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A PROOFS
A1 PROOF OF LEMMA [4.2]
Lemma (restatement of Lemma . The number of epochs is bounded as Ly, < /2SAK log Ty + SAlogThy.

Proof. Define macro epoch 7 with start time ¢,,, given by t,,, = ¢;, and
tu,p, = min{ty > ty, 1 ng,(s,a) > 2ny,_1(s, a) for some (s,a)}, 1=2,3,--.

A macro epoch starts when the second criterion of determining epoch length triggers. Let N, be a random variable denoting

the total number of macro epochs by the end of interval M and define upn,, +1 := Ly + 1.

Recall that K is the number of visits to the goal state in epoch ¢. Let K; = Z:ji_l K, be the number of visits to the

goal state in macro epoch ¢. By definition of macro epochs, all the epochs within a macro epoch except the last one are
triggered by the first criterion, i.e., Ky = Ky_1 + 1 for { = w;, -+ ,u;+1 — 2. Thus,

ui+171 ui+1fui71 ui+17ui71

% . (i —u = D) (uir — )
K; = Z K, = Kui+1*1 + Z (Kuifl +]) > Z J= B) .
l=u, j=1 j=1
Solving for u; 41 — u; implies that u; 41 —u; <14/ 2K;. We can write
N N — Nm —
Ly =uny+1—1= Z (Wig1 —u;) < Z (1 + 2Ki> = Ny + Z \ 2K;
i=1 i=1 i=1
N
< Ny +

2N ZK = Ny + V2Nu K,
=1

where the second inequality follows from Cauchy-Schwarz. It suffices to show that the number of macro epochs is bounded
as Ny <1+ SAlogThs. Let T, 4 be the set of all time steps at which the second criterion is triggered for state-action pair
(s,a),ie.,

Tsa := {tg < T, (s,a) > Qntzfl(s,a)} .

We claim that |75 | < lognr,,+1(s, a). To see this, assume by contradiction that |7 .| > 1 + logny,,+1(s, a), then

TRNCTOE | [ I e

Ne,_S,a Ne,_\S,a
te<Tar,ne,_, (s,0)>1 " * 1(5,0) te€Te ame,_, (s,a)>1F 1(5,0)

> lTsal-1 > Ny, 41(8,a),
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which is a contradiction. Thus, |7 .| < lognr,,+1(s, a) for all (s, a). In the above argument, the first inequality is by the
fact that n; (s, a) is non-decreasing in ¢, and the second inequality is by the definition of 7, ,. Now, we can write

Ny =1 —|—Z [Ts.al <1 +ZlognTM+1(s,a)

Z nTM-‘rl(Saa) Ty
<1+ SAl 52 =1+ SAlog— < SAlogT,
<1+ 0og SA + 0g SA = og L,
where the second inequality follows from Jensen’s inequality. O

A.2 PROOF OF LEMMA

Lemma (restatement of Lemma . The first term R}w is bounded as R}V[ < B,E[Ly].

Proof. Recall

Ly ter1—1
RM E [Z Z St, 9[ V(5t+1; 9@)}‘|
(=1 t=ty
Observe that the inner sum is a telescopic sum, thus
L
Ry =B > [V(st,:00) = V(st,,,500)] | < BJE[Ladl,
=1
where the inequality is by Assumption [2.1] O

A.3 PROOF OF LEMMA

Lemma (restatement of Lemma . The second term R3, is bounded as R3; < B,E[L ).

Proof. Recall that K, is the number of times the goal state is reached during epoch /. By definition, the only time steps that
s, # S¢41 is right before reaching the goal. Thus, with V(g; 6,) = 0, we can write

Ly tey1—1

D> Visesi60) V(s;;aw]] — KE [V (init; 04)]
=1 t=ty
L

=E Z V (Sinit; eé)Kzl — KE [V (Sinit; 0+)]
=1

=E

= ZE [Limty<anrV (sinit; 00) K| — KE [V (sinic; 604)] ,
=1

where the last step is by Monotone Convergence Theorem. Here m(t;) is the interval at time ¢,. Note that from the first
stopping criterion of the algorithm we have K, < K,_; + 1 for all ¢. Thus, each term in the summation can be bounded as

E [1gme)<aryV (Siniis 00) K] < E [Lpmey<aryV (sinic 00) (Ke—1 + 1)) .

1gmt)<mry (Ke—1 + 1) is 3, measurable. Therefore, applying the property of posterior sampling (Lemma implies

E [1meen<aryV (Sinic; 00) (Ke—1 4+ 1)] = E [1m<aryV (Sini; 64) (K1 + 1)]



Substituting this into R3,, we obtain

< Z (L imey<anyV (Sinit; 05) (Ke—1 + 1)] — KE [V (sinic; 6]
—1

Lm
=E | > V(sini;0) K1 +1)| — KE [V (sini; 0.)]
(=1
Ly
=E Smm (Z K£ 11— > +E [V(sinit; 0*)LM] < B*E[LJW]'
In the last inequality we have used the fact that 0 < V (sjn; 0) < By and Eszl K, 1 <K. O

A4 PROOF OF LEMMA

Lemma (restatement of Lemma . The third term R3, can be bounded as

o SAE[T )]
)

SAE[T)

Ry, < 2883*5\/ M Alog + 16328, 5% Alog? 5 } + 4SB,0E[Ly).

Proof. With abuse of notation let £ := ¢(t) denote the epoch at time ¢ and m(t) be the interval at time ¢. We can write

1

St79[ Z‘gl |St7a’t )‘|‘|

(513 0c) Zee "|st, a)V /;94)‘}}79*79@H-

T

>V

t=1

=E [Z Lim@w<my |V
t=1

t=1

Ry =E (s400) Zw 3¢, a0)V (55 0¢)

Limm<myE |V

The last equality follows from Dominated Convergence Theorem, tower property of conditional expectation, and that
1{m(1)<nry 1s measurable with respect to J;. Note that conditioned on F, 6. and 6y, the only random variable in the
inner expectation is s}. Thus, B[V (s}; 0¢)|F¢, 04, 0] = > 0.(8'|s¢, ar)V ("5 0¢). Using Dominated Convergence Theorem
again implies that

Tv
[Z Z (8'[st, ae) — Oc(s[s¢, ar)] V(Sl;ee)l

t=1g'cS+
T
E (D) [0.(5 st a1) — 0u(s |51, a1)] (V(S’;9e)— > 0*(3//|5taat)v(5//§91)>]7 (D
t=1gs'eSt+ s"eSt

where the last equality is due to the fact that 0,(:|sy,a;) and 0,(-|s¢, a;) are probability distributions and that
srest 0«(5"]st,a)V (s";6;) is independent of .

Recall the Bernstein confidence set By(s, a) defined in (@) and let Q?a be the event that both 6,.(-|s, a) and 0;(+|s, a) are in
By(s,a). If Qf , holds, then the difference between 6. (-|s, a) and (:|s, a) can be bounded by the following lemma.

+
Lemma A.1. Denote Ay(s,a) = w

ny (s,a)

Af Qg,a holds, then

10.(5|s,a) — 0o(5'|s,a)| < 8/0,(s]s,a)Ag(s,a) + 136 A4(s, a).

Proof. Since Q2 , holds, by [@) we have that

Bo(s'|s,a) — 0,(s'|s,a) < 4\/§g(s’|s, a)Ae(s,a) + 28A.(s, a).



Using the primary inequality that 2> < ax + b implies < a + Vb with z = \/ag(s/|s, a), a = 44/ A(s,a), and
b=0.(s|s,a) + 28A,(s, a), we obtain

\/0u(s'|s,a) < 4/ Ag(s,a) + \/0.(5']s, a) + 284,(s,a) < /0. (s']s,a) + 10/ Ag(s, a),

where the last inequality is by sub-linearity of the square root. Substituting this bound into (@) yields

10, (5|5, a) — Bu(s'|s,a)| < 4\/0,(5'[s,a)Ag(s, a) + 68A4(s, a).

Similarly,

100(5|s,a) — B(s'|s,a)| < 41/0, (5], a) Ag(s, a) + 68A4(s, a).

Using the triangle inequality completes the proof. O

Note that if either of 6, (-|s¢, at) or 0y(+|s¢, ar) is not in By(s¢, a;), then the inner term of (I can be bounded by 25 B, (note
that |S*| < 25 and V(+;0,) < B,). Thus, applying Lemrnaimplies that

Z [9*(s’|3t,at)—9@(s'|st,at)]( (s'500) — Z 0.(s"|s¢,ar) (”;95))

s'eS+ s""eSt

2
<8 Z Ag(se,a0)0.(8"|se, ar) <V(s’;94)— Z 9*(5”|5t,at)V(5”;0@)> 1ge
s'eSt

sghat
s"eSt

+136 Y Alse.ar) |V

s’eSt

(s'50,) — Z 0. (5" |st,a)V(s";60)

sest

1o

St.at

+28By (140 (fsr.an) ¢ Be(sran)} + 1{0sC 15000 ¢ Be(sr.a0)})
S 16\/3Ag(8t,at)V[(8t, G,t)].Qg . + 27253*14((515,@15)19(

Sts.at

+ 25 B, (Lo (fse.ang Belseant + 10,1500 ¢ Be(sran)})-

where Ay(s,a) = W and V(s, a) is defined in (3)). Here the last inequality follows from Cauchy-Schwarz,
’ﬂe S,a

|ST| <25, V(-;6,) < By and the definition of V. Substituting this into () yields

T
R3, < 16V/SE lz \/A@(St,at)Vl(St7at)1Q§t’at‘| (2)
t=1
Tnm
+2nSBJl§:AA%#W1%Ml *
t=1
Tm
+2SB,E Z (40 ClsiangBelsiany T 100 Ise.agBa(se.ant) | - @
t=1

The inner sum in (3) is bounded by 65 Alog?(SAT);/5) (see Lemma [A.4). To bound (@), we first show that By(s, a)
contains the true transition probability 6, (-|s, a) with high probability:

Lemma A.2. For any epoch { and any state-action pair (s,a) € S x A, 0.(-|s,a) € By(s,a) with probability at least

1— — 6
QSAnZ(s,a)

Proof. Fix (s,a,s') € S x A x ST and 0 < § < 1 (to be chosen later). Let (Z;)$2, be a sequence of random variables
drawn from the probability distribution 6, (-|s, a). Apply Lemmabelow with X; = 175 _y and 6; = & to a prefix
of length ¢ of the sequence (X;)$2,, and apply union bound over all ¢ and s’ to obtain

A 0,(s' 1 8Sn[ (s a) 89 42
Oo(s'|s,a) — 0.(s']s,a)| <2 u(s'ls, a)+og + 7log M
ny (s,a) 0




with probability at least 1 — §/2 for all s’ € ST and ¢ > 1, simultaneously. Choose §' = 6/SAn; (s,a) and use S > 2,
A > 2 to complete the proof. O

Lemma A.3 (Theorem D.3 (Anytime Bernstein) of [Rosenberg et al|[2020]). Ler (X,,)$2, be a sequence of independent
and identically distributed random variables with expectation u. Suppose that 0 < X,, < B almost surely. Then with
probability at least 1 — 6, the following holds for all n. > 1 simultaneously:

2
+7Blog—n.

<92 BZXiloan :

=1 Y

Now, by rewriting the sum in (@) over epochs, we have

t=1

T
E [Z (L0, (lse.an)gBe(sean) + 1{@(-St,at>¢Be<St,at>})]

L]u tZ+1 1
=E Z Z (1{9*('lst,y(lt)gBl(st,,at)}+1{02('|St7at)¢B£(St7at)})‘|
(=1 t=t,
L]u tl+1 1
=D ED D —sa=a (1{9*('57a)¢31(5~,¢1)}+1{95('|370)¢Be(570)}>]
s,a (=1 t=t,

Ly

Z Ntppr (5:0) =1t (5,0)) (Lo (fs,00¢Ba(s.a)} + 1{9e<-|sﬁa>¢Bz<s,a>})] :

_ZE

Note that 7, , (s,a) — n¢,(s,a) < ng,(s,a) + 1 by the second stopping criterion. Moreover, observe that By(s, a) is
F;, measurable. Thus, it follows from the property of posterior sampling (Lemma that E[1g,(.|s,a)¢Be(s,a)} | Fte) =

E[1g, (-|s,a)gBe(s,a)} 1 Fte] = P(Oc(-[s,a) & Be(s,a)|F,) < 6/(2SAne (s,a)), where the inequality is by Lemma
Using Monotone Convergence Theorem and that 1y,,,(;,)<as} is Ft, measurable, we can write

Y E

S,a

Z (4041 (5,0) = e, (5, 0)) (1{9*<-|s,a>¢Bz(s,a>}+1{9f<'s,a)eBe<s,a>})]
/=1

<Y D E [Lmn<any (04,(5,0) + D E [Lo, (Ja)gBi(s.0)) + L(6, (5.0 ¢ Be(s.0)} [ Fre]]

s,a =1
< Zi]E |:1{m(t Y<M} (nté(s,a) + 1) L
T o= SAnj (s,a)

where the last inequality is by n¢,(s,a) + 1 < 2n; (s, a) and Monotone Convergence Theorem.

We proceed by bounding (2)). Denote by ¢,, the start time of interval m, define ¢5;11 := T + 1, and rewrite the sum in (2)
over intervals to get

tmy1—1

Z \/AZ(St, ar)Ve(st, at)lﬁﬁ

t=tm

t-at

T M
Z \/Ae (st at)Ve(st, ar) 19‘ a,t] Z K

t=1 =1




Applying Cauchy-Schwarz twice on the inner expectation implies

tmy1—1
Z \/AZ(St,at)Vé(St,at)lfzgt’at
t=tm

tmy1—1 tmy1—1

<E > Adsia) | Y Vilsea Nae,

t=tm, t=tm

[tm4+1—1 tm1—1
E Ag(st,ar)| - E Vi(st, ar 1522 s

L t=tm t=tm,

IN
=

tomg1—1

Z Ae St;at

where the last inequality is by Lemma[A.5] Summing over M intervals and applying Cauchy-Schwarz, we get

M tmy1—1
§7B*Z E Z Ag( st,at]

m=1 t=tm

< 7B,

M tmt1—1
Z El Z \/Az(st,at)Ve(St,at)lszgwt

m=1 t=tm

M tmi1—1
s usoe| S A ]
m=1 t=tm

=178,

Tnm
]E Z Ag(st, at)
t=1

AT
< 18B*\/ MSAE [Iog2 5 M],

]

where the last inequality follows from Lemma Substituting these bounds in @]} (EI) (Ef[) concavity of log2 x for x > 3,
and applying Jensen’s inequality completes the proof.

Lemma A 4. Z;‘F:Ml Ay(se,ay) < 6SAlog?(SATv /6).

log(SAn[ (s,a)/)

Proof. Recall Ay(s,a) = . Denote by L := log(S AT /d), an upper bound on the numerator of Ay(s¢, az).

nz'(&a)
we have
Tm Tnv L Tnm 1{ )
A(se,at) < = — e 2
; 9 P ne (shat) SZ;; n;(s a)

1 St=s8,ar=a
<o T Yt T + 28 ;

s,a t=1 ny

<2LSA+2L Z(l +lognr,, +1(s,a))

s,a

< 4LSA +2LSAlog Tas < 6LSAlog Thy.

Here the second inequality is by n/ (s, a) > 0.5n/ (s, a) (the second criterion in determining the epoch length), the third
inequality is by >.""_, 1/2 < 1 + logn, and the fourth inequality is by nz,,+1(s,a) < Tas. The proof is complete by
noting that log Ty < L. O

Lemma A.5. For any interval m, E] tm“ 1Vg(st,at)19e] < 44B2

Proof. To proceed with the proof, we need the following two technical lemmas.



Lemma A.6. Let (s, a) be a known state-action pair and m be an interval. Inga holds, then for any state s' € ST,

/ ) 1 [cminf« (|5, a) Cmin
_ < — '
0. (5"|s,a) — 0o(s"|s,a)] < 3 SB, 4S B,

Proof. From Lemma we know that if Qﬁ’a holds, then

|04 (s"|s,a) — 04(s|s,a)| < 8\/9*(5’|5,a)Ag(5,a) + 136A,(s,a),

n
with Ag(s,a) = W
- B:S1og B.54 B,SA - for some large enough constant « since (s, a) is known. O

Cmin

The proof is complete by noting that log(z)/x is decreasing, and that n/ (s,a) >

Lemma A.7 (Lemma B.15. of Rosenberg et al.|[2020]). Let (X;)$2, be a martingale difference sequence adapted to the
filtration (F;){2. Let Y, = (3 X4)? — >4 E[X2|Fe_1]. Then (Y,,)2%, is a martingale, and in particular if T is a
stopping time such that T < c almost surely, then E[Y,] = 0.

By the definition of the intervals, all the state-action pairs within an interval except possibly the first one are known.
Therefore, we bound

tm+1—1 tm1—1
E Z Ve(st’at)lﬂﬁt,a,, “th =E {Vf(stm’atm)lﬂ‘ét,at|]:tm} +E Z Vg(st,at)lggt’% ‘ftm] .
t=tm t=tm+1
The ﬁrst summand is upper bounded by BZ. To bound the second term, define Z; = [V(s};0,) —

Yoves 0«85t a0) V(s 05)]19« ., Conditioned on F, 0. and 0y, (Z})>¢,, constitutes a martingale difference se-
quence with respect to the filtration (Fi%1)e>t,,» where FJ™ is the sigma algebra generated by {(s;,.,as,.), -, (5, a¢)}.
Moreover, t,,+1 — 1 is a stopping time with respect to (}'gil)tztm and is bounded by t,,, + 2B, / Cinin- Therefore, Lemma
implies that

tmy1—1 tmy1—1 2
E| Y Vilsa)ler,, | Fi 00,00 =E ( 3 251%,%) 76,00 | - 5)
t=tm+1 t=tm+1

We proceed by bounding |3, +11 Ztlm | in terms of St 1 Ve(se, at)lqe  and combine with the left hand side

to complete the proof. We have

tmy1—1 tmy1—1

Z Zelgét o Z V(s};00) — Z 9*(S’|st,at)V(s’;9¢)1 loc

t=ty,+1 t=t,+1 s'es
tmg1—1

<[ D V(sii0e) = Vi(se; 00)] ©)
t=tm,+1
tmg1—1

H1YD ([ Vsi00) = > 0u(s |50, an) (s';ee)H )
t=t;,+1 s'es
tmg1—1

®)

Z Z [0(5|5¢,a1) — (s’shat)]( s'30,) — Z 0.(s"|s¢,as) V(s”;@@) Lo¢ |-

t=tm+1s'eS+ s'""eSt+

where (8)) is by the fact that 0,(-|s;, a;), 0. (-|s¢, a;) are probability distributions and 3, o g+ 0«(5"[s¢, a:)V (5”5 6,) is
independent of s’ and V' (g;6,) = 0. (6) is a telescopic sum (recall that s, 1 = s if s} # g) and is bounded by B,. It
follows from the Bellman equation that (/) is equal to t’"j ! _& ¢(s¢, at). By definition, the interval ends as soon as the

cost accumulates to B, during the mterval Moreover, since V( 0¢) < B,, the algorithm does not choose an action with



instantaneous cost more than B,. This implies that Zt’";“ ! _& (s, ar) < 2B,. To bound (8) we use the Bernstein confidence

set, but taking into account that all the state-action pairs in the summation are known, we can use Lemma[A.6|to obtain

Z (9g(5'|st,at)—9*(s’|st,at))( s'36,) — Z 0. (s"|s¢,at) (s”;@@) lor

s'€S+ s”eSt
2

- 1 | Cmin®x (8|54, az) (V(s’;ﬂz) — D srest 9*(3”|Stvat)v(3”;0€)) 1Q£t1at
<23 SB,

s’eSt

- Y o - X 06V
est B. s"es+

1 [cminVe(st,ar)lge (s, at)
< = t:0r .
=3 B* 92

(;0¢)| < By, and cpin < ¢(st, a¢). Summing

The last inequality follows from Cauchy-Schwarz inequality,
over the time steps in interval m and applying Cauchy-Schwarz, we get

tmp1—1 1 cminVZ<St7 at)lﬂﬁt a C(Sta at) 1 Cmin Ztmzrl +1 Vf(sh at)le Lay
- (tm-‘rl - tm)

t:%;l 4 B, T =3 B,
n imtﬁ+1 c(st, at)
2
1| et
S 1 Z V[ st,at 1Q£ Viar +B*
t=tm+1

The last inequality follows from the fact that duration of interval m is at most 2B, /¢y and its cumulative cost is at most
2B,. Substituting these bounds into (3]) implies that

2

trmg1—1

1
1B+ 2H§;1w<st7at>1ggt,% i, 000
=tm+

tmt1—1

E Vi(sea)lae, ’-tha 0,0,
t=tm+1

E

timt1—1
1
S 32B3 —+ ZE Z V((St7at)19£ . ‘]-}m,@*,&g] 5

t=tm+1

where the last inequality is by (a + b)? < 2(a? +b?) with b = i\/Z Zig;};ﬁ Ve(st,a¢)1ge  and a = 4B,. Rearranging
implies that E t’”“ L 11 Va(st, at)lm |]-"tm, 0., 94 < 43 B2 and the proof is complete. O

O

A.5 PROOF OF THEOREM

Theorem (restatement of Theorem [3.5). Suppose Assumptions[2.1)and [3.4]hold. Then, the regret bound of the PSRL-SSP al-

gorithm is bounded as
RB.3
Rx =0 | B.SVKAL? + S2Ay| —1L? |,
Cmin

where L = log(B,SAKc

l’l'llIl)



Proof. Denote by C} the total cost after M intervals. Recall that
E[Cun) = KE[V (sinit; 04)] + Rar = KE[V (sinic; 04)] + Ry + Ry + Ry

Using Lemmas andwith 0 = 1/K obtains
E[Cym] < KE[V (Sinit; 0+)]

+ 0 <B*E[LM] + B*S\/ M Alog?(SAKE[Ty]) + B.S?A log2(SAKIE[TM])) : )

Recall that Ly, < /25AK log T + S AlogT). Taking expectation from both sides and using Jensen’s inequality gets
us E[Lys] < \/2SAK logE[Ty] + SAlog E[T)]. Moreover, taking expectation from both sides of (3)), plugging in the
bound on E[L ], and concavity of log(z) implies

M < ElCn] + K +\/2SAK logE[Tn\] + SAlogE[Tw] + O (

B,

B,S%A B*KSA>
log .

Cmin Cmin

Substituting this bound in (9), using subadditivity of the square root, and simplifying yields

E[Cyn] < KE[V (sinit; 05)] + O (B*S\/ K Alog?(SAKE[Tw]) + S\/ B,E[Cy]Alog®(SAKE[T)])

B

5 03 1 5 3 B,SAKE[T
L Bsi At K 1og4<SAKE[TM])+52A\/  Jogt BSAKE] M]>.

Cmin Cmin

Solving for E[C)] (by using the primary inequality that 2 < a+/z + b implies < (a+v/b)? for a,b > 0), using K > S?A,
V (Sinit; 0+) < By, and simplifying the result gives

E[Cwn] < (o <S\/B*Alog2(SAKIE[TM])>

2
3
+ | KE[V (Sini; 02)] + O B*S\/KAlog2'5(SAKE[TM])+52A\/ B log® B.SAKE[T] )

Cmin Cmin

<O (B*SQAlogz SA]E[TAA)

]

B3 log? B,SAKE[Ty]

Cmin Cmin

+ KE[V (Sinii; 04)] + O (B*S\/ K Alog*®(SAKE[Ty]) + SQA\/

BS
*lg

Cmin Cmin

+ B.S\/ K Alog"(SAKE[Ty]) + $2A ( og” B*SAKIE[TM]> )

B |yt BeSAKE[Tu]

Cmin Cmin

< KE[V (sinit; 0:)] + O B*S\/KA log* SAKE[T]) + SQA\/ (10)

Note that by simplifying this bound, we can write E[Cy/] < O <\/ B,3S1A2K 2E[Twm]/ cmin> . On the other hand, we

have that cpinThs < Cir which implies E[Th] < E[Cs]/cmin. Isolating E[T)] implies E[Th] < O (B,>S*A2K?/c3,).
Substituting this bound into (I0) yields

3
E[Chs] < KE[V (init; 0+)] + O B*S\/KA log* B.54K + S2A\/ Bf log* B.SAK

Cmin Cmin Cmin

We note that this bound holds for any number of M intervals as long as the K episodes have not elapsed. Since, cpin > 0,
this implies that the K episodes eventually terminate and the claimed bound of the theorem for Ry holds. O



A.6 PROOF OF THEOREM

Theorem (restatement of Theorem [3.6). Suppose Assumption [2.1] holds. Running the PSRL-SSP algorithm with costs
ce(s,a) := max{c(s,a),e} for e = (S?A/K)?/3 yields

where L := log(K B, T, SA) and T} is an upper bound on the expected time the optimal policy takes to reach the goal from
any initial state.

Proof. Denote by T5 the time to complete K episodes if the algorithm runs with the perturbed costs c(s,a) and let
Ve(Sinit; 0+ )s V™ (Sinit; 05 ) be the optimal value function and the value function for policy 7 in the SSP with cost function
ce(s,a) and transition kernel 6,.. We can write

o
R =E | Y c(si,ar) — KV (sinit; 0-)

t=1

e
<E ch(st,at) — KV (Sinit; 0+)

t=1

e
=E | ce(st,ar) = KVe(sinit; 0.) | + KE [Ve(init; ) — V (5imi 0] )

t=1

Theorem 3.5]implies that the first term is bounded by

TS [ e3
Be
E g ce(se,ar) — KV (sini; 05)| = O | BESVKAL? + S?Ay| —=L? |,
€
t=1

with L. = log(BSSAK/e) and BS < B, + €T (to see this note that V,(s; 6,) < Vf* (s;04) < By + €T,). To bound the
second term of (T1]), we have

Ve (Sinits 0) < VT (inits 0x) <V (Simics 0) + €T
Combining these bounds, we can write

(By + €T3
€

Rk =0 (B*S\/KALE + T SVKAL? + S%A L2+ KT*€> :

Substituting € = (SzA/K)2/3, and simplifying the result with K > S?A and B, < T, (since c(s,a) < 1) implies
Ric = O (B.SVKAL? + (54) S K (BFL24+T.) + 52AT§E2) ,
where L = log(K BT, SA). This completes the proof. O
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