
ASTRA: Understanding the Practical Impact of Robustness for
Probabilistic Programs (Supplementary Material)

Zixin Huang1 Saikat Dutta1 Sasa Misailovic1

1Department of Computer Science, University of Illinois Urbana-Champaign, Urbana, Illinois, USA

A CASE STUDIES

A.1 CASE STUDY 1: GENERALIZED LINEAR
REGRESSION MODEL

A.1.1 Linear Regression

We study a simple linear regression model
yi=1...D|xi=1...D∼N (w1x1i + w2x2i + w3x3i + w4x4i +
w5x5i + b, σ2) . Here yis and xis are the given dataset
and wj (j ∈ {1, . . . , 5}), b, and σ are latent parameters.
Here we apply the transformations, StudentT, Reparam,
Reweight and Mixture on the original model.

To evaluate the robustness of the original and transformed
models, we first generate the ground truth for the parameters
wj , b from N (0, 1) and xis from Unif(−1, 1). Then we use
these parameters to generate the 500 training data with noise
(Outliers). To get a test dataset, we also take 500 samples
generated in the same way and add no noise.

Table 1 shows the result for evaluate the original and trans-
formed models using different robustness metrics. We repeat
the procedure 5 times and report the average of the metric
values. Here we present the result for two noise levels, 0
and 10, where 0 means no noise is in data y. We fit all
the models using Stan’s NUTS, running 4 chains each with
1000 samples. We take the mean of the samples to obtain a
point estimate of all the parameters or predicted data.

In Table 1, when noise level k = 0, we can see all the met-
rics are almost at their best value, i.e., the model is accurate.
Specifically, all the models have MSEparam = 0.002 (with <
0.0005 rounding error) when k = 0. Intuitively this means
each of the parameters βj ∈ {w1, w2, w3, w4, w5, b, σ}
will give the squared error (β̂j − βj)

2 ≈ 0.002, and thus
means β̂j , the posterior sample mean after fitting the model,
has almost no difference from βj , the true parameter value
we used to generate the data. At noise level k = 10, some of
the metrics show a less optimal value, which indicates the
model is no longer accurate when there is noise presented

in the training data. For example, when k = 10, for the
original model, MSEparam increases from 0 to 0.30, which
intuitively means on average each of the parameters βj will
have the squared error (β̂j −βj)

2 ≈ 0.257. On contrary, for
the Student-T transformed model, on average each βj will
have (β̂j − βj)

2 ≈ 0.012, much smaller than that from the
original model.

All the robustness metrics indicate that the models after
StudentT or Reparam are the most robust ones, followed by
Reweight, and the Original models is the least robust one.
Take the parameter w1 which has the true value of 1.012, as
an example, the Student model gives the mean value 1.010,
the Reparam model gives 1.021, the Reweight model gives
0.999, and the Original model gives 0.965.

The reason that Reparam and Student are better than
Reweight may be that they have one more layer of hier-
archy than Reweight. All these three transformations adds
one auxiliary parameter for every datapoint. Reparam and
Student has one additional hyperparameter representing the
degree of freedom used in the hyperprior of the auxiliary
parameters, while Reweight use a flat hyperprior with no
additional parameter.

If we use a Beta hyperprior with a hyperparameter for
Reweight’s auxiliary parameters, i.e., weight ∼ Beta(α, α),
factor(weight[i] · d(E1, . . .).pdf(y[i])), Reweight might be
able to give a better result than both Reparam and Student.
However, it will drastically increase the inference time and
is more likely to diverge.

Timing Interestingly, the models may run faster on data
with noise than on the clean data. This is probably because
the posterior shape is easier to sample from when condi-
tioned on noisy data, but this may not hold for other models.
For the parameter w1, its posterior has an average standard
deviation of 1 · 10−2 with noisy data; while with clean data,
the standard deviation is only 3 · 10−4. Intuitively, with the
same prior distribution, when the posterior from noisy data
is more spread-out, a random sample generated by MCMC

Accepted for the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023).

mailto:<zixinh2@illinois.edu>
mailto:<saikatd2@illinois.edu>
mailto:<misailo@illinois.edu>

Table 1: Evaluation Results for the Linear Regression Model (NUTS)

Transform (#params) k Time (s) MSEparam MSEy R̂ R̂max pL1 pR2

Original (7) 0 5.12 0.002 0.000 1.000 1.004 1.00 1.00
10 4.11 0.257 0.026 1.000 1.003 0.97 1.00

Reparam (508) 0 214.36 0.002 0.000 1.000 1.004 1.00 1.00
10 93.44 0.013 0.004 1.000 1.014 0.99 1.00

Reweight (507) 0 115.35 0.002 0.000 1.000 1.004 1.00 1.00
10 42.42 0.087 0.010 1.000 1.003 0.98 1.00

Reweight∗ (508) 0 1003.16 0.002 1.05 1.12
10 1014.40 0.006 1.74 3.53

Student (8) 0 36.02 0.002 0.000 1.000 1.003 1.00 1.00
10 11.06 0.012 0.004 1.000 1.003 0.99 1.00

will be more likely to get accepted.

Different prior distributions also affect the timing. For ex-
ample, we run the Original model on the same clean data
with different priors. For the parameter σ, if we specify the
limit <lower=0> and does not specify any other priors, it
takes 7.5s; if we leave the limits and allow Stan to reject
illegal samples, it is much faster, as 5.12 shown in the table
above. This may be because the limits introduce disconti-
nuity to the distribution and make the sampling harder. For
other parameters, let w∗

i be the truth value of wi, and if we
use the prior wi ∼ (w∗

i , 10), it takes 4.96s, slightly faster
than default; and with wi ∼ (w∗

i , 100), it takes 5.36s and is
slower than default.

A.1.2 Poisson Regression

The poisson regression model is
yi|xi∼Poisson(exp(w1x1i + w2x2i + w3x3i +
w4x4i + w5x5i)), and the noise model is
yi|xi∼Poisson(exp(w1x1i + w2x2i + w3x3i + w4x4i +
w5x5i + ϵi)) where ϵi ∼ N (0, k · 0.15). Different from
the other models, the poisson regression seems harder to
converge. In the table 2, we present the result for running
NUTS with 4 chains for with 10000 iterations. If we use
1000 iterations, most of the transformed models will not
converge.

From the results, we can see the Reweight model works best:
it is able to give a small MSE for parameters even when the
data contains noise. Specifically, in one run, the true value
of w1 is 1.31. With clean data, both the original model and
the Reweight transformed model are able to give the correct
results. With noise level k = 10, the Reweight model gives
1.28; while the original model gives 1.21.

A.1.3 Logistic Regression

For the logistics model, we sort the data based on their
probability and then start flipping the label from the ones
with the lowest scores, as in [Wang et al., 2018]. We can see
the Reweight model gives better results than the Original
one, but the difference is not large, because the model of
flipping binary labels has little effect on both models.

A.2 CASE STUDY 2: MIXTURE MODEL

A.2.1 gauss_mix_given_theta

The noise model for the mixture model by adding one more
noise group with mean max(µ1, µ2) + |µ1 − µ2|, meaning
that a new group is to the right of the two groups and forms
three groups with equal intervals. The new group has proba-
bility p3 = 0.02k, and the original two groups have probabil-
ity p1 = (1−p3)·θ and p2 = (1−p3)·(1−θ) = 1−p3−p1.
In the results, Reparam and Student ranks first, and then
Original, which is similar to the linear regression model.
However, the Reweight model does not work: it misclassi-
fies two group means to places between the noise group and
the group to the right. The other transformations, Reparam
and Student are able to filter out the noise group and identify
the true groups.

A.3 CASE STUDY 3: TIME SERIES MODELS

A.3.1 koyck

The koyck model is yt ∼ N (w1+w2∗xt+w3∗yt−1, σ). We
use the Outliers noise model. Notice the form of this model
is similar to the linear regression models. The difference
is the additional dependency on previous timestamp. The
results are also similar: Student and Reparam are the best,
then Reweight. All the three transformations are more robust
than Original.

Table 2: Evaluation Results for the Poisson Regression Model (NUTS)

Transform (#params) k Time (s) MSEparam MSEy R̂ R̂max pL1 pR2

Original (5) 0 17.052 0.000 1.65 · 105 1.000 1.001 0.997 1.000
10 17.248 0.057 6.58 · 1010 1.000 1.000 -0.487 -3.307

Reweight (505) 0 146.864 0.000 2.48 · 104 1.000 1.000 0.998 1.000
10 136.662 0.006 4.65 · 109 1.000 1.011 0.561 0.695

A.3.2 gp-fit-latent

The gp-fit-latent model is

ρ ∼ InvGamma(5, 5)

α ∼ N (0, 1)

σ ∼ N (0, 1)

f ∼ MultivariateNormal(0,K(x|α, ρ))
yi ∼ N (fi, σ) ∀i ∈ {1, . . . , N}

Here K is a exponentiated quadratic kernel. Under the Out-
liers noise model, Reparam and Student are the best, then
Reweight.

B AUTOMATED TRANSFORMATIONS

B.1 STORM-IR

We implement our transformations on an intermediate repre-
sentation, called Storm-IR, for probabilistic programs [Dutta
et al., 2019]. Figure 3 presents the syntax of Storm-IR.
Storm-IR is an imperative language with support for stan-
dard constructs like arithmetic operations, loops and con-
ditionals, and probabilistic constructs like sampling from
distributions (Dist) and conditioning on data (observe). The
Storm framework also provides translators from Storm-IR to
other probabilistic programming languages like Stan [Car-
penter et al., 2016] and Pyro [Bingham et al., 2018] and
vice-versa. Using Storm-IR allows our transformations to
be language-agnostic and also leverage a host of different
program analyses (e.g. dimensional, interval, and data-flow
analysis) which help us implement our transformations eas-
ily.

B.2 AUTOMATICALLY TRANSFORMING
PROGRAMS

We implement our transformations on an intermediate repre-
sentation (IR) for probabilistic programs: Storm-IR [Dutta
et al., 2019]. Storm-IR represents standard and probabilistic
language constructs like sampling from distributions (Dist)
and conditioning on data (factor) as a graph with program
elements as nodes, and control flow as edges (similar to stan-
dard compiler CFG [Allen, 1970]). Since Storm-IR supports

x ∈ Vars
c ∈ Consts ∪ {−∞,∞}

op ∈ {+,−, >,...}
Dist ∈ {Normal, Uniform, ...}

Type ::= Int | Float
Decl ::= x : Type | x : [c+]
Expr ::= c | x | Dist.pdf(Expr) |

Expr op Expr
Stmt ::= x = Expr

| for x ∈ 1..N; { Stmt∗ }
| observe(Dist(Expr∗), x)
| factor(Expr)
| if (Expr) then Stmt∗ else Stmt∗

| x := Dist(Expr∗)
| Decl

Program ::= Stmt∗

Table 3: Syntax of Intermediate Representation

multiple languages (e.g., Stan, Pyro, Edward), it allows AS-
TRA to be language-agnostic and also provides a host of
different program analyses (e.g., dimensional, interval, and
data-flow analysis) that help us implement transformations
easily and correctly.

ASTRA first parses the original probabilistic program into
abstract syntax tree and converts to Storm-IR. On this IR,
searching for the code pattern from Table 1 amounts to
searching for a subgraph that encodes the pattern (e.g., state-
ments corresponding to β ∼ πβ(α) and yDi=1 ∼ F (β);
which do not need be adjacent), while remembering the
concrete variable names (e.g., β 7→ b, y 7→ data) and
distributions (e.g., F 7→ N (b,s)). After identifying the
pattern, ASTRA checks for the transformation legality and
uses the identified distributions/variables to instantiate the
transformation template and uses Storm-IR API to update
the program graph. ASTRA allows users to implement new
transformations on Storm-IR, which is analogous to writing
a compiler transformation pass. ASTRA implementation
allows applying transformations iteratively on the same pro-
gram, however, we observed that the combined transforma-
tions do not provide additional robustness benefits, while
their inference quality suffers from the complicated model.

Here we present the code patterns of the original and trans-
formed programs for each transformation:

Bayesian Data Reweighting. Figure 1 presents the code
pattern demonstrating this transformation. The transforma-
tion is applicable on any model with the factor statement.
During the transformation, the prior distributions of the pa-
rameters (x1) in the model remain unchanged. We introduce
the new parameter w (vector), and multiply each w[i] to the
log-probability expression of y[i] in factor.

Localization. Figure 2 presents the code pattern for this
transformation. This transformation is applicable whenever
there is a factor statement in a for-loop. First, we intro-
duce the parameter η (vector) as the localized for of x1.
Then we update the factor expression to relate each data
point y[i] with an individual realization of the parameter
η[i]. We also initialize the parameter with prior distributions.

Normal to Student-T. Figure 3 presents the code pattern
for this transformation. We change an old Normal distribu-
tion with a Student-T distribution. This transformation is
applicable for normal distributions in factor statement.

Reparameterization and Localization of the Scale Pa-
rameter. We present the code pattern for this transformation
in Figure 4. This transformation is only applicable when
there are normal distributions in the factor statement. We
introduce a new parameter τ (vector), where τ follows a
Gamma distribution with a newly added hyper-parameter
ν. We update the factor expression by dividing the standard
deviation x2 by the inverse square-root of τ .

Contaminated Group Mixture. We present the code pat-
tern for this transformation in Figure 5. The transformation
is only applicable when the distribution in the factor
statement has the location and scale parameters. We intro-
duce a new factor statement that samples from a LogNormal
distribution for outliers. The model is changed to either sam-
ple from the original distribution or the outlier distribution,
encoded as an if-then-else statement.

x1 := DistExpr1 prior
...
for (i = 1..D)
factor(DistExpr2(x1).pdf(y[i])) conditioning

return x1 posterior
⇓

x1 := DistExpr1 prior (unchanged)
var w[D] init. weights.
for (i = 1..D)
w[i] := Beta(γ, η) reweighting dist.

...
for (i = 1..D)
factor(DistExpr2(x1).pdf(y[i]) *w[i]) reweighted obs.

return x1,w posteriors

Figure 1: Reweighting Transformation Code Pattern

x1 := DistExpr1 prior
...
for (i = 1..D)
factor(DistExpr2(...,x1,...).pdf(y[i])) conditioning on

return x1 obs. y posterior
⇓

x1 := DistExpr1 prior (unchanged)
s := Unif (0, 1) new hyper-prior
var η[D] localized params.
for (i = 1..D)
η[i] := Normal(x1, s) new priors

...
for (i = 1..D)
factor(DistExpr2(...,η[i],...).pdf(y[i])) localized obs.

return x1,η posteriors

Figure 2: Localization Transformation Code Pattern

x1 := DistExpr1 prior mean
x2 := DistExpr2 prior std
...
for (i = 1..D)
factor(Normal(x1, x2).pdf(y[i])) conditioning

return x1 posterior
⇓

x1 := DistExpr1 prior mean
x2 := DistExpr2 prior std
ν := Unif(...) new hyper-prior
...
for (i = 1..D)
factor(StudentT(ν, x1, x2).pdf(y[i])) Student-T dist.

return x1, ν posteriors

Figure 3: Normal/Student-T Transformation Code Pattern

x1 := DistExpr1 prior mean
x2 := DistExpr2 prior std
...
for (i = 1..D)
factor(Normal(x1, x2).pdf(y[i])) conditioning

return x1, x2 Gauss. posterior
⇓

x1 := DistExpr1 prior mean
x2 := DistExpr2 prior std
ν := DistExpr3 new hyper-prior
for (i = 1..D)
τ [i] := Gamma(ν/2, ν/2) robustness factors

...
for (i = 1..D)
factor(Normal(x1, x2/sqrt(τ [i])).pdf(y[i])) conditioning

return x1, x2 Gauss. posterior

Figure 4: Reparameterization Transformation Code Pattern

C CORRECTNESS OF THE
TRANSFORMATIONS

We formally state that the transformations we define in
Section B.2 have the semantic effects as proposed in the
statistical literature (as summarized in Table 1). We leverage
Stan’s operational semantics from [Gorinova et al., 2019].

Given a program P in StormIR language, the StormIR trans-
lator will translate P into a Stan program S with equiva-
lent semantics. There exists an one-to-one correspondence
between StormIR expressions/statements and Stan expres-
sion/statements, by the definition of StormIR syntax (Ap-
pendix A.1) and Stan syntax [Gorinova et al., 2019]. For
example, let ⇔ denote the translation relation between a

Table 4: MSE Improvement for Each Program at Noise
Level 10 with ADVI

Prog Outliers Hidden Group Skewed

RE 256.42 (StudentT) 1.62 (Reparam) 1.00 (Original)
RV 28.04 (StudentT) 2.78 (Reparam) 1.00 (Original)
MC 27.48 (Local1) - - 1.00 (Original)
SE 14.23 (StudentT) 3.10 (StudentT) 1.03 (Mixture)
RK 8.41 (StudentT) 3.69 (StudentT) 1.00 (Original)
RN 7.11 (Reparam) 2.06 (Local2) 1.00 (Original)
RU 3.42 (StudentT) 2.05 (StudentT) 1.41 (Local2)
RA 3.31 (StudentT) 2.08 (StudentT) 1.00 (Original)
MF 3.27 (StudentT) - - 1.23 (Reparam)
RQ 3.23 (StudentT) 2.32 (StudentT) 1.26 (Local1)
RR 2.95 (Reparam) 2.02 (StudentT) 1.14 (Local1)
RX 2.93 (StudentT) 1.94 (StudentT) 1.14 (Local1)
SD 2.52 (StudentT) 12.31 (StudentT) 1.00 (Local1)

MD 2.21 (Reweight) - - 1.16 (Local1)
ME 1.27 (StudentT) - - 1.13 (Local1)
RY 1.25 (StudentT) 1.00 (Original) 1.00 (Original)
MB 1.14 (StudentT) - - 1.77 (Local1)
RG 1.04 (StudentT) - - - -
SA 1.02 (Mixture) 2.04 (StudentT) 1.03 (Local1)

RW 1.00 (Reweight) - - - -
SB 1.00 (StudentT) 1.00 (Local1) 1.00 (Local1)
SC 1.00 (Original) 1.42 (Local1) 1.00 (Original)
RL 1.00 (Original) 1.00 (Original) 4.51 (Local2)

MA 1.00 (Original) - - 2.19 (Local1)

Table 5: MSE Improvement for Each Program at Noise
Level 10 with NUTS

Prog Outliers Hidden Group Skewed

RE 412.60 (StudentT) 4.59 (Reparam) 1.00 (Local1)
RV 31.94 (Reparam) 2.73 (Reparam) 1.00 (Original)
MC 1.00 (Original) - - 1.01 (Reparam)
SE 16.02 (Reweight) 3.15 (Reparam) 1.00 (Original)
RK 9.25 (Reparam) 5.65 (StudentT) 1.00 (Original)
RN 6.25 (Local2) 5.54 (Reparam) 1.00 (Original)
RU 3.75 (StudentT) 2.26 (StudentT) 1.00 (Local1)
RA 3.19 (Reparam) 2.14 (StudentT) 1.00 (Original)
MF 2.81 (Reparam) - - 1.05 (Local1)
RQ 3.78 (StudentT) 2.34 (StudentT) 1.00 (Original)
RR 3.00 (Reparam) 1.94 (StudentT) 1.00 (Local1)
RX 3.18 (Reparam) 2.07 (StudentT) 1.00 (Local1)
SD 3.52 (StudentT) 11.23 (Reparam) 1.00 (Local1)

MD 6.08 (Reweight) - - 2.10 (Reweight)
ME 1.41 (Reparam) - - 1.00 (Original)
RY 1.00 (Original) 1.05 (Reparam) 1.67 (Local1)
MB 1.22 (StudentT) - - 2.15 (Local1)
RG 1.03 (Reweight) - - - -
SA 1.56 (Reparam) 2.42 (StudentT) 1.04 (Local1)

RW 1.00 (Reweight) - - - -
SB 1.00 (Original) 1.00 (StudentT) 1.00 (Reweight)
SC 1.05 (Local1) 1.36 (Reweight) 1.00 (Original)
RL 1.00 (Original) 1.01 (Local1) 1.01 (Local1)

MA 1.68 (StudentT) - - 1.94 (Local1)

StormIR expression/statement and a Stan expression/state-
ment, then factor translation rule is:

Estorm ⇔ E′
stan

factor(Estorm) ⇔ target = target+ log(E′
stan)

.

It states that StormIR’s factor statement is translated to
an assignment to a special variable target in Stan (it by
convention contains unnormalized log-posterior), where the
expression Estorm was recursively translated to E′

stan. Rules
for other statements are similar.

Definition 1. We denote as P any StormIR program on
which ASTRA can apply a transformation T to get a trans-
formed program PT according to the Transformation Code
Pattern shown in Section B.2.

Definition 2. We denote as p(θ|y) and pT (θ|y) the poste-
riors from the original and the transformed program using

x1 := DistExpr1 prior mean
x2 := DistExpr2 prior std
...
for (i = 1..D)

factor (Dist(µ, σ, ...).pdf (Expr2)) conditioning
return x1, x2 Gauss. posterior

⇓
x1 := DistExpr1 prior mean
x2 := DistExpr2 prior std
ρout := Unif (0, 0.5) outlier probability.
µout := DistExpr3 outlier mean
sout := DistExpr4 outlier variance
out := LogNormal(µout, sout) outlier probability.
...
if(Bernolli(1 − ρout)) mixture
for (i = 1..D)
factor(Dist(x1, x2).pdf(y[i])) conditioning

else Gauss. mixture
for (i = 1..D)
factor(Dist(x1, sqrt(exp(out)).pdf(y[i])) conditioning

return x1, x2 Gauss. posterior

Figure 5: Cont. Mixture Transformation Code Pattern

the transformation T defined in Table 1 where θ represents
all the parameters in the program and y is the data.

Theorem 1. If the distribution of the program P is equiv-
alent (up to a unique normalizing constant) to p(θ|y) then
the distribution and PT is equivalent (up to a unique nor-
malizing constant) to pT (θ|y).

We sketch the proof next. We first translate the programs P
and PT to equivalent Stan programs S and ST , respectively,
as discussed above. By Stan’s operational semantics pre-
sented in Gorinova et al. [2019], we know that there exists
a unique end state s for S as ((y,θ, target 7→ 0), S) ⇓ s
where s[target] = log p∗(θ|y). p∗(θ|y) is the unnor-
malized posterior which uniquely defines the posterior as
p(θ|y) ∝ p∗(θ|y). Similarly, ST results in the unique
end state sT which has sT [target] = log p∗T (θ|y), and
pT (θ|y) ∝ p∗T (θ|y). Since P and S are equivalent, and PT

and ST are equivalent, we can next apply structural induc-
tion on the Stan statements that are defined in each rule
from Figures 1, 2, 3, 4, and 5 to derive the posterior distribu-
tions of each original and transformed program, as p∗(θ|y).
and p∗T (θ|y), respectively. For each, we can immediately
verify that there is an equivalence relation between p∗(θ|y)
and p(θ|y) defined in Table 1, and between p∗T (θ|y) and
pT (θ|y).

D BEST MSE IMPROVEMENT FOR
DIFFERENT NOISE MODELS

Tables 4,5 present the best MSE improvements for ADVI
and NUTS across different noise models and programs. The
cells with “–” mean that the noise model is not applicable
to the data in the program.

E CONVERGENCE SCORES AT NOISE
LEVELS 2 AND 6

Tables 6 and 7 present the convergence scores at noise levels
2 and 6. We observed a similar overall trend in convergence
scores across different noise levels.

Table 6: (Geometric-)Mean of Rhat at Noise Level 2

Transformations Outliers Hidden Group Skewed Data

ADVI NUTS ADVI NUTS ADVI NUTS

Original 1.75 1.05 1.16 1.00 2.43 1.08
Reweighting 1.33 1.11 1.19 1.01 1.40 1.03
Localized-Loc 3.40 1.38 2.18 1.13 4.15 1.21
Localized-Scale 4.24 1.43 1.85 1.03 4.47 1.05
Reparam-Local 2.02 1.25 1.25 1.02 2.36 1.15
StudentT 1.66 1.41 1.22 1.00 1.72 1.34
Cont. Group Mixture 7.17 – 8.77 – 8.43 –

Table 7: (Geometric-)Mean of Rhat at Noise Level 6

Transformations Outliers Hidden Group Skewed Data

ADVI NUTS ADVI NUTS ADVI NUTS

Original 1.79 1.46 1.32 1.00 1.65 1.04
Reweighting 1.34 1.19 1.17 1.00 1.30 1.01
Localized-Loc 3.86 1.34 2.83 1.16 3.77 1.25
Localized-Scale 3.04 1.38 2.05 1.04 3.75 1.10
Reparam-Local 2.01 1.34 1.32 1.00 2.35 1.18
StudentT 1.56 1.26 1.19 1.01 1.97 1.37
Cont. Group Mixture 8.99 – 8.48 – 7.86 –

F OTHER DIAGNOSTICS FOR NUTS AT
NOISE LEVEL 10

Here we present two other diagnostics for NUTS, the effec-
tive sample size (ESS) and the trajectory divergence.

Table 8 presents the ESS at noise level 10 for every 4x1000
samples after warmup, under a timeout of 8 minutes for each
chain. A small ESS also indicates the lack of convergence.

Table 8: (Geometric-)Mean of ESS at Noise Level 10

Transformations Outliers Hidden Group Skewed Data

Original 2482.04 2526.45 2144.90
Reweighting 2422.91 2289.96 2397.99
Localized-Loc 876.01 1067.06 1179.52
Localized-Scale 1114.61 1467.49 842.73
Reparam-Local 1707.49 2296.89 2029.92
StudentT 1338.56 2673.49 1786.98
Cont. Group Mixture - - -

For NUTS, the geometric means of the trajectory divergence
over all the applicable models for each transformation at
each noise level is smaller than 0.01, with 90% of the models
have trajectory divergence being 0. Such a small trajectory
divergence portion does not indicate any issue of concerns.

References

Frances E Allen. Control flow analysis. ACM Sigplan
Notices, 5(7), 1970.

Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz
Obermeyer, Neeraj Pradhan, Theofanis Karaletsos, Rohit
Singh, Paul Szerlip, Paul Horsfall, and Noah D. Good-
man. Pyro: Deep Universal Probabilistic Programming.
Journal of Machine Learning Research, 2018.

Bob Carpenter, Andrew Gelman, Matt Hoffman, Daniel Lee,
Ben Goodrich, Michael Betancourt, Michael A Brubaker,
Jiqiang Guo, Peter Li, Allen Riddell, et al. Stan: A proba-
bilistic programming language. JSTATSOFT, 20(2), 2016.

Saikat Dutta, Wenxian Zhang, Zixin Huang, and Sasa Mis-
ailovic. Storm: program reduction for testing and debug-
ging probabilistic programming systems. In Proceedings
of the 2019 27th ACM Joint Meeting on European Soft-
ware Engineering Conference and Symposium on the
Foundations of Software Engineering, pages 729–739.
ACM, 2019.

Maria I Gorinova, Andrew D Gordon, and Charles Sutton.
Probabilistic programming with densities in slicstan: ef-
ficient, flexible, and deterministic. Proceedings of the
ACM on Programming Languages, 3(POPL):1–30, 2019.

Chong Wang, David M Blei, et al. A general method for ro-
bust bayesian modeling. Bayesian Analysis, 13(4):1159–
1187, 2018.

	Case Studies
	Case Study 1: Generalized Linear Regression Model
	Linear Regression
	Poisson Regression
	Logistic Regression

	Case Study 2: Mixture Model
	gauss_mix_given_theta

	Case Study 3: Time Series Models
	koyck
	gp-fit-latent

	Automated Transformations
	Storm-IR
	Automatically Transforming Programs

	Correctness of the Transformations
	Best MSE Improvement for Different Noise Models
	Convergence scores at Noise Levels 2 and 6
	Other Diagnostics for NUTS at Noise Level 10

