test statistics corresponding to

X1 ⊥⊥ Y1 | Z & X1 ⊥⊥ Y2 | (Z, Y1).

If one uses test statistics based on the partial correlation,
then the corresponding effect sizes are indeed larger in our
approach because

|ρX1Y2|Z,Y1
| =
∣∣∣∣ ρX1Y2|Z −

=0︷ ︸︸ ︷
ρX1Y1|Z ρY1Y2|Z√

1− ρ2X1Y1|Z︸ ︷︷ ︸
=1

√
1− ρ2Y1Y2|Z

∣∣∣∣
=

∣∣∣∣ ρX1Y2|Z√
1− ρ2Y1Y2|Z

∣∣∣∣
≥ |ρX1Y2|Z |.

Note that this increase of the effect size is particularly strong
if ρY1Y2|Z , that is, the within-Y correlation, is large. More-
over, note that the sample size for our approach has effec-
tively decreased by just one.

Intuitively, our approach conditions away the dependence
between Y1 and Y2 given Z, which would otherwise overlay
the dependence between X1 and Y2 given Z, and which
would hence make the dependence betweenX1 and Y2 given
Z harder to detect.

3.3 NOVEL PAIRWISE APPROACH WITHOUT A
PRIORI KNOWN CONDITIONAL
INDEPENDENCIES

In this section, we extend the idea from Section 3.2 to the
case where one does not assume a priori knowledge of
subsets Qi ⊆ S(Xi) and Q′j ⊆ S(Yj). In this case, we
propose the following two-step procedure:
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• Step 1: Estimate S(Xi) and S(Yj) for all i ∈
{1, . . . , dX} and for all j ∈ {1, . . . , dY }. Denote the
estimates by Ŝ(Xi) and Ŝ(Yj).

• Step 2: Execute the procedure from Section 3.2 with
input Qi = Ŝ(Xi) for all i ∈ {1, . . . , dX} and Q′j =

Ŝ(Yj) for all j ∈ {1, . . . , dY }.

As before, we propose to rejectH0 if and only if we reject
H′′0 in Step 2 with the Ŝ(Xi)’s and Ŝ(Yj)’s as input. We
again obtain a result on the level of this new "induced" test.

Lemma 3. If for each possible input ofQi’s ⊆ {1, . . . , dY }
and Q′j’s ⊆ {1, . . . , dX} for Step 2 the corresponding test
has valid level α ∈ (0, 1) for fixed sample size n conditioned
on the fact that theQi’s andQ′j’s have been selected in Step
1 (for a precise notion of this conditioning see Section C.3
of the SM), then the induced test for H0 has valid level α
for fixed sample size n.

In particular, if one splits the sample between Step 1 and
Step 2, and for each possible input of Qi’s ⊆ {1, . . . , dY }
and Q′j’s ⊆ {1, . . . , dX} the test in Step 2 based on the
second part of the sample has valid level α ∈ (0, 1), then
the induced test for H0 has valid level α for the entire
dataset of size n.

Proof. The proof is similar to the one of Lemma 2. First of
all, we note that the goodness of the estimates Ŝ(Xi) and
Ŝ(Yj) does not matter for controlling the type I error rate (it
matters for increasing effect sizes, however). That means, it
does not matter whether the Ŝ(Xi)’s and Ŝ(Yj)’s are indeed
subsets of the S(Xi)’s respectively S(Yj)’s. To see this
relaxation, we just need to realize that the proof of Lemma
2 works for general sets Qi and Q′j ; the definitions, namely
that the Qi’s respectively Q′j’s are subsets of the S(Xi)’s
respectively S(Yj)’s, were never used in that proof. We
defer the other technical details including the part regarding
the conditioning to Section C.3 of the SM.

It is necessary to condition away the fact that particular
Qi’s and Q′j’s have been selected in Step 1 because oth-
erwise, we would run into a typical example of selective
inference. We would then test hypotheses that were already
deemed promising, and not adjusting for this selection-effect
invalidates classical error bounds. Conditioning away the se-
lection step generally makes the requirements on the second
step stricter. A common approach to meet these require-
ments is sample splitting. There are other, more elaborate
approaches than sample splitting, e.g., data carving [Fithian
et al., 2014], or approaches based on differential privacy
[Dwork et al., 2015]. However, we consider it out of scope
to develop these approaches here.

Even though the goodness of the estimates for the S(Xi)’s
and S(Yj)’s does not matter for obtaining a test forH0 with
valid level α ∈ (0, 1) (see the proof of Lemma 3), it does

matter for increasing the effect sizes. If a particular Ŝ(Xi)
or Ŝ(Yj) contains indices that are not an element of the
respective S(Xi) or S(Yj), then the results on increasing
the effect size are not necessarily true anymore. From that
perspective it is, however, not a problem if there is an Ŝ(Xi)
or Ŝ(Yj) that is a strict subset of the respective S(Xi) or
S(Yj) because the framework in Section 3.2 is specifically
designed for subsets Qi ⊆ S(Xi) and Q′j ⊆ S(Yj).

For the estimation in Step 1 several approaches are possible.
We suggest to estimate the S(Xi)’s and S(Yj)’s by testing
all conditional independencies Xi ⊥⊥ Yj | Z on one part of
the sample at a rather large significance level αpre. Then,
we write all indices corresponding to hypotheses that are
not rejected (here really understood as accepted) into the
corresponding sets Ŝ(Xi) and Ŝ(Yj). Specifically, if Xi ⊥⊥
Yj | Z is not rejected for some fixed i and j, then we write
j into Ŝ(Xi) and i into Ŝ(Yj).

A large significance level αpre reduces the probability of
type II errors (if there is dependence), but, it increases the
probability of type I errors (if there is no dependence). How-
ever, type I errors are not a problem because they only
make the Ŝ(Xi)’s respectively the Ŝ(Yj)’s strictly smaller
than the respective S(Xi)’s or the respective S(Yj)’s; in the
"worst" case, the Ŝ(Xi)’s and Ŝ(Yj)’s are empty sets. Type
II errors are a problem, though, as they lead to indices being
wrongly included in the Ŝ(Xi)’s and Ŝ(Yj)’s.

To obtain a test for Step 2 that has valid level α ∈ (0, 1) for
the second part of the sample, we propose to apply the same
techniques as in Section 3.1 and Section 3.2 on the second
part of the sample.

4 THEORETICAL JUSTIFICATION

In Section 4.1, we first show why additionally conditioning
on components that satisfy certain conditional independen-
cies with respect to other components leads to larger effect
sizes. In Section 4.2, we then discuss the interplay between
statistical power, increased effect sizes and decreasing sam-
ple size.

4.1 INCREASED EFFECT SIZES

The test from Section 3.2 assumes that certain conditional in-
dependencies are known a priori. The variables correspond-
ing to these conditional independencies are then conditioned
out in the remaining conditional independence tests. In the
following Proposition, we show that doing so increases the
respective effect sizes.

To formalize the concept of effect size, we use the notion
of conditional mutual information (see Section 2.3 for a
review). The conditional mutual information quantifies the
entire dependence structure of random vectors, is nonneg-
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ative and equal to zero if and only if conditional indepen-
dence holds. Thus, an increased conditional mutual informa-
tion indicates that other well-chosen dependence measures
should also increase (for a similar result for the partial cor-
relation, see Section C.4 in the SM). More generally, the
following result also holds for dependence measures that
are monotonically increasing functions of the conditional
mutual information.

We make the following assumption.

Assumption 1. For all A ⊆ {1, . . . , dX} and B ⊆
{1, . . . , dY }, we assume that

XA ⊥⊥ YB | Z

is equivalent to

Xi ⊥⊥ Yj | Z ∀i ∈ A, ∀j ∈ B.

In Section A.2 and Section A.3 of the SM, we recall that
Assumption 1 holds if PX,Y ,Z is multivariate normal or if
PX,Y ,Z is faithful and globally Markov with respect to an
underlying directed acyclic graph.

Proposition 1. Let Assumption 1 hold. Then, for any set of
indices Qi ⊆ S(Xi),

I(Xi;Yj |Z,YQi\{j}) ≥ I(Xi;Yj |Z).

Similarly, for any set of indices Q′j ⊆ S(Yj),

I(Xi;Yj |Z,XQ′j\{i}) ≥ I(Xi;Yj |Z).

Proof. We only prove the statement for any arbitrary but
fixed Qi ⊆ S(Xi), the proof for any arbitrary but fixed
Q′j ⊆ S(Yj) is analogous.
Write S(Xi) \ {j} = {j1, . . . , jm}, where m is a natural
number such that 1 ≤ m ≤ dY − 1. Without loss of gener-
ality (as we can relabel the elements j1, . . . , jm arbitrarily),
we prove the statement for all sets {j1, . . . , jk} ⊆ S(Xi)
for all 1 ≤ k ≤ m. Now, by applying the chain rule for
conditional mutual information, we obtain that

I(Xi;Yj , Yj1 , . . . , Yjk |Z)

= I(Xi;Yj |Z) + I(Xi;Yj1 |Z, Yj)
+ . . .+ I(Xi;Yjk |Z, Yj , Yj1 . . . , Yjk−1

)

≥ I(Xi;Yj |Z) (7)

because the conditional mutual information is always non-
negative. Similarly, by applying the chain rule the other way
round, we obtain

I(Xi;Yj , Yj1 , . . . , Yjk |Z)

= I(Xi;Yj1 |Z) + I(Xi;Yj2 |Z, Yj1)

+ . . .+ I(Xi;Yj |Z, Yj1 , . . . , Yjk)

= I(Xi;Yj1 , . . . , Yjk |Z) + I(Xi;Yj |Z, Yj1 , . . . , Yjk)

= I(Xi;Yj |Z, Yj1 , . . . , Yjk) (8)

because Xi ⊥⊥ Yjl | Z for all l ∈ {1, . . . , k} and hence
by Assumption 1, it holds that Xi ⊥⊥ Yj1 , . . . , Yjk | Z and
thus I(Xi;Yj1 , . . . , Yjk |Z) = 0. Combining inequality (7)
and equation (8) yields the result.

4.2 INCREASED STATISTICAL POWER

As we have mentioned earlier, increased effect sizes do
not directly translate to more statistical power. Both the
increased conditioning sets and sample splitting effectively
reduce the sample size and hence power. In this section,
we study the trade-off between increased effect size and
decreased sample size for a well-known example.

For that, suppose that (X,Y ,Z) has a multivariate normal
distribution. The approach from Section 3.1 would then test
whether all ρXiYj |Z = 0.Our approach from Section 3.2 (or
Section 3.3) would test whether all ρXiYj |Z,Sij

= 0, where
Sij is either known a priori or estimated. To test whether
partial correlations are zero, we use a test statistic that builds
upon Fisher’s z-transform. Let z(x) : (−1, 1)→ (−∞,∞)
denote Fisher’s z-transform. Recall that z(x) is strictly
monotonically increasing and that z(x) = 0 if and only if
x = 0. To test ρXiYj |Z = 0 (or analogously ρXiYj |Z,Sij

=

0) one can use the fact that
√
n− 3− |Z|(z(ρ̂XiYj |Z) −

z(ρXiYj |Z)) approximately has a standard normal distri-
bution. Hence, one can reject ρXiYj |Z = 0 at level α if√
n− 3− |Z||z(ρ̂XiYj |Z)| > Φ−1(1 − α/2), where Φ−1

is the quantile function of the standard normal distribution.
One usually considers this approximation very good even
for small sample sizes (because of variance-stabilizing prop-
erties, see Anderson (2003), page 134). In the following, we
therefore pretend that this approximation is exact.

Proposition 2. Let Qi ⊆ S(Xi) be arbitrary but fixed. Let
n2 either be the sample size of the algorithm from Section
3.2 or of the main step of the algorithm from Section 3.3.
Moreover, assume that the within-Y dependence is suffi-
ciently large, namely, assume that

I(Yj ;YQi\{j}|Z)

≥ log

(z−1(√ n−3−|Z|
n2−3−|Z|−|Qi\{j}|z(ρXiYj |Z)

)
ρXiYj |Z

)
.

Then, the test corresponding to Xi ⊥⊥ Yj | (Z,YQi
) has

more power than the test corresponding to Xi ⊥⊥ Yj | Z.

Analogously, the result is true for any set Q′j ⊆ S(Yj) and
a similar assumption on the within-X dependence.

Proof. See Section C.5 of the SM.

Example 1 (continued). We can apply Proposition 2 to
Example 1 in order to determine how large the absolute
within-Y correlation |ρY1Y2|Z | at least needs to be such
that the test corresponding to X1 ⊥⊥ Y2 | (Z, Y1) has more
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power than the test corresponding to X1 ⊥⊥ Y2 | Z. For
that, we fix ρX1Y2|Z = 0.05, |Z| = 1 and plot several
example values on the left-hand side of Figure 1.

We can also specify how much more sample size the ap-
proach from Section 3.1 needs in order to achieve the same
statistical power as our novel approach.

Proposition 3. Let Qi ⊆ S(Xi) be arbitrary but fixed.
Suppose that both the test corresponding to Xi ⊥⊥ Yj |
(Z,YQi) and the test corresponding toXi ⊥⊥ Yj | Z should
have a size of α and achieve a power of exactly β ≥ α. Then,
the test corresponding to Xi ⊥⊥ Yj | Z needs at least⌊(

Φ−1(1− α/2)− Φ−1(1− β + α/2)

z(ρXiYj |Z)

)2

−
(

Φ−1(1− α/2)− Φ−1(1− β)

z(ρXiYj |Z,Qi\{j})

)2

− |Qi \ {j}|
⌋

more samples to achieve that power β.

Analogously, the result is true for any set Q′j ⊆ S(Yj).

Proof. See Section C.6 of the SM.

Example 1 (continued). We can apply Proposition 3 to
Example 1 in order to see how much less samples we need
for the test corresponding to X1 ⊥⊥ Y2 | (Z, Y1) than for
the test corresponding to X1 ⊥⊥ Y2 | Z to achieve the
same power β. For that, we fix ρX1Y2|Z = 0.05, α = 0.05,
|Z| = 1 and plot several example values on the right-hand
side of Figure 1.

5 NUMERICAL EXPERIMENTS

To empirically compare our novel approach to the baseline
approaches, we employ a slightly modified version of the
model considered in Shi et al. [2022]. In our modified model,
(X,Y ,Z) follows a multivariate normal distribution with
mean 0 and covariance matrix Σ. We restrict our attention
to the case where Z is one-dimensional (henceforth denoted
as Z), and where X and Y have the same number of com-
ponents, i.e., dX = dY . Regarding the covariance matrix
Σ, we consider two cases, which we label Σ(1) and Σ(2).
In the first case, Σ(1) takes the form

Σ
(1)
ij = Σ

(1)
ji =



τ |i−j|, for i, j ∈ {1, . . . , dX},
τ |i−j|, for i, j ∈ {dX + 1, . . . ,

dX + dY },
1, for i = j = dX + dY + dZ ,

ρ, for i = 1, j = dX + 1,

0, otherwise.

The zero entries of this matrix imply that the dependence
between the vectors X and Y is solely due to dependence

between their components X1 and Y1. To define Σ(2), we
start with Σ(1), then we randomly choose 16 entries Σ

(1)
ij =

Σ
(1)
ji with i ∈ {1, . . . , dX} and j ∈ {dX +1, . . . , dX +dY }

(excluding i = 1, j = dX + 1) and make them nonzero by
setting them to ρ/16.

For both Σ(1) and Σ(2), each component of (X,Y , Z) has
unit variance. The parameter τ characterizes the within-
group correlation, and the parameter ρ characterizes the
between-group correlation.3 We look at the cases τ =
0 (no within-X and within-Y dependence), τ = 0.5
(medium within-X and within-Y dependence) and τ =
0.9 (high within-X and within-Y dependence); we vary
ρ ∈ {0, 0.005, . . . , 0.15}, consider the sample sizes n ∈
{216, 432, 864} and the dimensions dX = dY ∈ {5, 7}.
For each of these parameter settings, we do 100 replications
and plot the mean rejection rate over these replications with
1 standard error.

For the three different pairwise approaches from Sections
3.1, 3.2 and 3.3, we evaluate pairwise dependence as ex-
plained in Section 4.2. To aggregate the univariate tests, we
use the Bonferroni method.

For the approach from Section 3.2, we assume that all pos-
sible conditional independencies are known a priori. For the
sample-splitting approach we set αpre = 0.5 (see Section
B.1 of the SM for other choices) and consider two different
sample splits in which, respectively, 20% and 50% of the
samples are used for Step 1.

As a baseline method, we use the partial distance correlation
from Székely and Rizzo [2014] that directly incorporates
the multivariate nature of X and Y . For this method we use
1000 permutations to approximate the null distribution.

For all of the above approaches, we set the significance level
to 0.05.We implemented all simulations in R [R Core Team,
2020], using the implementation of the partial distance cor-
relation in the energy-package [Rizzo and Szekely, 2022]
and the ggplot2-package [Wickham, 2016] for plotting.4

Figure 2 displays the results. We observe that both the
pairwise approach which assumes a conditional indepen-
dence oracle (Section 3.2) and the pairwise approaches with
sample splitting (Section 3.3) outperform the simple pair-
wise approach (Section 3.1) in case of strong within-X and
within-Y correlation (τ = 0.9) for both Σ(1) and Σ(2). If
the within-X and within-Y correlation is medium-sized
(τ = 0.5), then the algorithm that assumes a conditional
independence oracle slightly outperforms the other pairwise

3Note that I(Y1;YQ1\{1}|Z) = log(1/
√
1− τ2(k−1))

where k is the index in Q1 \ {1} closest to 1. Thus in terms
of within-Y -dependence, the underlying model from this section
is similar to Example 1. Hence, we refer to Section 4.2 for some
theoretical calculations.

4Code is available at https://github.com/TomHochspr
ung/UAI2023_Pairwise_CI_Testing.
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Figure 1: Figure corresponding to Example 1 and Propositions 2 (left plot) and 3 (right plot). Here, ∆n denotes the lower
bound on the difference in sample size. Also note that |ρY1Y2|Z | =

√
1− e−2I(X1;Y1|Z).

algorithms, which are on par with each other. For no within-
X and within-Y correlation (τ = 0), the algorithm that
assumes a conditional independence oracle and the simple
pairwise approach perform similarly well, and the algo-
rithms that learn conditional independencies in the first step
perform slightly worse. The sample split with 50% for the
first step usually performs worse than the 80%- sample-split,
however, that effect is also not very strong. We also observe
that our novel algorithms perform slightly better for Σ(1),
however, the results for Σ(1) and Σ(2) are still very similar.

The partial distance correlation performs worse than all
pairwise approaches for both covariance matrices. The com-
parably low performance of the partial distance correlation
might be due to the fact that it is a rather generally applica-
ble criterion that is not specifically adapted to the considered
example (whereas the pairwise approaches are adapted, be-
cause we here combine them with a partial correlation test).

These empirical results are in line with the theory. Looking
at Propositions 1, 2, and 3 (or Example 1), we see that larger
within-X or within-Y correlation leads to higher increases
of the effect sizes. If the within-X or within-Y correlations
are low, then there is not much (or nothing) to be gained
from conditioning on extra variables because within-group
dependencies only weakly overlay between-group depen-
dencies; and conditioning out these overlaying-effects were
the basis for increasing effect sizes. The algorithm that uses
some part of its sample to learn conditional independen-
cies (Section 3.3) generally trades off sample size for larger
effect sizes. Thus, if there is no effect size to be gained
(τ = 0), this algorithm is expected to perform worse; and if
there is a lot of effect size to be gained, then this algorithm
is expected to perform better (τ = 0.9). Further numerical
experiments (see Section B in the SM) show that these gen-
eral findings also apply for other experimental setups and
for independence criteria other than the partial correlation.

6 DISCUSSION AND OUTLOOK

We introduced a new method for testing conditional inde-
pendence of random vectors. This new method uses already
known or learned pairwise conditional independencies to in-
crease the effect sizes of the remaining univariate tests. The
strength of this approach is that it efficiently utilizes strong
dependencies within random vectors and sparse dependence
structures between random vectors. These are often present
in applications of conditional independence testing, for ex-
ample, on variables describing regionally coherent climate
phenomena like El Niño [Runge et al., 2019]. Furthermore,
our new approach is comparably fast if the univariate test
statistics are fast; it is also flexible with respect to the cho-
sen univariate test statistics. Current weaknesses are that
not knowing conditional independencies a priori requires
the sample to be split and that the algorithms using sample
splitting only perform better if the within-vector dependence
is sufficiently strong. Moreover, we only incorporated con-
ditional independence statements such as Xi ⊥⊥ Yj | Z.
Further and more complex a priori knowledge as, for exam-
ple, encoded in causal graphs, is not yet included.

These weaknesses can be tackled in future work, for exam-
ple, by incorporating a priori knowledge of an underlying
causal graph or by developing better approaches than sam-
ple splitting using ideas from differential privacy [Dwork
et al., 2015] or data carving [Fithian et al., 2014].
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Figure 2: Simulation results for the setting explained in Section 5. The left 3 and the right 3 columns display the results
for Σ(1) and Σ(2) respectively. The first two rows are for τ = 0, the middle two rows for τ = 0.5, and the last two rows
for τ = 0.9. The abbreviation simple stands for the approach from Section 3.1, oracle for the approach from Section 3.2,
no_oracle_0.2 and no_oracle_0.5 for the sample split approaches from Section3.3 with 20% respectively 50% of the sample
used for the first part of the algorithm, and pdcor for the partial distance correlation.
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