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A PROOFS

A.1 PROOF OF LEMMA 4.2

Lemma (restatement of Lemma 4.2). The number of epochs is bounded as LM ≤
√

2SAK log TM + SA log TM .

Proof. Define macro epoch i with start time tui given by tu1
= t1, and

tui+1
= min {t` > tui : nt`(s, a) > 2nt`−1(s, a) for some (s, a)} , i = 2, 3, · · · .

A macro epoch starts when the second criterion of determining epoch length triggers. Let NM be a random variable denoting
the total number of macro epochs by the end of interval M and define uNM+1 := LM + 1.

Recall that K` is the number of visits to the goal state in epoch `. Let K̃i :=
∑ui+1−1
`=ui

K` be the number of visits to the
goal state in macro epoch i. By definition of macro epochs, all the epochs within a macro epoch except the last one are
triggered by the first criterion, i.e., K` = K`−1 + 1 for ` = ui, · · · , ui+1 − 2. Thus,

K̃i =

ui+1−1∑
`=ui

K` = Kui+1−1 +

ui+1−ui−1∑
j=1

(Kui−1 + j) ≥
ui+1−ui−1∑

j=1

j =
(ui+1 − ui − 1)(ui+1 − ui)

2
.

Solving for ui+1 − ui implies that ui+1 − ui ≤ 1 +
√

2K̃i. We can write

LM = uNM+1 − 1 =

NM∑
i=1

(ui+1 − ui) ≤
NM∑
i=1

(
1 +

√
2K̃i

)
= NM +

NM∑
i=1

√
2K̃i

≤ NM +

√√√√2NM

NM∑
i=1

K̃i = NM +
√

2NMK,

where the second inequality follows from Cauchy-Schwarz. It suffices to show that the number of macro epochs is bounded
as NM ≤ 1 + SA log TM . Let Ts,a be the set of all time steps at which the second criterion is triggered for state-action pair
(s, a), i.e.,

Ts,a :=
{
t` ≤ TM : nt`(s, a) > 2nt`−1

(s, a)
}
.

We claim that |Ts,a| ≤ log nTM+1(s, a). To see this, assume by contradiction that |Ts,a| ≥ 1 + log nTM+1(s, a), then

ntLM (s, a) =
∏

t`≤TM ,nt`−1
(s,a)≥1

nt`(s, a)

nt`−1
(s, a)

≥
∏

t`∈Ts,a,nt`−1
(s,a)≥1

nt`(s, a)

nt`−1
(s, a)

> 2|Ts,a|−1 ≥ nTM+1(s, a),
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which is a contradiction. Thus, |Ts,a| ≤ log nTM+1(s, a) for all (s, a). In the above argument, the first inequality is by the
fact that nt(s, a) is non-decreasing in t, and the second inequality is by the definition of Ts,a. Now, we can write

NM = 1 +
∑
s,a

|Ts,a| ≤ 1 +
∑
s,a

log nTM+1(s, a)

≤ 1 + SA log

∑
s,a nTM+1(s, a)

SA
= 1 + SA log

TM
SA
≤ SA log TM ,

where the second inequality follows from Jensen’s inequality.

A.2 PROOF OF LEMMA 4.3

Lemma (restatement of Lemma 4.3). The first term R1
M is bounded as R1

M ≤ B?E[LM ].

Proof. Recall

R1
M = E

[
LM∑
`=1

t`+1−1∑
t=t`

[V (st; θ`)− V (st+1; θ`)]

]

Observe that the inner sum is a telescopic sum, thus

R1
M = E

[
LM∑
`=1

[
V (st` ; θ`)− V (st`+1

; θ`)
]]
≤ B?E[LM ],

where the inequality is by Assumption 2.1.

A.3 PROOF OF LEMMA 4.4

Lemma (restatement of Lemma 4.4). The second term R2
M is bounded as R2

M ≤ B?E[LM ].

Proof. Recall that K` is the number of times the goal state is reached during epoch `. By definition, the only time steps that
s′t 6= st+1 is right before reaching the goal. Thus, with V (g; θ`) = 0, we can write

R2
M = E

[
LM∑
`=1

t`+1−1∑
t=t`

[V (st+1; θ`)− V (s′t; θ`)]

]
−KE [V (sinit; θ∗)]

= E

[
LM∑
`=1

V (sinit; θ`)K`

]
−KE [V (sinit; θ∗)]

=

∞∑
`=1

E
[
1{m(t`)≤M}V (sinit; θ`)K`

]
−KE [V (sinit; θ∗)] ,

where the last step is by Monotone Convergence Theorem. Here m(t`) is the interval at time t`. Note that from the first
stopping criterion of the algorithm we have K` ≤ K`−1 + 1 for all `. Thus, each term in the summation can be bounded as

E
[
1{m(t`)≤M}V (sinit; θ`)K`

]
≤ E

[
1{m(t`)≤M}V (sinit; θ`)(K`−1 + 1)

]
.

1{m(t`)≤M}(K`−1 + 1) is Ft` measurable. Therefore, applying the property of posterior sampling (Lemma 4.1) implies

E
[
1{m(t`)≤M}V (sinit; θ`)(K`−1 + 1)

]
= E

[
1{m(t`)≤M}V (sinit; θ∗)(K`−1 + 1)

]



Substituting this into R2
M , we obtain

R2
M ≤

∞∑
`=1

E
[
1{m(t`)≤M}V (sinit; θ∗)(K`−1 + 1)

]
−KE [V (sinit; θ∗)]

= E

[
LM∑
`=1

V (sinit; θ∗)(K`−1 + 1)

]
−KE [V (sinit; θ∗)]

= E

[
V (sinit; θ∗)

(
LM∑
`=1

K`−1 −K

)]
+ E [V (sinit; θ∗)LM ] ≤ B?E[LM ].

In the last inequality we have used the fact that 0 ≤ V (sinit; θ∗) ≤ B? and
∑LM
`=1K`−1 ≤ K.

A.4 PROOF OF LEMMA 4.5

Lemma (restatement of Lemma 4.5). The third term R3
M can be bounded as

R3
M ≤ 288B?S

√
MA log2 SAE[TM ]

δ
+ 1632B?S

2A log2 SAE[TM ]

δ
+ 4SB?δE[LM ].

Proof. With abuse of notation let ` := `(t) denote the epoch at time t and m(t) be the interval at time t. We can write

R3
M = E

[
TM∑
t=1

[
V (s′t; θ`)−

∑
s′

θ`(s
′|st, at)V (s′; θ`)

]]

= E

[ ∞∑
t=1

1{m(t)≤M}

[
V (s′t; θ`)−

∑
s′

θ`(s
′|st, at)V (s′; θ`)

]]

=

∞∑
t=1

E

[
1{m(t)≤M}E

[
V (s′t; θ`)−

∑
s′

θ`(s
′|st, at)V (s′; θ`)

∣∣∣Ft, θ∗, θ`]] .
The last equality follows from Dominated Convergence Theorem, tower property of conditional expectation, and that
1{m(t)≤M} is measurable with respect to Ft. Note that conditioned on Ft, θ∗ and θ`, the only random variable in the
inner expectation is s′t. Thus, E[V (s′t; θ`)|Ft, θ∗, θ`] =

∑
s′ θ∗(s

′|st, at)V (s′; θ`). Using Dominated Convergence Theorem
again implies that

R3
M = E

[
TM∑
t=1

∑
s′∈S+

[θ∗(s
′|st, at)− θ`(s′|st, at)]V (s′; θ`)

]

= E

[
TM∑
t=1

∑
s′∈S+

[θ∗(s
′|st, at)− θ`(s′|st, at)]

(
V (s′; θ`)−

∑
s′′∈S+

θ∗(s
′′|st, at)V (s′′; θ`)

)]
, (1)

where the last equality is due to the fact that θ∗(·|st, at) and θ`(·|st, at) are probability distributions and that∑
s′′∈S+ θ∗(s

′′|st, at)V (s′′; θ`) is independent of s′.

Recall the Bernstein confidence set B`(s, a) defined in (4) and let Ω`s,a be the event that both θ∗(·|s, a) and θ`(·|s, a) are in
B`(s, a). If Ω`s,a holds, then the difference between θ∗(·|s, a) and θ`(·|s, a) can be bounded by the following lemma.

Lemma A.1. Denote A`(s, a) =
log(SAn+

` (s,a)/δ)

n+
` (s,a)

. If Ω`s,a holds, then

|θ∗(s′|s, a)− θ`(s′|s, a)| ≤ 8
√
θ∗(s′|s, a)A`(s, a) + 136A`(s, a).

Proof. Since Ω`s,a holds, by (4) we have that

θ̂`(s
′|s, a)− θ∗(s′|s, a) ≤ 4

√
θ̂`(s′|s, a)A`(s, a) + 28A`(s, a).



Using the primary inequality that x2 ≤ ax + b implies x ≤ a +
√
b with x =

√
θ̂`(s′|s, a), a = 4

√
A`(s, a), and

b = θ∗(s
′|s, a) + 28A`(s, a), we obtain√

θ̂`(s′|s, a) ≤ 4
√
A`(s, a) +

√
θ∗(s′|s, a) + 28A`(s, a) ≤

√
θ∗(s′|s, a) + 10

√
A`(s, a),

where the last inequality is by sub-linearity of the square root. Substituting this bound into (4) yields

|θ∗(s′|s, a)− θ̂`(s′|s, a)| ≤ 4
√
θ∗(s′|s, a)A`(s, a) + 68A`(s, a).

Similarly,

|θ`(s′|s, a)− θ̂`(s′|s, a)| ≤ 4
√
θ∗(s′|s, a)A`(s, a) + 68A`(s, a).

Using the triangle inequality completes the proof.

Note that if either of θ∗(·|st, at) or θ`(·|st, at) is not in B`(st, at), then the inner term of (1) can be bounded by 2SB? (note
that |S+| ≤ 2S and V (·; θ`) ≤ B?). Thus, applying Lemma A.1 implies that∑

s′∈S+

[θ∗(s
′|st, at)− θ`(s′|st, at)]

(
V (s′; θ`)−

∑
s′′∈S+

θ∗(s
′′|st, at)V (s′′; θ`)

)

≤ 8
∑
s′∈S+

√√√√A`(st, at)θ∗(s′|st, at)

(
V (s′; θ`)−

∑
s′′∈S+

θ∗(s′′|st, at)V (s′′; θ`)

)2

1Ω`st,at

+ 136
∑
s′∈S+

A`(st, at)

∣∣∣∣∣V (s′; θ`)−
∑

s′′∈S+

θ∗(s
′′|st, at)V (s′′; θ`)

∣∣∣∣∣1Ω`st,at

+ 2SB?
(
1{θ∗(·|st,at)/∈B`(st,at)} + 1{θ`(·|st,at)/∈B`(st,at)}

)
≤ 16

√
SA`(st, at)V`(st, at)1Ω`st,at

+ 272SB?A`(st, at)1Ω`st,at

+ 2SB?
(
1{θ∗(·|st,at)/∈B`(st,at)} + 1{θ`(·|st,at)/∈B`(st,at)}

)
.

where A`(s, a) =
log(SAn+

` (s,a)/δ)

n+
` (s,a)

and V`(s, a) is defined in (5). Here the last inequality follows from Cauchy-Schwarz,

|S+| ≤ 2S, V (·; θ`) ≤ B? and the definition of V`. Substituting this into (1) yields

R3
M ≤ 16

√
SE

[
TM∑
t=1

√
A`(st, at)V`(st, at)1Ω`st,at

]
(2)

+ 272SB?E

[
TM∑
t=1

A`(st, at)1Ω`st,at

]
(3)

+ 2SB?E

[
TM∑
t=1

(
1{θ∗(·|st,at)/∈B`(st,at)} + 1{θ`(·|st,at)/∈B`(st,at)}

)]
. (4)

The inner sum in (3) is bounded by 6SA log2(SATM/δ) (see Lemma A.4). To bound (4), we first show that B`(s, a)
contains the true transition probability θ∗(·|s, a) with high probability:

Lemma A.2. For any epoch ` and any state-action pair (s, a) ∈ S × A, θ∗(·|s, a) ∈ B`(s, a) with probability at least
1− δ

2SAn+
` (s,a)

.

Proof. Fix (s, a, s′) ∈ S × A× S+ and 0 < δ′ < 1 (to be chosen later). Let (Zi)
∞
i=1 be a sequence of random variables

drawn from the probability distribution θ∗(·|s, a). Apply Lemma A.3 below with Xi = 1{Zi=s′} and δt = δ′

4St2 to a prefix
of length t of the sequence (Xi)

∞
i=1, and apply union bound over all t and s′ to obtain

∣∣∣θ̂`(s′|s, a)− θ∗(s′|s, a)
∣∣∣ ≤ 2

√√√√ θ̂`(s′|s, a) log
8Sn+

`

2
(s,a)

δ′

n+
` (s, a)

+ 7 log
8Sn+

`

2
(s, a)

δ′



with probability at least 1− δ′/2 for all s′ ∈ S+ and ` ≥ 1, simultaneously. Choose δ′ = δ/SAn+
` (s, a) and use S ≥ 2,

A ≥ 2 to complete the proof.

Lemma A.3 (Theorem D.3 (Anytime Bernstein) of Rosenberg et al. [2020]). Let (Xn)∞n=1 be a sequence of independent
and identically distributed random variables with expectation µ. Suppose that 0 ≤ Xn ≤ B almost surely. Then with
probability at least 1− δ, the following holds for all n ≥ 1 simultaneously:

∣∣∣∣∣
n∑
i=1

(Xi − µ)

∣∣∣∣∣ ≤ 2

√√√√B

n∑
i=1

Xi log
2n

δ
+ 7B log

2n

δ
.

Now, by rewriting the sum in (4) over epochs, we have

E

[
TM∑
t=1

(
1{θ∗(·|st,at)/∈B`(st,at)} + 1{θ`(·|st,at)/∈B`(st,at)}

)]

= E

[
LM∑
`=1

t`+1−1∑
t=t`

(
1{θ∗(·|st,at)/∈B`(st,at)} + 1{θ`(·|st,at)/∈B`(st,at)}

)]

=
∑
s,a

E

[
LM∑
`=1

t`+1−1∑
t=t`

1{st=s,at=a}
(
1{θ∗(·|s,a)/∈B`(s,a)} + 1{θ`(·|s,a)/∈B`(s,a)}

)]

=
∑
s,a

E

[
LM∑
`=1

(
nt`+1

(s, a)− nt`(s, a)
) (

1{θ∗(·|s,a)/∈B`(s,a)} + 1{θ`(·|s,a)/∈B`(s,a)}
)]
.

Note that nt`+1
(s, a) − nt`(s, a) ≤ nt`(s, a) + 1 by the second stopping criterion. Moreover, observe that B`(s, a) is

Ft` measurable. Thus, it follows from the property of posterior sampling (Lemma 4.1) that E[1{θ`(·|s,a)/∈B`(s,a)}|Ft` ] =

E[1{θ∗(·|s,a)/∈B`(s,a)}|Ft` ] = P(θ∗(·|s, a) /∈ B`(s, a)|Ft`) ≤ δ/(2SAn+
` (s, a)), where the inequality is by Lemma A.2.

Using Monotone Convergence Theorem and that 1{m(t`)≤M} is Ft` measurable, we can write

∑
s,a

E

[
LM∑
`=1

(
nt`+1

(s, a)− nt`(s, a)
) (

1{θ∗(·|s,a)/∈B`(s,a)} + 1{θ`(·|s,a)/∈B`(s,a)}
)]

≤
∑
s,a

∞∑
`=1

E
[
1{m(t`)≤M} (nt`(s, a) + 1)E

[
1{θ∗(·|s,a)/∈B`(s,a)} + 1{θ`(·|s,a)/∈B`(s,a)}|Ft`

]]
≤
∑
s,a

∞∑
`=1

E
[
1{m(t`)≤M} (nt`(s, a) + 1)

δ

SAn+
` (s, a)

]
≤ 2δE[LM ],

where the last inequality is by nt`(s, a) + 1 ≤ 2n+
` (s, a) and Monotone Convergence Theorem.

We proceed by bounding (2). Denote by tm the start time of interval m, define tM+1 := TM + 1, and rewrite the sum in (2)
over intervals to get

E

[
TM∑
t=1

√
A`(st, at)V`(st, at)1Ω`st,at

]
=

M∑
m=1

E

[
tm+1−1∑
t=tm

√
A`(st, at)V`(st, at)1Ω`st,at

]



Applying Cauchy-Schwarz twice on the inner expectation implies

E

[
tm+1−1∑
t=tm

√
A`(st, at)V`(st, at)1Ω`st,at

]

≤ E


√√√√tm+1−1∑

t=tm

A`(st, at) ·

√√√√tm+1−1∑
t=tm

V`(st, at)1Ω`st,at


≤

√√√√E

[
tm+1−1∑
t=tm

A`(st, at)

]
·

√√√√E

[
tm+1−1∑
t=tm

V`(st, at)1Ω`st,at

]

≤ 7B?

√√√√E

[
tm+1−1∑
t=tm

A`(st, at)

]
,

where the last inequality is by Lemma A.5. Summing over M intervals and applying Cauchy-Schwarz, we get

M∑
m=1

E

[
tm+1−1∑
t=tm

√
A`(st, at)V`(st, at)1Ω`st,at

]
≤ 7B?

M∑
m=1

√√√√E

[
tm+1−1∑
t=tm

A`(st, at)

]

≤ 7B?

√√√√M

M∑
m=1

E

[
tm+1−1∑
t=tm

A`(st, at)

]

= 7B?

√√√√ME

[
TM∑
t=1

A`(st, at)

]

≤ 18B?

√
MSAE

[
log2 SATM

δ

]
,

where the last inequality follows from Lemma A.4. Substituting these bounds in (2), (3), (4), concavity of log2 x for x ≥ 3,
and applying Jensen’s inequality completes the proof.

Lemma A.4.
∑TM
t=1A`(st, at) ≤ 6SA log2(SATM/δ).

Proof. Recall A`(s, a) =
log(SAn+

` (s,a)/δ)

n+
` (s,a)

. Denote by L := log(SATM/δ), an upper bound on the numerator of A`(st, at).
we have

TM∑
t=1

A`(st, at) ≤
TM∑
t=1

L

n+
` (st, at)

= L
∑
s,a

TM∑
t=1

1{st=s,at=a}

n+
` (s, a)

≤ 2L
∑
s,a

TM∑
t=1

1{st=s,at=a}

n+
t (s, a)

= 2L
∑
s,a

1{nTM+1(s,a)>0} + 2L
∑
s,a

nTM+1(s,a)−1∑
j=1

1

j

≤ 2LSA+ 2L
∑
s,a

(1 + log nTM+1(s, a))

≤ 4LSA+ 2LSA log TM ≤ 6LSA log TM .

Here the second inequality is by n+
` (s, a) ≥ 0.5n+

t (s, a) (the second criterion in determining the epoch length), the third
inequality is by

∑n
x=1 1/x ≤ 1 + log n, and the fourth inequality is by nTM+1(s, a) ≤ TM . The proof is complete by

noting that log TM ≤ L.

Lemma A.5. For any interval m, E[
∑tm+1−1
t=tm

V`(st, at)1Ω` ] ≤ 44B2
? .

Proof. To proceed with the proof, we need the following two technical lemmas.



Lemma A.6. Let (s, a) be a known state-action pair and m be an interval. If Ω`s,a holds, then for any state s′ ∈ S+,

|θ∗(s′|s, a)− θ`(s′|s, a)| ≤ 1

8

√
cminθ∗(s′|s, a)

SB?
+

cmin

4SB?
.

Proof. From Lemma A.1, we know that if Ω`s,a holds, then

|θ∗(s′|s, a)− θ`(s′|s, a)| ≤ 8
√
θ∗(s′|s, a)A`(s, a) + 136A`(s, a),

with A`(s, a) =
log(SAn+

` (s,a)/δ)

n+
` (s,a)

. The proof is complete by noting that log(x)/x is decreasing, and that n+
` (s, a) ≥

α · B?Scmin
log B?SA

δcmin
for some large enough constant α since (s, a) is known.

Lemma A.7 (Lemma B.15. of Rosenberg et al. [2020]). Let (Xt)
∞
t=1 be a martingale difference sequence adapted to the

filtration (Ft)∞t=0. Let Yn = (
∑n
t=1Xt)

2 −
∑n
t=1 E[X2

t |Ft−1]. Then (Yn)∞n=0 is a martingale, and in particular if τ is a
stopping time such that τ ≤ c almost surely, then E[Yτ ] = 0.

By the definition of the intervals, all the state-action pairs within an interval except possibly the first one are known.
Therefore, we bound

E

[
tm+1−1∑
t=tm

V`(st, at)1Ω`st,at

∣∣∣Ftm
]

= E
[
V`(stm , atm)1Ω`st,at

|Ftm
]

+ E

[
tm+1−1∑
t=tm+1

V`(st, at)1Ω`st,at

∣∣∣Ftm
]
.

The first summand is upper bounded by B2
? . To bound the second term, define Zt` := [V (s′t; θ`) −∑

s′∈S θ∗(s
′|st, at)V (s′; θ`)]1Ω`st,at

. Conditioned on Ftm , θ∗ and θ`, (Zt`)t≥tm constitutes a martingale difference se-
quence with respect to the filtration (Fmt+1)t≥tm , where Fmt is the sigma algebra generated by {(stm , atm), · · · , (st, at)}.
Moreover, tm+1−1 is a stopping time with respect to (Fmt+1)t≥tm and is bounded by tm+2B?/cmin. Therefore, Lemma A.7
implies that

E

[
tm+1−1∑
t=tm+1

V`(st, at)1Ω`st,at

∣∣∣Ftm , θ∗, θ`
]

= E

(tm+1−1∑
t=tm+1

Zt`1Ω`st,at

)2 ∣∣∣Ftm , θ∗, θ`
 . (5)

We proceed by bounding |
∑tm+1−1
t=tm+1 Z

t
`1Ω`st,at

| in terms of
∑tm+1−1
t=tm+1 V`(st, at)1Ω`st,at

and combine with the left hand side
to complete the proof. We have∣∣∣∣∣

tm+1−1∑
t=tm+1

Zt`1Ω`st,at

∣∣∣∣∣ =

∣∣∣∣∣
tm+1−1∑
t=tm+1

[
V (s′t; θ`)−

∑
s′∈S

θ∗(s
′|st, at)V (s′; θ`)

]
1Ω`st,at

∣∣∣∣∣
≤

∣∣∣∣∣
tm+1−1∑
t=tm+1

[V (s′t; θ`)− V (st; θ`)]

∣∣∣∣∣ (6)

+

∣∣∣∣∣
tm+1−1∑
t=tm+1

[
V (st; θ`)−

∑
s′∈S

θ`(s
′|st, at)V (s′; θ`)

]∣∣∣∣∣ (7)

+

∣∣∣∣∣
tm+1−1∑
t=tm+1

∑
s′∈S+

[θ`(s
′|st, at)− θ∗(s′|st, at)]

(
V (s′; θ`)−

∑
s′′∈S+

θ∗(s
′′|st, at)V (s′′; θ`)

)
1Ω`st,at

∣∣∣∣∣ . (8)

where (8) is by the fact that θ`(·|st, at), θ∗(·|st, at) are probability distributions and
∑
s′′∈S+ θ∗(s

′′|st, at)V (s′′; θ`) is
independent of s′ and V (g; θ`) = 0. (6) is a telescopic sum (recall that st+1 = s′t if s′t 6= g) and is bounded by B?. It
follows from the Bellman equation that (7) is equal to

∑tm+1−1
t=tm+1 c(st, at). By definition, the interval ends as soon as the

cost accumulates to B? during the interval. Moreover, since V (·; θ`) ≤ B?, the algorithm does not choose an action with



instantaneous cost more thanB?. This implies that
∑tm+1−1
t=tm+1 c(st, at) ≤ 2B?. To bound (8) we use the Bernstein confidence

set, but taking into account that all the state-action pairs in the summation are known, we can use Lemma A.6 to obtain

∑
s′∈S+

(θ`(s
′|st, at)− θ∗(s′|st, at))

(
V (s′; θ`)−

∑
s′′∈S+

θ∗(s
′′|st, at)V (s′′; θ`)

)
1Ω`st,at

≤
∑
s′∈S+

1

8

√√√√cminθ∗(s′|st, at)
(
V (s′; θ`)−

∑
s′′∈S+ θ∗(s′′|st, at)V (s′′; θ`)

)2
1Ω`st,at

SB?

+
∑
s′∈S+

cmin

4SB?

∣∣∣∣∣V (s′; θ`)−
∑

s′′∈S+

θ∗(s
′′|st, at)V (s′′; θ`)

∣∣∣∣∣
≤ 1

4

√
cminV`(st, at)1Ω`st,at

B?
+
c(st, at)

2
.

The last inequality follows from Cauchy-Schwarz inequality, |S+| ≤ 2S, |V (·; θ`)| ≤ B?, and cmin ≤ c(st, at). Summing
over the time steps in interval m and applying Cauchy-Schwarz, we get

tm+1−1∑
t=tm+1

1

4

√
cminV`(st, at)1Ω`st,at

B?
+
c(st, at)

2

 ≤ 1

4

√
(tm+1 − tm)

cmin

∑tm+1−1
t=tm+1 V`(st, at)1Ω`st,at

B?

+

∑tm+1−1
t=tm+1 c(st, at)

2

≤ 1

4

√√√√2

tm+1−1∑
t=tm+1

V`(st, at)1Ω`st,at
+B?.

The last inequality follows from the fact that duration of interval m is at most 2B?/cmin and its cumulative cost is at most
2B?. Substituting these bounds into (5) implies that

E

[
tm+1−1∑
t=tm+1

V`(st, at)1Ω`st,at

∣∣∣Ftm , θ∗, θ`
]
≤ E


4B? +

1

4

√√√√2

tm+1−1∑
t=tm+1

V`(st, at)1Ω`st,at

2 ∣∣∣Ftm , θ∗, θ`


≤ 32B2
? +

1

4
E

[
tm+1−1∑
t=tm+1

V`(st, at)1Ω`st,at

∣∣∣Ftm , θ∗, θ`
]
,

where the last inequality is by (a+ b)2 ≤ 2(a2 + b2) with b = 1
4

√
2
∑tm+1−1
t=tm+1 V`(st, at)1Ω`st,at

and a = 4B?. Rearranging

implies that E
[∑tm+1−1

t=tm+1 V`(st, at)1Ω`st,at
|Ftm , θ∗, θ`

]
≤ 43B2

? and the proof is complete.

A.5 PROOF OF THEOREM 3.5

Theorem (restatement of Theorem 3.5). Suppose Assumptions 2.1 and 3.4 hold. Then, the regret bound of the PSRL-SSP al-
gorithm is bounded as

RK = O

B?S√KAL2 + S2A

√
B?

3

cmin
L2

 ,

where L = log(B?SAKc
−1
min).



Proof. Denote by CM the total cost after M intervals. Recall that

E[CM ] = KE[V (sinit; θ∗)] +RM = KE[V (sinit; θ∗)] +R1
M +R2

M +R3
M

Using Lemmas 4.3, 4.4, and 4.5 with δ = 1/K obtains

E[CM ] ≤ KE[V (sinit; θ∗)]

+O
(
B?E[LM ] +B?S

√
MA log2(SAKE[TM ]) +B?S

2A log2(SAKE[TM ])

)
. (9)

Recall that LM ≤
√

2SAK log TM + SA log TM . Taking expectation from both sides and using Jensen’s inequality gets
us E[LM ] ≤

√
2SAK logE[TM ] + SA logE[TM ]. Moreover, taking expectation from both sides of (3), plugging in the

bound on E[LM ], and concavity of log(x) implies

M ≤ E[CM ]

B?
+K +

√
2SAK logE[TM ] + SA logE[TM ] +O

(
B?S

2A

cmin
log

B?KSA

cmin

)
.

Substituting this bound in (9), using subadditivity of the square root, and simplifying yields

E[CM ] ≤ KE[V (sinit; θ∗)] +O

(
B?S

√
KA log2(SAKE[TM ]) + S

√
B?E[CM ]A log2(SAKE[TM ])

+B?S
5
4A

3
4K

1
4 log

5
4 (SAKE[TM ]) + S2A

√
B3
?

cmin
log3 B?SAKE[TM ]

cmin

)
.

Solving for E[CM ] (by using the primary inequality that x ≤ a
√
x+b implies x ≤ (a+

√
b)2 for a, b > 0), usingK ≥ S2A,

V (sinit; θ∗) ≤ B?, and simplifying the result gives

E[CM ] ≤

(
O
(
S

√
B?A log2(SAKE[TM ])

)

+

√√√√√KE[V (sinit; θ∗)] +O

B?S√KA log2.5(SAKE[TM ]) + S2A

√
B3
?

cmin
log3 B?SAKE[TM ]

cmin

)2

≤ O
(
B?S

2A log2 SAE[TM ]

δ

)

+KE[V (sinit; θ∗)] +O

(
B?S

√
KA log2.5(SAKE[TM ]) + S2A

√
B3
?

cmin
log3 B?SAKE[TM ]

cmin

+B?S

√
KA log4(SAKE[TM ]) + S2A

(
B?

5

cmin
log7 B?SAKE[TM ]

cmin

) 1
4

)

≤ KE[V (sinit; θ∗)] +O

B?S√KA log4 SAKE[TM ]) + S2A

√
B3
?

cmin
log4 B?SAKE[TM ]

cmin

 . (10)

Note that by simplifying this bound, we can write E[CM ] ≤ O
(√

B?
3S4A2K2E[TM ]/cmin

)
. On the other hand, we

have that cminTM ≤ CM which implies E[TM ] ≤ E[CM ]/cmin. Isolating E[TM ] implies E[TM ] ≤ O
(
B?

3S4A2K2/c3min

)
.

Substituting this bound into (10) yields

E[CM ] ≤ KE[V (sinit; θ∗)] +O

B?S√KA log4 B?SAK

cmin
+ S2A

√
B3
?

cmin
log4 B?SAK

cmin

 .

We note that this bound holds for any number of M intervals as long as the K episodes have not elapsed. Since, cmin > 0,
this implies that the K episodes eventually terminate and the claimed bound of the theorem for RK holds.



A.6 PROOF OF THEOREM 3.6

Theorem (restatement of Theorem 3.6). Suppose Assumption 2.1 holds. Running the PSRL-SSP algorithm with costs
cε(s, a) := max{c(s, a), ε} for ε = (S2A/K)2/3 yields

RK = O
(
B?S
√
KAL̃2 + (S2A)

2
3K

1
3 (B

3
2
? L̃

2 + T?) + S2AT
3
2
? L̃

2
)
,

where L̃ := log(KB?T?SA) and T? is an upper bound on the expected time the optimal policy takes to reach the goal from
any initial state.

Proof. Denote by T εK the time to complete K episodes if the algorithm runs with the perturbed costs cε(s, a) and let
Vε(sinit; θ∗), V πε (sinit; θ∗) be the optimal value function and the value function for policy π in the SSP with cost function
cε(s, a) and transition kernel θ∗. We can write

RK = E

 T εK∑
t=1

c(st, at)−KV (sinit; θ∗)


≤ E

 T εK∑
t=1

cε(st, at)−KV (sinit; θ∗)


= E

 T εK∑
t=1

cε(st, at)−KVε(sinit; θ∗)

+KE [Vε(sinit; θ∗)− V (sinit; θ∗)] . (11)

Theorem 3.5 implies that the first term is bounded by

E

 T εK∑
t=1

cε(st, at)−KVε(sinit; θ∗)

 = O

Bε?S√KAL2
ε + S2A

√
Bε?

3

ε
L2
ε

 ,

with Lε = log(Bε?SAK/ε) and Bε? ≤ B? + εT? (to see this note that Vε(s; θ∗) ≤ V π
∗

ε (s; θ∗) ≤ B? + εT?). To bound the
second term of (11), we have

Vε(sinit; θ∗) ≤ V π
∗

ε (sinit; θ∗) ≤ V (sinit; θ∗) + εT?.

Combining these bounds, we can write

RK = O

(
B?S
√
KAL2

ε + εT?S
√
KAL2

ε + S2A

√
(B? + εT?)3

ε
L2
ε +KT?ε

)
.

Substituting ε = (S2A/K)2/3, and simplifying the result with K ≥ S2A and B? ≤ T? (since c(s, a) ≤ 1) implies

RK = O
(
B?S
√
KAL̃2 + (S2A)

2
3K

1
3 (B

3
2
? L̃

2 + T?) + S2AT
3
2
? L̃

2
)
,

where L̃ = log(KB?T?SA). This completes the proof.
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