Posterior Sampling-Based Online Learning for the Stochastic Shortest Path Model (Supplementary Material)

Mehdi Jafarnia-Jahromi ${ }^{1}$

Liyu Chen ${ }^{3}$

Rahul Jain ${ }^{2,3,4}$
Haipeng Luo ${ }^{3}$
${ }^{1}$ Google DeepMind
${ }^{2}$ ECE Department, University of Southern California
${ }^{3}$ CS Department, University of Southern California
${ }^{4}$ USC Center for Autonomy and AI

A PROOFS

A. 1 PROOF OF LEMMA 4.2

Lemma (restatement of Lemma 4.2). The number of epochs is bounded as $L_{M} \leq \sqrt{2 S A K \log T_{M}}+S A \log T_{M}$.
Proof. Define macro epoch i with start time $t_{u_{i}}$ given by $t_{u_{1}}=t_{1}$, and

$$
t_{u_{i+1}}=\min \left\{t_{\ell}>t_{u_{i}}: n_{t_{\ell}}(s, a)>2 n_{t_{\ell}-1}(s, a) \text { for some }(s, a)\right\}, \quad i=2,3, \cdots
$$

A macro epoch starts when the second criterion of determining epoch length triggers. Let N_{M} be a random variable denoting the total number of macro epochs by the end of interval M and define $u_{N_{M}+1}:=L_{M}+1$.
Recall that K_{ℓ} is the number of visits to the goal state in epoch ℓ. Let $\tilde{K}_{i}:=\sum_{\ell=u_{i}}^{u_{i+1}-1} K_{\ell}$ be the number of visits to the goal state in macro epoch i. By definition of macro epochs, all the epochs within a macro epoch except the last one are triggered by the first criterion, i.e., $K_{\ell}=K_{\ell-1}+1$ for $\ell=u_{i}, \cdots, u_{i+1}-2$. Thus,

$$
\tilde{K}_{i}=\sum_{\ell=u_{i}}^{u_{i+1}-1} K_{\ell}=K_{u_{i+1}-1}+\sum_{j=1}^{u_{i+1}-u_{i}-1}\left(K_{u_{i}-1}+j\right) \geq \sum_{j=1}^{u_{i+1}-u_{i}-1} j=\frac{\left(u_{i+1}-u_{i}-1\right)\left(u_{i+1}-u_{i}\right)}{2}
$$

Solving for $u_{i+1}-u_{i}$ implies that $u_{i+1}-u_{i} \leq 1+\sqrt{2 \tilde{K}_{i}}$. We can write

$$
\begin{aligned}
L_{M}=u_{N_{M}+1}-1=\sum_{i=1}^{N_{M}}\left(u_{i+1}-u_{i}\right) & \leq \sum_{i=1}^{N_{M}}\left(1+\sqrt{2 \tilde{K}_{i}}\right)=N_{M}+\sum_{i=1}^{N_{M}} \sqrt{2 \tilde{K}_{i}} \\
& \leq N_{M}+\sqrt{2 N_{M} \sum_{i=1}^{N_{M}} \tilde{K}_{i}}=N_{M}+\sqrt{2 N_{M} K}
\end{aligned}
$$

where the second inequality follows from Cauchy-Schwarz. It suffices to show that the number of macro epochs is bounded as $N_{M} \leq 1+S A \log T_{M}$. Let $\mathcal{T}_{s, a}$ be the set of all time steps at which the second criterion is triggered for state-action pair (s, a), i.e.,

$$
\mathcal{T}_{s, a}:=\left\{t_{\ell} \leq T_{M}: n_{t_{\ell}}(s, a)>2 n_{t_{\ell-1}}(s, a)\right\}
$$

We claim that $\left|\mathcal{T}_{s, a}\right| \leq \log n_{T_{M}+1}(s, a)$. To see this, assume by contradiction that $\left|\mathcal{T}_{s, a}\right| \geq 1+\log n_{T_{M}+1}(s, a)$, then

$$
\begin{aligned}
n_{t_{L_{M}}}(s, a) & =\prod_{t_{\ell} \leq T_{M}, n_{t_{\ell-1}}(s, a) \geq 1} \frac{n_{t_{\ell}}(s, a)}{n_{t_{\ell-1}}(s, a)} \geq \prod_{t_{\ell} \in \mathcal{T}_{s, a}, n_{t_{\ell-1}}(s, a) \geq 1} \frac{n_{t_{\ell}}(s, a)}{n_{t_{\ell-1}}(s, a)} \\
& >2^{\left|\mathcal{T}_{s, a}\right|-1} \geq n_{T_{M}+1}(s, a)
\end{aligned}
$$

which is a contradiction. Thus, $\left|\mathcal{T}_{s, a}\right| \leq \log n_{T_{M}+1}(s, a)$ for all (s, a). In the above argument, the first inequality is by the fact that $n_{t}(s, a)$ is non-decreasing in t, and the second inequality is by the definition of $\mathcal{T}_{s, a}$. Now, we can write

$$
\begin{aligned}
N_{M} & =1+\sum_{s, a}\left|\mathcal{T}_{s, a}\right| \leq 1+\sum_{s, a} \log n_{T_{M}+1}(s, a) \\
& \leq 1+S A \log \frac{\sum_{s, a} n_{T_{M}+1}(s, a)}{S A}=1+S A \log \frac{T_{M}}{S A} \leq S A \log T_{M}
\end{aligned}
$$

where the second inequality follows from Jensen's inequality.

A. 2 PROOF OF LEMMA 4.3

Lemma (restatement of Lemma 4.3). The first term R_{M}^{1} is bounded as $R_{M}^{1} \leq B_{\star} \mathbb{E}\left[L_{M}\right]$.

Proof. Recall

$$
R_{M}^{1}=\mathbb{E}\left[\sum_{\ell=1}^{L_{M}} \sum_{t=t_{\ell}}^{t_{\ell+1}-1}\left[V\left(s_{t} ; \theta_{\ell}\right)-V\left(s_{t+1} ; \theta_{\ell}\right)\right]\right]
$$

Observe that the inner sum is a telescopic sum, thus

$$
R_{M}^{1}=\mathbb{E}\left[\sum_{\ell=1}^{L_{M}}\left[V\left(s_{t_{\ell}} ; \theta_{\ell}\right)-V\left(s_{t_{\ell+1}} ; \theta_{\ell}\right)\right]\right] \leq B_{\star} \mathbb{E}\left[L_{M}\right]
$$

where the inequality is by Assumption 2.1

A. 3 PROOF OF LEMMA 4.4

Lemma (restatement of Lemma 4.4. The second term R_{M}^{2} is bounded as $R_{M}^{2} \leq B_{\star} \mathbb{E}\left[L_{M}\right]$.

Proof. Recall that K_{ℓ} is the number of times the goal state is reached during epoch ℓ. By definition, the only time steps that $s_{t}^{\prime} \neq s_{t+1}$ is right before reaching the goal. Thus, with $V\left(g ; \theta_{\ell}\right)=0$, we can write

$$
\begin{aligned}
R_{M}^{2} & =\mathbb{E}\left[\sum_{\ell=1}^{L_{M}} \sum_{t=t_{\ell}}^{t_{\ell+1}-1}\left[V\left(s_{t+1} ; \theta_{\ell}\right)-V\left(s_{t}^{\prime} ; \theta_{\ell}\right)\right]\right]-K \mathbb{E}\left[V\left(s_{\text {init }} ; \theta_{*}\right)\right] \\
& =\mathbb{E}\left[\sum_{\ell=1}^{L_{M}} V\left(s_{\text {init }} ; \theta_{\ell}\right) K_{\ell}\right]-K \mathbb{E}\left[V\left(s_{\text {init }} ; \theta_{*}\right)\right] \\
& =\sum_{\ell=1}^{\infty} \mathbb{E}\left[\mathbf{1}_{\left\{m\left(t_{\ell}\right) \leq M\right\}} V\left(s_{\text {init }} ; \theta_{\ell}\right) K_{\ell}\right]-K \mathbb{E}\left[V\left(s_{\text {init }} ; \theta_{*}\right)\right]
\end{aligned}
$$

where the last step is by Monotone Convergence Theorem. Here $m\left(t_{\ell}\right)$ is the interval at time t_{ℓ}. Note that from the first stopping criterion of the algorithm we have $K_{\ell} \leq K_{\ell-1}+1$ for all ℓ. Thus, each term in the summation can be bounded as

$$
\mathbb{E}\left[\mathbf{1}_{\left\{m\left(t_{\ell}\right) \leq M\right\}} V\left(s_{\text {init }} ; \theta_{\ell}\right) K_{\ell}\right] \leq \mathbb{E}\left[\mathbf{1}_{\left\{m\left(t_{\ell}\right) \leq M\right\}} V\left(s_{\text {init }} ; \theta_{\ell}\right)\left(K_{\ell-1}+1\right)\right]
$$

$\mathbf{1}_{\left\{m\left(t_{\ell}\right) \leq M\right\}}\left(K_{\ell-1}+1\right)$ is $\mathcal{F}_{t_{\ell}}$ measurable. Therefore, applying the property of posterior sampling (Lemma 4.1 implies

$$
\mathbb{E}\left[\mathbf{1}_{\left\{m\left(t_{\ell}\right) \leq M\right\}} V\left(s_{\mathrm{init}} ; \theta_{\ell}\right)\left(K_{\ell-1}+1\right)\right]=\mathbb{E}\left[\mathbf{1}_{\left\{m\left(t_{\ell}\right) \leq M\right\}} V\left(s_{\mathrm{init}} ; \theta_{*}\right)\left(K_{\ell-1}+1\right)\right]
$$

Substituting this into R_{M}^{2}, we obtain

$$
\begin{aligned}
R_{M}^{2} & \leq \sum_{\ell=1}^{\infty} \mathbb{E}\left[\mathbf{1}_{\left\{m\left(t_{\ell}\right) \leq M\right\}} V\left(s_{\text {init }} ; \theta_{*}\right)\left(K_{\ell-1}+1\right)\right]-K \mathbb{E}\left[V\left(s_{\text {init }} ; \theta_{*}\right)\right] \\
& =\mathbb{E}\left[\sum_{\ell=1}^{L_{M}} V\left(s_{\text {init }} ; \theta_{*}\right)\left(K_{\ell-1}+1\right)\right]-K \mathbb{E}\left[V\left(s_{\text {init }} ; \theta_{*}\right)\right] \\
& =\mathbb{E}\left[V\left(s_{\text {init }} ; \theta_{*}\right)\left(\sum_{\ell=1}^{L_{M}} K_{\ell-1}-K\right)\right]+\mathbb{E}\left[V\left(s_{\text {init }} ; \theta_{*}\right) L_{M}\right] \leq B_{\star} \mathbb{E}\left[L_{M}\right]
\end{aligned}
$$

In the last inequality we have used the fact that $0 \leq V\left(s_{\text {init }} ; \theta_{*}\right) \leq B_{\star}$ and $\sum_{\ell=1}^{L_{M}} K_{\ell-1} \leq K$.

A. 4 PROOF OF LEMMA 4.5

Lemma (restatement of Lemma 4.5). The third term R_{M}^{3} can be bounded as

$$
R_{M}^{3} \leq 288 B_{\star} S \sqrt{M A \log ^{2} \frac{S A \mathbb{E}\left[T_{M}\right]}{\delta}}+1632 B_{\star} S^{2} A \log ^{2} \frac{S A \mathbb{E}\left[T_{M}\right]}{\delta}+4 S B_{\star} \delta \mathbb{E}\left[L_{M}\right]
$$

Proof. With abuse of notation let $\ell:=\ell(t)$ denote the epoch at time t and $m(t)$ be the interval at time t. We can write

$$
\begin{aligned}
& R_{M}^{3}=\mathbb{E}\left[\sum_{t=1}^{T_{M}}\left[V\left(s_{t}^{\prime} ; \theta_{\ell}\right)-\sum_{s^{\prime}} \theta_{\ell}\left(s^{\prime} \mid s_{t}, a_{t}\right) V\left(s^{\prime} ; \theta_{\ell}\right)\right]\right] \\
& =\mathbb{E}\left[\sum_{t=1}^{\infty} \mathbf{1}_{\{m(t) \leq M\}}\left[V\left(s_{t}^{\prime} ; \theta_{\ell}\right)-\sum_{s^{\prime}} \theta_{\ell}\left(s^{\prime} \mid s_{t}, a_{t}\right) V\left(s^{\prime} ; \theta_{\ell}\right)\right]\right] \\
& =\sum_{t=1}^{\infty} \mathbb{E}\left[\mathbf{1}_{\{m(t) \leq M\}} \mathbb{E}\left[V\left(s_{t}^{\prime} ; \theta_{\ell}\right)-\sum_{s^{\prime}} \theta_{\ell}\left(s^{\prime} \mid s_{t}, a_{t}\right) V\left(s^{\prime} ; \theta_{\ell}\right) \mid \mathcal{F}_{t}, \theta_{*}, \theta_{\ell}\right]\right] .
\end{aligned}
$$

The last equality follows from Dominated Convergence Theorem, tower property of conditional expectation, and that $\mathbf{1}_{\{m(t) \leq M\}}$ is measurable with respect to \mathcal{F}_{t}. Note that conditioned on $\mathcal{F}_{t}, \theta_{*}$ and θ_{ℓ}, the only random variable in the inner expectation is s_{t}^{\prime}. Thus, $\mathbb{E}\left[V\left(s_{t}^{\prime} ; \theta_{\ell}\right) \mid \mathcal{F}_{t}, \theta_{*}, \theta_{\ell}\right]=\sum_{s^{\prime}} \theta_{*}\left(s^{\prime} \mid s_{t}, a_{t}\right) V\left(s^{\prime} ; \theta_{\ell}\right)$. Using Dominated Convergence Theorem again implies that

$$
\begin{align*}
& R_{M}^{3}=\mathbb{E}\left[\sum_{t=1}^{T_{M}} \sum_{s^{\prime} \in \mathcal{S}^{+}}\left[\theta_{*}\left(s^{\prime} \mid s_{t}, a_{t}\right)-\theta_{\ell}\left(s^{\prime} \mid s_{t}, a_{t}\right)\right] V\left(s^{\prime} ; \theta_{\ell}\right)\right] \\
& =\mathbb{E}\left[\sum_{t=1}^{T_{M}} \sum_{s^{\prime} \in \mathcal{S}^{+}}\left[\theta_{*}\left(s^{\prime} \mid s_{t}, a_{t}\right)-\theta_{\ell}\left(s^{\prime} \mid s_{t}, a_{t}\right)\right]\left(V\left(s^{\prime} ; \theta_{\ell}\right)-\sum_{s^{\prime \prime} \in \mathcal{S}^{+}} \theta_{*}\left(s^{\prime \prime} \mid s_{t}, a_{t}\right) V\left(s^{\prime \prime} ; \theta_{\ell}\right)\right)\right] \tag{1}
\end{align*}
$$

where the last equality is due to the fact that $\theta_{*}\left(\cdot \mid s_{t}, a_{t}\right)$ and $\theta_{\ell}\left(\cdot \mid s_{t}, a_{t}\right)$ are probability distributions and that $\sum_{s^{\prime \prime} \in \mathcal{S}^{+}} \theta_{*}\left(s^{\prime \prime} \mid s_{t}, a_{t}\right) V\left(s^{\prime \prime} ; \theta_{\ell}\right)$ is independent of s^{\prime}.
Recall the Bernstein confidence set $B_{\ell}(s, a)$ defined in (4) and let $\Omega_{s, a}^{\ell}$ be the event that both $\theta_{*}(\cdot \mid s, a)$ and $\theta_{\ell}(\cdot \mid s, a)$ are in $B_{\ell}(s, a)$. If $\Omega_{s, a}^{\ell}$ holds, then the difference between $\theta_{*}(\cdot \mid s, a)$ and $\theta_{\ell}(\cdot \mid s, a)$ can be bounded by the following lemma.

Lemma A.1. Denote $A_{\ell}(s, a)=\frac{\log \left(S A n_{\ell}^{+}(s, a) / \delta\right)}{n_{\ell}^{+}(s, a)}$. If $\Omega_{s, a}^{\ell}$ holds, then

$$
\left|\theta_{*}\left(s^{\prime} \mid s, a\right)-\theta_{\ell}\left(s^{\prime} \mid s, a\right)\right| \leq 8 \sqrt{\theta_{*}\left(s^{\prime} \mid s, a\right) A_{\ell}(s, a)}+136 A_{\ell}(s, a)
$$

Proof. Since $\Omega_{s, a}^{\ell}$ holds, by (4) we have that

$$
\widehat{\theta}_{\ell}\left(s^{\prime} \mid s, a\right)-\theta_{*}\left(s^{\prime} \mid s, a\right) \leq 4 \sqrt{\hat{\theta}_{\ell}\left(s^{\prime} \mid s, a\right) A_{\ell}(s, a)}+28 A_{\ell}(s, a)
$$

Using the primary inequality that $x^{2} \leq a x+b$ implies $x \leq a+\sqrt{b}$ with $x=\sqrt{\widehat{\theta}_{\ell}\left(s^{\prime} \mid s, a\right)}, a=4 \sqrt{A_{\ell}(s, a)}$, and $b=\theta_{*}\left(s^{\prime} \mid s, a\right)+28 A_{\ell}(s, a)$, we obtain

$$
\sqrt{\widehat{\theta}_{\ell}\left(s^{\prime} \mid s, a\right)} \leq 4 \sqrt{A_{\ell}(s, a)}+\sqrt{\theta_{*}\left(s^{\prime} \mid s, a\right)+28 A_{\ell}(s, a)} \leq \sqrt{\theta_{*}\left(s^{\prime} \mid s, a\right)}+10 \sqrt{A_{\ell}(s, a)}
$$

where the last inequality is by sub-linearity of the square root. Substituting this bound into (4) yields

$$
\left|\theta_{*}\left(s^{\prime} \mid s, a\right)-\widehat{\theta}_{\ell}\left(s^{\prime} \mid s, a\right)\right| \leq 4 \sqrt{\theta_{*}\left(s^{\prime} \mid s, a\right) A_{\ell}(s, a)}+68 A_{\ell}(s, a)
$$

Similarly,

$$
\left|\theta_{\ell}\left(s^{\prime} \mid s, a\right)-\widehat{\theta}_{\ell}\left(s^{\prime} \mid s, a\right)\right| \leq 4 \sqrt{\theta_{*}\left(s^{\prime} \mid s, a\right) A_{\ell}(s, a)}+68 A_{\ell}(s, a)
$$

Using the triangle inequality completes the proof.

Note that if either of $\theta_{*}\left(\cdot \mid s_{t}, a_{t}\right)$ or $\theta_{\ell}\left(\cdot \mid s_{t}, a_{t}\right)$ is not in $B_{\ell}\left(s_{t}, a_{t}\right)$, then the inner term of (1) can be bounded by $2 S B_{\star}$ (note that $\left|\mathcal{S}^{+}\right| \leq 2 S$ and $\left.V\left(\cdot ; \theta_{\ell}\right) \leq B_{\star}\right)$. Thus, applying Lemma A.1 implies that

$$
\begin{aligned}
& \sum_{s^{\prime} \in \mathcal{S}^{+}}\left[\theta_{*}\left(s^{\prime} \mid s_{t}, a_{t}\right)-\theta_{\ell}\left(s^{\prime} \mid s_{t}, a_{t}\right)\right]\left(V\left(s^{\prime} ; \theta_{\ell}\right)-\sum_{s^{\prime \prime} \in \mathcal{S}^{+}} \theta_{*}\left(s^{\prime \prime} \mid s_{t}, a_{t}\right) V\left(s^{\prime \prime} ; \theta_{\ell}\right)\right) \\
& \leq 8 \sum_{s^{\prime} \in \mathcal{S}^{+}} \sqrt{A_{\ell}\left(s_{t}, a_{t}\right) \theta_{*}\left(s^{\prime} \mid s_{t}, a_{t}\right)\left(V\left(s^{\prime} ; \theta_{\ell}\right)-\sum_{s^{\prime \prime} \in \mathcal{S}^{+}} \theta_{*}\left(s^{\prime \prime} \mid s_{t}, a_{t}\right) V\left(s^{\prime \prime} ; \theta_{\ell}\right)\right)^{2}} \mathbf{1}_{\Omega_{s_{t}, a_{t}}} \\
& \quad+136 \sum_{s^{\prime} \in \mathcal{S}^{+}} A_{\ell}\left(s_{t}, a_{t}\right)\left|V\left(s^{\prime} ; \theta_{\ell}\right)-\sum_{s^{\prime \prime} \in \mathcal{S}^{+}} \theta_{*}\left(s^{\prime \prime} \mid s_{t}, a_{t}\right) V\left(s^{\prime \prime} ; \theta_{\ell}\right)\right| \mathbf{1}_{\Omega_{s_{t}, a_{t}}} \\
& \quad+2 S B_{\star}\left(\mathbf{1}_{\left\{\theta_{*}\left(\cdot \mid s_{t}, a_{t}\right) \notin B_{\ell}\left(s_{t}, a_{t}\right)\right\}}+\mathbf{1}_{\left\{\theta_{\ell}\left(\cdot \mid s_{t}, a_{t}\right) \notin B_{\ell}\left(s_{t}, a_{t}\right)\right\}}\right) \\
& \leq 16 \sqrt{S A_{\ell}\left(s_{t}, a_{t}\right) \mathbb{V}_{\ell}\left(s_{t}, a_{t}\right) \mathbf{1}_{\Omega_{s_{t}}^{\ell}, a_{t}}+272 S B_{\star} A_{\ell}\left(s_{t}, a_{t}\right) \mathbf{1}_{\Omega_{s_{t}}^{\ell}, a_{t}}}+\begin{array}{l}
\quad+2 S B_{\star}\left(\mathbf{1}_{\left\{\theta_{*}\left(\cdot \mid s_{t}, a_{t}\right) \notin B_{\ell}\left(s_{t}, a_{t}\right)\right\}}+\mathbf{1}_{\left\{\theta_{\ell}\left(\cdot \mid s_{t}, a_{t}\right) \notin B_{\ell}\left(s_{t}, a_{t}\right)\right\}}\right)
\end{array}
\end{aligned}
$$

where $A_{\ell}(s, a)=\frac{\log \left(S A n_{\ell}^{+}(s, a) / \delta\right)}{n_{\ell}^{+}(s, a)}$ and $\mathbb{V}_{\ell}(s, a)$ is defined in (5). Here the last inequality follows from Cauchy-Schwarz, $\left|\mathcal{S}^{+}\right| \leq 2 S, V\left(\cdot ; \theta_{\ell}\right) \leq B_{\star}$ and the definition of \mathbb{V}_{ℓ}. Substituting this into (1) yields

$$
\begin{align*}
& R_{M}^{3} \leq 16 \tag{2}\\
& \sqrt{S} \mathbb{E}\left[\sum_{t=1}^{T_{M}} \sqrt{A_{\ell}\left(s_{t}, a_{t}\right) \mathbb{V}_{\ell}\left(s_{t}, a_{t}\right)} \mathbf{1}_{\Omega_{s_{t}, a_{t}}^{\ell}}\right] \tag{3}\\
&+272 S B_{\star} \mathbb{E}\left[\sum_{t=1}^{T_{M}} A_{\ell}\left(s_{t}, a_{t}\right) \mathbf{1}_{\Omega_{s_{t}, a_{t}}^{\ell}}\right] \tag{4}\\
&+2 S B_{\star} \mathbb{E}\left[\sum_{t=1}^{T_{M}}\left(\mathbf{1}_{\left\{\theta_{*}\left(\cdot \mid s_{t}, a_{t}\right) \notin B_{\ell}\left(s_{t}, a_{t}\right)\right\}}+\mathbf{1}_{\left\{\theta_{\ell}\left(\cdot \mid s_{t}, a_{t}\right) \notin B_{\ell}\left(s_{t}, a_{t}\right)\right\}}\right)\right] .
\end{align*}
$$

The inner sum in (3) is bounded by $6 S A \log ^{2}\left(S A T_{M} / \delta\right)$ (see Lemma A.4. To bound 4), we first show that $B_{\ell}(s, a)$ contains the true transition probability $\theta_{*}(\cdot \mid s, a)$ with high probability:

Lemma A.2. For any epoch ℓ and any state-action pair $(s, a) \in \mathcal{S} \times \mathcal{A}, \theta_{*}(\cdot \mid s, a) \in B_{\ell}(s, a)$ with probability at least $1-\frac{\delta}{2 S A n_{\ell}^{+}(s, a)}$.

Proof. Fix $\left(s, a, s^{\prime}\right) \in \mathcal{S} \times \mathcal{A} \times \mathcal{S}^{+}$and $0<\delta^{\prime}<1$ (to be chosen later). Let $\left(Z_{i}\right)_{i=1}^{\infty}$ be a sequence of random variables drawn from the probability distribution $\theta_{*}(\cdot \mid s, a)$. Apply Lemma A. 3 below with $X_{i}=\mathbf{1}_{\left\{Z_{i}=s^{\prime}\right\}}$ and $\delta_{t}=\frac{\delta^{\prime}}{4 S t^{2}}$ to a prefix of length t of the sequence $\left(X_{i}\right)_{i=1}^{\infty}$, and apply union bound over all t and s^{\prime} to obtain

$$
\left|\hat{\theta}_{\ell}\left(s^{\prime} \mid s, a\right)-\theta_{*}\left(s^{\prime} \mid s, a\right)\right| \leq 2 \sqrt{\frac{\hat{\theta}_{\ell}\left(s^{\prime} \mid s, a\right) \log \frac{8 S n_{\ell}^{+2}(s, a)}{\delta^{\prime}}}{n_{\ell}^{+}(s, a)}}+7 \log \frac{8 S n_{\ell}^{+2}(s, a)}{\delta^{\prime}}
$$

with probability at least $1-\delta^{\prime} / 2$ for all $s^{\prime} \in \mathcal{S}^{+}$and $\ell \geq 1$, simultaneously. Choose $\delta^{\prime}=\delta / S A n_{\ell}^{+}(s, a)$ and use $S \geq 2$, $A \geq 2$ to complete the proof.

Lemma A. 3 (Theorem D. 3 (Anytime Bernstein) of Rosenberg et al. 2020]). Let $\left(X_{n}\right)_{n=1}^{\infty}$ be a sequence of independent and identically distributed random variables with expectation μ. Suppose that $0 \leq X_{n} \leq B$ almost surely. Then with probability at least $1-\delta$, the following holds for all $n \geq 1$ simultaneously:

$$
\left|\sum_{i=1}^{n}\left(X_{i}-\mu\right)\right| \leq 2 \sqrt{B \sum_{i=1}^{n} X_{i} \log \frac{2 n}{\delta}}+7 B \log \frac{2 n}{\delta}
$$

Now, by rewriting the sum in (4) over epochs, we have

$$
\begin{aligned}
& \mathbb{E}\left[\sum_{t=1}^{T_{M}}\left(\mathbf{1}_{\left\{\theta_{*}\left(\cdot \mid s_{t}, a_{t}\right) \notin B_{\ell}\left(s_{t}, a_{t}\right)\right\}}+\mathbf{1}_{\left\{\theta_{\ell}\left(\cdot \mid s_{t}, a_{t}\right) \notin B_{\ell}\left(s_{t}, a_{t}\right)\right\}}\right)\right] \\
& =\mathbb{E}\left[\sum_{\ell=1}^{L_{M}} \sum_{t=t_{\ell}}^{t_{\ell+1}-1}\left(\mathbf{1}_{\left\{\theta_{*}\left(\cdot \mid s_{t}, a_{t}\right) \notin B_{\ell}\left(s_{t}, a_{t}\right)\right\}}+\mathbf{1}_{\left\{\theta_{\ell}\left(\cdot \mid s_{t}, a_{t}\right) \notin B_{\ell}\left(s_{t}, a_{t}\right)\right\}}\right)\right] \\
& =\sum_{s, a} \mathbb{E}\left[\sum_{\ell=1}^{L_{M}} \sum_{t=t_{\ell}}^{t_{\ell+1}-1} \mathbf{1}_{\left\{s_{t}=s, a_{t}=a\right\}}\left(\mathbf{1}_{\left\{\theta_{*}(\cdot \mid s, a) \notin B_{\ell}(s, a)\right\}}+\mathbf{1}_{\left\{\theta_{\ell}(\cdot \mid s, a) \notin B_{\ell}(s, a)\right\}}\right)\right] \\
& =\sum_{s, a} \mathbb{E}\left[\sum_{\ell=1}^{L_{M}}\left(n_{t_{\ell+1}}(s, a)-n_{t_{\ell}}(s, a)\right)\left(\mathbf{1}_{\left\{\theta_{*}(\cdot \mid s, a) \notin B_{\ell}(s, a)\right\}}+\mathbf{1}_{\left\{\theta_{\ell}(\cdot \mid s, a) \notin B_{\ell}(s, a)\right\}}\right)\right] .
\end{aligned}
$$

Note that $n_{t_{\ell+1}}(s, a)-n_{t_{\ell}}(s, a) \leq n_{t_{\ell}}(s, a)+1$ by the second stopping criterion. Moreover, observe that $B_{\ell}(s, a)$ is $\mathcal{F}_{t_{\ell}}$ measurable. Thus, it follows from the property of posterior sampling (Lemma 4.1]) that $\mathbb{E}\left[\mathbf{1}_{\left\{\theta_{\ell}(\cdot \mid s, a) \notin B_{\ell}(s, a)\right\}} \mid \mathcal{F}_{t_{\ell}}\right]=$ $\mathbb{E}\left[\mathbf{1}_{\left\{\theta_{*}(\cdot \mid s, a) \notin B_{\ell}(s, a)\right\}} \mid \mathcal{F}_{t_{\ell}}\right]=\mathbb{P}\left(\theta_{*}(\cdot \mid s, a) \notin B_{\ell}(s, a) \mid \mathcal{F}_{t_{\ell}}\right) \leq \delta /\left(2 S A n_{\ell}^{+}(s, a)\right)$, where the inequality is by Lemma A. 2 Using Monotone Convergence Theorem and that $\mathbf{1}_{\left\{m\left(t_{\ell}\right) \leq M\right\}}$ is $\mathcal{F}_{t_{\ell}}$ measurable, we can write

$$
\begin{aligned}
& \sum_{s, a} \mathbb{E}\left[\sum_{\ell=1}^{L_{M}}\left(n_{t_{\ell+1}}(s, a)-n_{t_{\ell}}(s, a)\right)\left(\mathbf{1}_{\left\{\theta_{*}(\cdot \mid s, a) \notin B_{\ell}(s, a)\right\}}+\mathbf{1}_{\left\{\theta_{\ell}(\cdot \mid s, a) \notin B_{\ell}(s, a)\right\}}\right)\right] \\
& \leq \sum_{s, a} \sum_{\ell=1}^{\infty} \mathbb{E}\left[\mathbf{1}_{\left\{m\left(t_{\ell}\right) \leq M\right\}}\left(n_{t_{\ell}}(s, a)+1\right) \mathbb{E}\left[\mathbf{1}_{\left\{\theta_{*}(\cdot \mid s, a) \notin B_{\ell}(s, a)\right\}}+\mathbf{1}_{\left\{\theta_{\ell}(\cdot \mid s, a) \notin B_{\ell}(s, a)\right\}} \mid \mathcal{F}_{t_{\ell}}\right]\right] \\
& \leq \sum_{s, a} \sum_{\ell=1}^{\infty} \mathbb{E}\left[\mathbf{1}_{\left\{m\left(t_{\ell}\right) \leq M\right\}}\left(n_{t_{\ell}}(s, a)+1\right) \frac{\delta}{S_{A n_{\ell}^{+}(s, a)}}\right] \\
& \leq 2 \delta \mathbb{E}\left[L_{M}\right]
\end{aligned}
$$

where the last inequality is by $n_{t_{\ell}}(s, a)+1 \leq 2 n_{\ell}^{+}(s, a)$ and Monotone Convergence Theorem.
We proceed by bounding (2). Denote by t_{m} the start time of interval m, define $t_{M+1}:=T_{M}+1$, and rewrite the sum in (2) over intervals to get

$$
\mathbb{E}\left[\sum_{t=1}^{T_{M}} \sqrt{A_{\ell}\left(s_{t}, a_{t}\right) \mathbb{V}_{\ell}\left(s_{t}, a_{t}\right)} \mathbf{1}_{\Omega_{s_{t}, a_{t}}^{\ell}}\right]=\sum_{m=1}^{M} \mathbb{E}\left[\sum_{t=t_{m}}^{t_{m+1}-1} \sqrt{A_{\ell}\left(s_{t}, a_{t}\right) \mathbb{V}_{\ell}\left(s_{t}, a_{t}\right)} \mathbf{1}_{\Omega_{s_{t}, a_{t}}^{\ell}}\right]
$$

Applying Cauchy-Schwarz twice on the inner expectation implies

$$
\begin{aligned}
& \mathbb{E}\left[\sum_{t=t_{m}}^{t_{m+1}-1} \sqrt{A_{\ell}\left(s_{t}, a_{t}\right) \mathbb{V}_{\ell}\left(s_{t}, a_{t}\right)} \mathbf{1}_{\Omega_{s_{t}, a_{t}}^{\ell}}\right] \\
& \leq \mathbb{E}\left[\sqrt{\sum_{t=t_{m}}^{t_{m+1}-1}} A_{\ell}\left(s_{t}, a_{t}\right) \cdot \sqrt{\left.\sum_{t=t_{m}}^{t_{m+1}-1} \mathbb{V}_{\ell}\left(s_{t}, a_{t}\right) \mathbf{1}_{\Omega_{s_{t}, a_{t}}}\right]}\right. \\
& \leq \sqrt{\mathbb{E}\left[\sum_{t=t_{m}}^{\left[t_{m+1}-1\right.} A_{\ell}\left(s_{t}, a_{t}\right)\right]} \cdot \sqrt{\mathbb{E}\left[\sum_{t=t_{m}}^{t_{m+1}-1} \mathbb{V}_{\ell}\left(s_{t}, a_{t}\right) \mathbf{1}_{\Omega_{s_{t}, a_{t}}}\right]} \\
& \left.\leq 7 B_{\star} \sqrt[{\mathbb{E}\left[\sum_{t=t_{m}}^{t_{m+1}-1} A_{\ell}\left(s_{t}, a_{t}\right)\right.}]\right]{ }
\end{aligned}
$$

where the last inequality is by Lemma A. 5 Summing over M intervals and applying Cauchy-Schwarz, we get

$$
\left.\begin{array}{rl}
\sum_{m=1}^{M} \mathbb{E} & {\left[\sum_{t=t_{m}}^{t_{m+1}-1} \sqrt{A_{\ell}\left(s_{t}, a_{t}\right) \mathbb{V}_{\ell}\left(s_{t}, a_{t}\right)} \mathbf{1}_{\Omega_{s_{t}, a_{t}}}\right]}
\end{array} B_{\star} \sum_{m=1}^{M} \sqrt{\mathbb{E}\left[\sum_{t=t_{m}}^{t_{m+1}-1} A_{\ell}\left(s_{t}, a_{t}\right)\right]}\right] \quad \begin{aligned}
& \quad \leq 7 B_{\star} \sqrt{M \sum_{m=1}^{M} \mathbb{E}\left[\sum_{t=t_{m}}^{t_{m+1}-1} A_{\ell}\left(s_{t}, a_{t}\right)\right]} \\
& \quad=7 B_{\star} \sqrt{M \mathbb{E}\left[\sum_{t=1}^{T_{M}} A_{\ell}\left(s_{t}, a_{t}\right)\right]} \\
& \quad \leq 18 B_{\star} \sqrt{M S A \mathbb{E}\left[\log ^{2} \frac{S A T_{M}}{\delta}\right]}
\end{aligned}
$$

where the last inequality follows from Lemma A.4. Substituting these bounds in (2), (3), (4), concavity of $\log ^{2} x$ for $x \geq 3$, and applying Jensen's inequality completes the proof.
Lemma A.4. $\sum_{t=1}^{T_{M}} A_{\ell}\left(s_{t}, a_{t}\right) \leq 6 S A \log ^{2}\left(S A T_{M} / \delta\right)$.

Proof. Recall $A_{\ell}(s, a)=\frac{\log \left(S A n_{\ell}^{+}(s, a) / \delta\right)}{n_{\ell}^{+}(s, a)}$. Denote by $L:=\log \left(S A T_{M} / \delta\right)$, an upper bound on the numerator of $A_{\ell}\left(s_{t}, a_{t}\right)$. we have

$$
\begin{aligned}
\sum_{t=1}^{T_{M}} A_{\ell}\left(s_{t}, a_{t}\right) & \leq \sum_{t=1}^{T_{M}} \frac{L}{n_{\ell}^{+}\left(s_{t}, a_{t}\right)}=L \sum_{s, a} \sum_{t=1}^{T_{M}} \frac{\mathbf{1}_{\left\{s_{t}=s, a_{t}=a\right\}}}{n_{\ell}^{+}(s, a)} \\
& \leq 2 L \sum_{s, a} \sum_{t=1}^{T_{M}} \frac{\mathbf{1}_{\left\{s_{t}=s, a_{t}=a\right\}}}{n_{t}^{+}(s, a)}=2 L \sum_{s, a} \mathbf{1}_{\left\{n_{T_{M}+1}(s, a)>0\right\}}+2 L \sum_{s, a} \sum_{j=1}^{n_{T_{M}+1}(s, a)-1} \frac{1}{j} \\
& \leq 2 L S A+2 L \sum_{s, a}\left(1+\log n_{T_{M}+1}(s, a)\right) \\
& \leq 4 L S A+2 L S A \log T_{M} \leq 6 L S A \log T_{M}
\end{aligned}
$$

Here the second inequality is by $n_{\ell}^{+}(s, a) \geq 0.5 n_{t}^{+}(s, a)$ (the second criterion in determining the epoch length), the third inequality is by $\sum_{x=1}^{n} 1 / x \leq 1+\log n$, and the fourth inequality is by $n_{T_{M}+1}(s, a) \leq T_{M}$. The proof is complete by noting that $\log T_{M} \leq L$.

Lemma A.5. For any interval $m, \mathbb{E}\left[\sum_{t=t_{m}}^{t_{m+1}-1} \mathbb{V}_{\ell}\left(s_{t}, a_{t}\right) \mathbf{1}_{\Omega^{\ell}}\right] \leq 44 B_{\star}^{2}$.
Proof. To proceed with the proof, we need the following two technical lemmas.

Lemma A.6. Let (s, a) be a known state-action pair and m be an interval. If $\Omega_{s, a}^{\ell}$ holds, then for any state $s^{\prime} \in \mathcal{S}^{+}$,

$$
\left|\theta_{*}\left(s^{\prime} \mid s, a\right)-\theta_{\ell}\left(s^{\prime} \mid s, a\right)\right| \leq \frac{1}{8} \sqrt{\frac{c_{\min } \theta_{*}\left(s^{\prime} \mid s, a\right)}{S B_{\star}}}+\frac{c_{\min }}{4 S B_{\star}}
$$

Proof. From LemmaA.1. we know that if $\Omega_{s, a}^{\ell}$ holds, then

$$
\left|\theta_{*}\left(s^{\prime} \mid s, a\right)-\theta_{\ell}\left(s^{\prime} \mid s, a\right)\right| \leq 8 \sqrt{\theta_{*}\left(s^{\prime} \mid s, a\right) A_{\ell}(s, a)}+136 A_{\ell}(s, a)
$$

with $A_{\ell}(s, a)=\frac{\log \left(S A n_{\ell}^{+}(s, a) / \delta\right)}{n_{\ell}^{+}(s, a)}$. The proof is complete by noting that $\log (x) / x$ is decreasing, and that $n_{\ell}^{+}(s, a) \geq$ $\alpha \cdot \frac{B_{\star} S}{c_{\text {min }}} \log \frac{B_{\star} S A}{\delta c_{\text {min }}}$ for some large enough constant α since (s, a) is known.

Lemma A. 7 (Lemma B.15. of Rosenberg et al. [2020]). Let $\left(X_{t}\right)_{t=1}^{\infty}$ be a martingale difference sequence adapted to the filtration $\left(\mathcal{F}_{t}\right)_{t=0}^{\infty}$. Let $Y_{n}=\left(\sum_{t=1}^{n} X_{t}\right)^{2}-\sum_{t=1}^{n} \mathbb{E}\left[X_{t}^{2} \mid \mathcal{F}_{t-1}\right]$. Then $\left(Y_{n}\right)_{n=0}^{\infty}$ is a martingale, and in particular if τ is a stopping time such that $\tau \leq c$ almost surely, then $\mathbb{E}\left[Y_{\tau}\right]=0$.

By the definition of the intervals, all the state-action pairs within an interval except possibly the first one are known. Therefore, we bound

$$
\mathbb{E}\left[\sum_{t=t_{m}}^{t_{m+1}-1} \mathbb{V}_{\ell}\left(s_{t}, a_{t}\right) \mathbf{1}_{\Omega_{s_{t}, a_{t}}^{\ell}} \mid \mathcal{F}_{t_{m}}\right]=\mathbb{E}\left[\mathbb{V}_{\ell}\left(s_{t_{m}}, a_{t_{m}}\right) \mathbf{1}_{\Omega_{s_{t}, a_{t}}^{\ell}} \mid \mathcal{F}_{t_{m}}\right]+\mathbb{E}\left[\sum_{t=t_{m}+1}^{t_{m+1}-1} \mathbb{V}_{\ell}\left(s_{t}, a_{t}\right) \mathbf{1}_{\Omega_{s_{t}, a_{t}}^{\ell}} \mid \mathcal{F}_{t_{m}}\right]
$$

The first summand is upper bounded by B_{\star}^{2}. To bound the second term, define $Z_{\ell}^{t}:=\left[V\left(s_{t}^{\prime} ; \theta_{\ell}\right)-\right.$ $\left.\sum_{s^{\prime} \in \mathcal{S}} \theta_{*}\left(s^{\prime} \mid s_{t}, a_{t}\right) V\left(s^{\prime} ; \theta_{\ell}\right)\right] \mathbf{1}_{\Omega_{s_{t}, a_{t}}}$. Conditioned on $\mathcal{F}_{t_{m}}, \theta_{*}$ and $\theta_{\ell},\left(Z_{\ell}^{t}\right)_{t \geq t_{m}}$ constitutes a martingale difference sequence with respect to the filtration $\left(\mathcal{F}_{t+1}^{m}\right)_{t \geq t_{m}}$, where \mathcal{F}_{t}^{m} is the sigma algebra generated by $\left\{\left(s_{t_{m}}, a_{t_{m}}\right), \cdots,\left(s_{t}, a_{t}\right)\right\}$. Moreover, $t_{m+1}-1$ is a stopping time with respect to $\left(\mathcal{F}_{t+1}^{m}\right)_{t \geq t_{m}}$ and is bounded by $t_{m}+2 B_{\star} / c_{\text {min }}$. Therefore, Lemma A. 7 implies that

$$
\begin{equation*}
\mathbb{E}\left[\sum_{t=t_{m}+1}^{t_{m+1}-1} \mathbb{V}_{\ell}\left(s_{t}, a_{t}\right) \mathbf{1}_{\Omega_{s_{t}, a_{t}}^{\ell}} \mid \mathcal{F}_{t_{m}}, \theta_{*}, \theta_{\ell}\right]=\mathbb{E}\left[\left(\sum_{t=t_{m}+1}^{t_{m+1}-1} Z_{\ell}^{t} \mathbf{1}_{\Omega_{s_{t}, a_{t}}^{\ell}}\right)^{2} \mid \mathcal{F}_{t_{m}}, \theta_{*}, \theta_{\ell}\right] \tag{5}
\end{equation*}
$$

We proceed by bounding $\left|\sum_{t=t_{m}+1}^{t_{m+1}-1} Z_{\ell}^{t} \mathbf{1}_{\Omega_{s_{t}, a_{t}}^{\ell}}\right|$ in terms of $\sum_{t=t_{m}+1}^{t_{m+1}-1} \mathbb{V}_{\ell}\left(s_{t}, a_{t}\right) \mathbf{1}_{\Omega_{s_{t}, a_{t}}^{\ell}}$ and combine with the left hand side to complete the proof. We have

$$
\begin{align*}
& \left|\sum_{t=t_{m}+1}^{t_{m+1}-1} Z_{\ell}^{t} \mathbf{1}_{\Omega_{s_{t}, a_{t}}^{\ell}}\right|=\left|\sum_{t=t_{m}+1}^{t_{m+1}-1}\left[V\left(s_{t}^{\prime} ; \theta_{\ell}\right)-\sum_{s^{\prime} \in \mathcal{S}} \theta_{*}\left(s^{\prime} \mid s_{t}, a_{t}\right) V\left(s^{\prime} ; \theta_{\ell}\right)\right] \mathbf{1}_{\Omega_{s_{t}, a_{t}}^{\ell}}\right| \\
& \leq\left|\sum_{t=t_{m}+1}^{t_{m+1}-1}\left[V\left(s_{t}^{\prime} ; \theta_{\ell}\right)-V\left(s_{t} ; \theta_{\ell}\right)\right]\right| \tag{6}\\
& +\left|\sum_{t=t_{m}+1}^{t_{m+1}-1}\left[V\left(s_{t} ; \theta_{\ell}\right)-\sum_{s^{\prime} \in \mathcal{S}} \theta_{\ell}\left(s^{\prime} \mid s_{t}, a_{t}\right) V\left(s^{\prime} ; \theta_{\ell}\right)\right]\right| \tag{7}\\
& +\left|\sum_{t=t_{m}+1}^{t_{m+1}-1} \sum_{s^{\prime} \in \mathcal{S}^{+}}\left[\theta_{\ell}\left(s^{\prime} \mid s_{t}, a_{t}\right)-\theta_{*}\left(s^{\prime} \mid s_{t}, a_{t}\right)\right]\left(V\left(s^{\prime} ; \theta_{\ell}\right)-\sum_{s^{\prime \prime} \in \mathcal{S}^{+}} \theta_{*}\left(s^{\prime \prime} \mid s_{t}, a_{t}\right) V\left(s^{\prime \prime} ; \theta_{\ell}\right)\right) \mathbf{1}_{\Omega_{s_{t}, a_{t}}^{\ell}}\right| \tag{8}
\end{align*}
$$

where (8) is by the fact that $\theta_{\ell}\left(\cdot \mid s_{t}, a_{t}\right), \theta_{*}\left(\cdot \mid s_{t}, a_{t}\right)$ are probability distributions and $\sum_{s^{\prime \prime} \in \mathcal{S}^{+}} \theta_{*}\left(s^{\prime \prime} \mid s_{t}, a_{t}\right) V\left(s^{\prime \prime} ; \theta_{\ell}\right)$ is independent of s^{\prime} and $V\left(g ; \theta_{\ell}\right)=0$. 6) is a telescopic sum (recall that $s_{t+1}=s_{t}^{\prime}$ if $s_{t}^{\prime} \neq g$) and is bounded by B_{\star}. It follows from the Bellman equation that (7) is equal to $\sum_{t=t_{m}+1}^{t_{m+1}-1} c\left(s_{t}, a_{t}\right)$. By definition, the interval ends as soon as the cost accumulates to B_{\star} during the interval. Moreover, since $V\left(\cdot ; \theta_{\ell}\right) \leq B_{\star}$, the algorithm does not choose an action with
instantaneous cost more than B_{\star}. This implies that $\sum_{t=t_{m}+1}^{t_{m+1}-1} c\left(s_{t}, a_{t}\right) \leq 2 B_{\star}$. To bound (8) we use the Bernstein confidence set, but taking into account that all the state-action pairs in the summation are known, we can use Lemma A.6 to obtain

$$
\begin{aligned}
& \sum_{s^{\prime} \in \mathcal{S}^{+}}\left(\theta_{\ell}\left(s^{\prime} \mid s_{t}, a_{t}\right)-\theta_{*}\left(s^{\prime} \mid s_{t}, a_{t}\right)\right)\left(V\left(s^{\prime} ; \theta_{\ell}\right)-\sum_{s^{\prime \prime} \in \mathcal{S}^{+}} \theta_{*}\left(s^{\prime \prime} \mid s_{t}, a_{t}\right) V\left(s^{\prime \prime} ; \theta_{\ell}\right)\right) \mathbf{1}_{\Omega_{s_{t}, a_{t}}^{\ell}} \\
& \leq \sum_{s^{\prime} \in \mathcal{S}^{+}} \frac{1}{8} \sqrt{\frac{c_{\min } \theta_{*}\left(s^{\prime} \mid s_{t}, a_{t}\right)\left(V\left(s^{\prime} ; \theta_{\ell}\right)-\sum_{s^{\prime \prime} \in \mathcal{S}^{+}} \theta_{*}\left(s^{\prime \prime} \mid s_{t}, a_{t}\right) V\left(s^{\prime \prime} ; \theta_{\ell}\right)\right)^{2} \mathbf{1}_{\Omega_{s_{t}, a_{t}}^{\ell}}^{S B_{\star}}}{}} \begin{array}{l}
\quad+\sum_{s^{\prime} \in \mathcal{S}^{+}} \frac{c_{\min }}{4 S B_{\star}}\left|V\left(s^{\prime} ; \theta_{\ell}\right)-\sum_{s^{\prime \prime} \in \mathcal{S}^{+}} \theta_{*}\left(s^{\prime \prime} \mid s_{t}, a_{t}\right) V\left(s^{\prime \prime} ; \theta_{\ell}\right)\right| \\
\leq \frac{1}{4} \sqrt{\frac{c_{\min } \mathbb{V}_{\ell}\left(s_{t}, a_{t}\right) \mathbf{1}_{\Omega_{s_{t}, a_{t}}^{\ell}}}{B_{\star}}}+\frac{c\left(s_{t}, a_{t}\right)}{2} .
\end{array} .
\end{aligned}
$$

The last inequality follows from Cauchy-Schwarz inequality, $\left|\mathcal{S}^{+}\right| \leq 2 S,\left|V\left(\cdot ; \theta_{\ell}\right)\right| \leq B_{\star}$, and $c_{\text {min }} \leq c\left(s_{t}, a_{t}\right)$. Summing over the time steps in interval m and applying Cauchy-Schwarz, we get

$$
\begin{aligned}
\sum_{t=t_{m}+1}^{t_{m+1}-1}\left[\frac{1}{4} \sqrt{\frac{c_{\min } \mathbb{V}_{\ell}\left(s_{t}, a_{t}\right) \mathbf{1}_{\Omega_{s_{t}, a_{t}}}}{B_{\star}}}+\frac{c\left(s_{t}, a_{t}\right)}{2}\right] \leq & \frac{1}{4} \sqrt{\left(t_{m+1}-t_{m}\right) \frac{c_{\min } \sum_{t=t_{m}+1}^{t_{m+1}-1} \mathbb{V}_{\ell}\left(s_{t}, a_{t}\right) \mathbf{1}_{\Omega_{s_{t}, a_{t}}}}{B_{\star}}} \\
& +\frac{\sum_{t=t_{m}+1}^{t_{m+1}-1} c\left(s_{t}, a_{t}\right)}{2} \\
\leq & \frac{1}{4} \sqrt{2 \sum_{t=t_{m}+1}^{t_{m+1}-1} \mathbb{V}_{\ell}\left(s_{t}, a_{t}\right) \mathbf{1}_{\Omega_{s_{t}, a_{t}}^{\ell}}^{t_{m}}}+B_{\star}
\end{aligned}
$$

The last inequality follows from the fact that duration of interval m is at most $2 B_{\star} / c_{\text {min }}$ and its cumulative cost is at most $2 B_{\star}$. Substituting these bounds into (5) implies that

$$
\begin{aligned}
\mathbb{E}\left[\sum_{t=t_{m}+1}^{t_{m+1}-1} \mathbb{V}_{\ell}\left(s_{t}, a_{t}\right) \mathbf{1}_{\Omega_{s_{t}, a_{t}}^{\ell}} \mid \mathcal{F}_{t_{m}}, \theta_{*}, \theta_{\ell}\right] & \leq \mathbb{E}\left[\left.\left(4 B_{\star}+\frac{1}{4} \sqrt{2 \sum_{t=t_{m}+1}^{t_{m+1}-1} \mathbb{V}_{\ell}\left(s_{t}, a_{t}\right) \mathbf{1}_{\Omega_{s_{t}, a_{t}}^{\ell}}}\right)^{2} \right\rvert\, \mathcal{F}_{t_{m}}, \theta_{*}, \theta_{\ell}\right] \\
& \leq 32 B_{\star}^{2}+\frac{1}{4} \mathbb{E}\left[\sum_{t=t_{m}+1}^{t_{m+1}-1} \mathbb{V}_{\ell}\left(s_{t}, a_{t}\right) \mathbf{1}_{\Omega_{s_{t}, a_{t}}} \mid \mathcal{F}_{t_{m}}, \theta_{*}, \theta_{\ell}\right]
\end{aligned}
$$

where the last inequality is by $(a+b)^{2} \leq 2\left(a^{2}+b^{2}\right)$ with $b=\frac{1}{4} \sqrt{2 \sum_{t=t_{m}+1}^{t_{m+1}-1} \mathbb{V}_{\ell}\left(s_{t}, a_{t}\right) \mathbf{1}_{\Omega_{s_{t}, a_{t}}^{\ell}}}$ and $a=4 B_{\star}$. Rearranging implies that $\mathbb{E}\left[\sum_{t=t_{m}+1}^{t_{m+1}-1} \mathbb{V}_{\ell}\left(s_{t}, a_{t}\right) \mathbf{1}_{\Omega_{s_{t}, a_{t}}^{\ell}} \mid \mathcal{F}_{t_{m}}, \theta_{*}, \theta_{\ell}\right] \leq 43 B_{\star}^{2}$ and the proof is complete.

A.5 PROOF OF THEOREM 3.5

Theorem (restatement of Theorem 3.5. Suppose Assumptions 2.1 and 3.4hold. Then, the regret bound of the PSRL-SSP algorithm is bounded as

$$
R_{K}=\mathcal{O}\left(B_{\star} S \sqrt{K A} L^{2}+S^{2} A \sqrt{\frac{B_{\star}^{3}}{c_{\min }}} L^{2}\right)
$$

where $L=\log \left(B_{\star} S A K c_{\min }^{-1}\right)$.

Proof. Denote by C_{M} the total cost after M intervals. Recall that

$$
\mathbb{E}\left[C_{M}\right]=K \mathbb{E}\left[V\left(s_{\text {init }} ; \theta_{*}\right)\right]+R_{M}=K \mathbb{E}\left[V\left(s_{\text {init }} ; \theta_{*}\right)\right]+R_{M}^{1}+R_{M}^{2}+R_{M}^{3}
$$

Using Lemmas 4.3, 4.4 and 4.5 with $\delta=1 / K$ obtains

$$
\begin{align*}
\mathbb{E}\left[C_{M}\right] & \leq K \mathbb{E}\left[V\left(s_{\mathrm{init}} ; \theta_{*}\right)\right] \\
& +\mathcal{O}\left(B_{\star} \mathbb{E}\left[L_{M}\right]+B_{\star} S \sqrt{M A \log ^{2}\left(S A K \mathbb{E}\left[T_{M}\right]\right)}+B_{\star} S^{2} A \log ^{2}\left(S A K \mathbb{E}\left[T_{M}\right]\right)\right) \tag{9}
\end{align*}
$$

Recall that $L_{M} \leq \sqrt{2 S A K \log T_{M}}+S A \log T_{M}$. Taking expectation from both sides and using Jensen's inequality gets us $\mathbb{E}\left[L_{M}\right] \leq \sqrt{2 S A K \log \mathbb{E}\left[T_{M}\right]}+S A \log \mathbb{E}\left[T_{M}\right]$. Moreover, taking expectation from both sides of $\sqrt[3]{ }$, plugging in the bound on $\mathbb{E}\left[L_{M}\right]$, and concavity of $\log (x)$ implies

$$
M \leq \frac{\mathbb{E}\left[C_{M}\right]}{B_{\star}}+K+\sqrt{2 S A K \log \mathbb{E}\left[T_{M}\right]}+S A \log \mathbb{E}\left[T_{M}\right]+\mathcal{O}\left(\frac{B_{\star} S^{2} A}{c_{\min }} \log \frac{B_{\star} K S A}{c_{\min }}\right)
$$

Substituting this bound in (9), using subadditivity of the square root, and simplifying yields

$$
\begin{aligned}
\mathbb{E}\left[C_{M}\right] & \leq K \mathbb{E}\left[V\left(s_{\text {init }} ; \theta_{*}\right)\right]+\mathcal{O}\left(B_{\star} S \sqrt{K A \log ^{2}\left(S A K \mathbb{E}\left[T_{M}\right]\right)}+S \sqrt{B_{\star} \mathbb{E}\left[C_{M}\right] A \log ^{2}\left(S A K \mathbb{E}\left[T_{M}\right]\right)}\right. \\
& \left.+B_{\star} S^{\frac{5}{4}} A^{\frac{3}{4}} K^{\frac{1}{4}} \log ^{\frac{5}{4}}\left(S A K \mathbb{E}\left[T_{M}\right]\right)+S^{2} A \sqrt{\frac{B_{\star}^{3}}{c_{\min }} \log ^{3} \frac{B_{\star} S A K \mathbb{E}\left[T_{M}\right]}{c_{\min }}}\right)
\end{aligned}
$$

Solving for $\mathbb{E}\left[C_{M}\right]$ (by using the primary inequality that $x \leq a \sqrt{x}+b$ implies $x \leq(a+\sqrt{b})^{2}$ for $a, b>0$), using $K \geq S^{2} A$, $V\left(s_{\text {init }} ; \theta_{*}\right) \leq B_{\star}$, and simplifying the result gives

$$
\begin{align*}
& \mathbb{E}\left[C_{M}\right] \leq\left(\mathcal{O}\left(S \sqrt{B_{\star} A \log ^{2}\left(S A K \mathbb{E}\left[T_{M}\right]\right)}\right)\right. \\
& \left.+\sqrt{\left.K \mathbb{E}\left[V\left(s_{\text {init }} ; \theta_{*}\right)\right]+\mathcal{O}\left(B_{\star} S \sqrt{K A \log ^{2.5}\left(S A K \mathbb{E}\left[T_{M}\right]\right.}\right)+S^{2} A \sqrt{\frac{B_{\star}^{3}}{c_{\mathrm{min}}} \log ^{3} \frac{B_{\star} S A K \mathbb{E}\left[T_{M}\right]}{c_{\min }}}\right)}\right)^{2} \\
& \leq \mathcal{O}\left(B_{\star} S^{2} A \log ^{2} \frac{S A \mathbb{E}\left[T_{M}\right]}{\delta}\right) \\
& \quad+K \mathbb{E}\left[V\left(s_{\text {init }} ; \theta_{*}\right)\right]+\mathcal{O}\left(B_{\star} S \sqrt{K A \log ^{2.5}\left(S A K \mathbb{E}\left[T_{M}\right]\right)}+S^{2} A \sqrt{\frac{B_{\star}^{3}}{c_{\min }} \log ^{3} \frac{B_{\star} S A K \mathbb{E}\left[T_{M}\right]}{c_{\mathrm{min}}}}\right. \\
& \left.\quad+B_{\star} S \sqrt{K A \log ^{4}\left(S A K \mathbb{E}\left[T_{M}\right]\right)}+S^{2} A\left(\frac{B_{\star}{ }^{5}}{c_{\mathrm{min}}} \log ^{7} \frac{B_{\star} S A K \mathbb{E}\left[T_{M}\right]}{c_{\mathrm{min}}}\right)^{\frac{1}{4}}\right) \\
& \leq K \mathbb{E}\left[V\left(s_{\mathrm{init}} ; \theta_{*}\right)\right]+\mathcal{O}\left(B_{\star} S \sqrt{\left.K A \log ^{4} S A K \mathbb{E}\left[T_{M}\right]\right)}+S^{2} A \sqrt{\frac{B_{\star}^{3}}{c_{\mathrm{min}}} \log ^{4} \frac{B_{\star} S A K \mathbb{E}\left[T_{M}\right]}{c_{\mathrm{min}}}}\right) \tag{10}
\end{align*}
$$

Note that by simplifying this bound, we can write $\mathbb{E}\left[C_{M}\right] \leq \mathcal{O}\left(\sqrt{B_{\star}{ }^{3} S^{4} A^{2} K^{2} \mathbb{E}\left[T_{M}\right] / c_{\min }}\right)$. On the other hand, we have that $c_{\min } T_{M} \leq C_{M}$ which implies $\mathbb{E}\left[T_{M}\right] \leq \mathbb{E}\left[C_{M}\right] / c_{\text {min }}$. Isolating $\mathbb{E}\left[T_{M}\right]$ implies $\mathbb{E}\left[T_{M}\right] \leq \mathcal{O}\left(B_{\star}{ }^{3} S^{4} A^{2} K^{2} / c_{\text {min }}^{3}\right)$. Substituting this bound into yields

$$
\mathbb{E}\left[C_{M}\right] \leq K \mathbb{E}\left[V\left(s_{\mathrm{init}} ; \theta_{*}\right)\right]+\mathcal{O}\left(B_{\star} S \sqrt{K A \log ^{4} \frac{B_{\star} S A K}{c_{\mathrm{min}}}}+S^{2} A \sqrt{\frac{B_{\star}^{3}}{c_{\mathrm{min}}} \log ^{4} \frac{B_{\star} S A K}{c_{\mathrm{min}}}}\right)
$$

We note that this bound holds for any number of M intervals as long as the K episodes have not elapsed. Since, $c_{\min }>0$, this implies that the K episodes eventually terminate and the claimed bound of the theorem for R_{K} holds.

A. 6 PROOF OF THEOREM 3.6

Theorem (restatement of Theorem 3.6). Suppose Assumption 2.1 holds. Running the PSRL-SSP algorithm with costs $c_{\epsilon}(s, a):=\max \{c(s, a), \epsilon\}$ for $\epsilon=\left(S^{2} A / K\right)^{2 / 3}$ yields

$$
R_{K}=\mathcal{O}\left(B_{\star} S \sqrt{K A} \tilde{L}^{2}+\left(S^{2} A\right)^{\frac{2}{3}} K^{\frac{1}{3}}\left(B_{\star}^{\frac{3}{2}} \tilde{L}^{2}+T_{\star}\right)+S^{2} A T_{\star}^{\frac{3}{2}} \tilde{L}^{2}\right)
$$

where $\tilde{L}:=\log \left(K B_{\star} T_{\star} S A\right)$ and T_{\star} is an upper bound on the expected time the optimal policy takes to reach the goal from any initial state.

Proof. Denote by T_{K}^{ϵ} the time to complete K episodes if the algorithm runs with the perturbed costs $c_{\epsilon}(s, a)$ and let $V_{\epsilon}\left(s_{\text {init }} ; \theta_{*}\right), V_{\epsilon}^{\pi}\left(s_{\text {init }} ; \theta_{*}\right)$ be the optimal value function and the value function for policy π in the SSP with cost function $c_{\epsilon}(s, a)$ and transition kernel θ_{*}. We can write

$$
\begin{align*}
R_{K} & =\mathbb{E}\left[\sum_{t=1}^{T_{K}^{\epsilon}} c\left(s_{t}, a_{t}\right)-K V\left(s_{\text {init }} ; \theta_{*}\right)\right] \\
& \leq \mathbb{E}\left[\sum_{t=1}^{T_{K}^{\epsilon}} c_{\epsilon}\left(s_{t}, a_{t}\right)-K V\left(s_{\text {int }} ; \theta_{*}\right)\right] \\
& =\mathbb{E}\left[\sum_{t=1}^{T_{K}^{\epsilon}} c_{\epsilon}\left(s_{t}, a_{t}\right)-K V_{\epsilon}\left(s_{\text {init }} ; \theta_{*}\right)\right]+K \mathbb{E}\left[V_{\epsilon}\left(s_{\text {init }} ; \theta_{*}\right)-V\left(s_{\text {init }} ; \theta_{*}\right)\right] . \tag{11}
\end{align*}
$$

Theorem 3.5 implies that the first term is bounded by

$$
\mathbb{E}\left[\sum_{t=1}^{T_{K}^{\epsilon}} c_{\epsilon}\left(s_{t}, a_{t}\right)-K V_{\epsilon}\left(s_{\mathrm{init}} ; \theta_{*}\right)\right]=\mathcal{O}\left(B_{\star}^{\epsilon} S \sqrt{K A} L_{\epsilon}^{2}+S^{2} A \sqrt{\frac{B_{\star}^{\epsilon^{3}}}{\epsilon}} L_{\epsilon}^{2}\right)
$$

with $L_{\epsilon}=\log \left(B_{\star}^{\epsilon} S A K / \epsilon\right)$ and $B_{\star}^{\epsilon} \leq B_{\star}+\epsilon T_{\star}$ (to see this note that $V_{\epsilon}\left(s ; \theta_{*}\right) \leq V_{\epsilon}^{\pi^{*}}\left(s ; \theta_{*}\right) \leq B_{\star}+\epsilon T_{\star}$). To bound the second term of (11), we have

$$
V_{\epsilon}\left(s_{\text {init }} ; \theta_{*}\right) \leq V_{\epsilon}^{\pi^{*}}\left(s_{\text {init }} ; \theta_{*}\right) \leq V\left(s_{\text {init }} ; \theta_{*}\right)+\epsilon T_{\star}
$$

Combining these bounds, we can write

$$
R_{K}=\mathcal{O}\left(B_{\star} S \sqrt{K A} L_{\epsilon}^{2}+\epsilon T_{\star} S \sqrt{K A} L_{\epsilon}^{2}+S^{2} A \sqrt{\frac{\left(B_{\star}+\epsilon T_{\star}\right)^{3}}{\epsilon}} L_{\epsilon}^{2}+K T_{\star} \epsilon\right)
$$

Substituting $\epsilon=\left(S^{2} A / K\right)^{2 / 3}$, and simplifying the result with $K \geq S^{2} A$ and $B_{\star} \leq T_{\star}$ (since $\left.c(s, a) \leq 1\right)$ implies

$$
R_{K}=\mathcal{O}\left(B_{\star} S \sqrt{K A} \tilde{L}^{2}+\left(S^{2} A\right)^{\frac{2}{3}} K^{\frac{1}{3}}\left(B_{\star}^{\frac{3}{2}} \tilde{L}^{2}+T_{\star}\right)+S^{2} A T_{\star}^{\frac{3}{2}} \tilde{L}^{2}\right)
$$

where $\tilde{L}=\log \left(K B_{\star} T_{\star} S A\right)$. This completes the proof.

References

Aviv Rosenberg, Alon Cohen, Yishay Mansour, and Haim Kaplan. Near-optimal regret bounds for stochastic shortest path. In International Conference on Machine Learning, pages 8210-8219. PMLR, 2020.

