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Abstract

We consider the problem of online reinforcement
learning for the Stochastic Shortest Path (SSP)
problem modeled as an unknown MDP with an
absorbing state. We propose PSRL-SSP, a simple
posterior sampling-based reinforcement learning
algorithm for the SSP problem. The algorithm op-
erates in epochs. At the beginning of each epoch, a
sample is drawn from the posterior distribution on
the unknown model dynamics, and the optimal pol-
icy with respect to the drawn sample is followed
during that epoch. An epoch completes if either
the number of visits to the goal state in the current
epoch exceeds that of the previous epoch, or the
number of visits to any of the state-action pairs is
doubled. We establish a Bayesian regret bound of
Õ(B?S

√
AK), where B? is an upper bound on

the expected cost of the optimal policy, S is the
size of the state space, A is the size of the action
space, and K is the number of episodes. The al-
gorithm only requires the knowledge of the prior
distribution, and has no hyper-parameters to tune.
It is the first such posterior sampling algorithm
and outperforms numerically previously proposed
optimism-based algorithms.

1 INTRODUCTION

Stochastic Shortest Path (SSP) model considers the problem
of an agent interacting with an environment to reach a prede-
fined goal state while minimizing the cumulative expected
cost. Unlike the finite-horizon and discounted Markov De-
cision Processes (MDPs), in the SSP model, the horizon of
interaction between the agent and the environment depends
on the agent’s actions, and can possibly be unbounded (if the
goal is not reached). A wide variety of goal-oriented control
and reinforcement learning (RL) problems such as naviga-

tion, game playing, etc. can be formulated as SSP problems.
In the RL setting, where the SSP model is unknown, the
agent interacts with the environment in K episodes. Each
episode begins at a predefined initial state and ends when
the agent reaches the goal (note that it might never reach
the goal). We consider the setting where the state and action
spaces are finite, the cost function is known, but the tran-
sition kernel is unknown. The performance of the agent is
measured through the notion of regret, i.e., the difference
between the cumulative cost of the learning algorithm and
that of the optimal policy during the K episodes.

The agent has to balance the well-known trade-off between
exploration and exploitation: should the agent explore the
environment to gain information for future decisions, or
should it exploit the current information to minimize the
cost? A general way to balance the exploration-exploitation
trade-off is to use the Optimism in the Face of Uncertainty
(OFU) principle [Lai and Robbins, 1985]. The idea is to
construct a set of plausible models based on the available
information, select the model associated with the minimum
cost, and follow the optimal policy with respect to the se-
lected model. This idea is widely used in the RL literature
for MDPs (e.g., [Jaksch et al., 2010, Azar et al., 2017, Fruit
et al., 2018, Jin et al., 2018, Wei et al., 2020, 2021]) and
also for SSP models [Tarbouriech et al., 2020, Rosenberg
et al., 2020, Rosenberg and Mansour, 2020, Chen and Luo,
2021, Tarbouriech et al., 2021b].

An alternative fundamental idea to encourage exploration is
to use Posterior Sampling (PS) (also known as Thompson
Sampling) [Thompson, 1933]. The idea is to maintain the
posterior distribution on the unknown model parameters
based on the available information and the prior distribution.
PS algorithms usually proceed in epochs. In the beginning of
an epoch, a model is sampled from the posterior. The actions
during the epoch are then selected according to the optimal
policy associated with the sampled model. PS algorithms
have two main advantages over OFU-type algorithms. First,
the prior knowledge of the environment can be incorpo-
rated through the prior distribution. Second, PS algorithms

Proceedings of the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023), PMLR 216:922–931.



have shown superior numerical performance on multi-armed
bandit problems [Scott, 2010, Chapelle and Li, 2011], and
MDPs [Osband et al., 2013, Osband and Van Roy, 2017,
Ouyang et al., 2017b].

The main difficulty in designing PS algorithms is the de-
sign of the epochs. In the basic setting of bandit problems,
one can simply sample at every time step [Chapelle and
Li, 2011]. In finite-horizon MDPs, where the length of an
episode is predetermined and fixed, the epochs and episodes
coincide, i.e., the agent can sample from the posterior dis-
tribution at the beginning of each episode [Osband et al.,
2013]. Moreover, a bad policy in an episode of a finite-
horizon MDP only results in constant regret. However, in
the general SSP model, where the length of each episode
is not predetermined and can possibly be unbounded, these
natural choices for the epoch do not work. This is because
sticking to a bad policy in any of the episodes prevents the
agent from reaching the goal and imposes infinite regret.
Indeed, the agent needs to switch policies during an episode
if the current policy cannot reach the goal.

In this paper, we propose PSRL-SSP, the first PS-based
RL algorithm for the SSP model. PSRL-SSP starts a new
epoch based on two criteria. According to the first crite-
rion, a new epoch starts if the number of episodes within
the current epoch exceeds that of the previous epoch. The
second criterion is triggered when the number of visits to
any state-action pair is doubled during an epoch. Intuitively
speaking, in the early stages of the interaction between the
agent and the environment, the second criterion triggers
more often. This criterion is responsible for switching poli-
cies during an episode if the current policy cannot reach the
goal. In the later stages of the interaction, the first criterion
triggers more often and encourages exploration. We prove
a Bayesian regret bound of Õ(B?S

√
AK), where S is the

number of states, A is the number of actions, K is the num-
ber of episodes, and B? is an upper bound on the expected
cost of the optimal policy.

Our regret bound is similar to that of Rosenberg et al. [2020]
and has a gap of

√
S with the lower bound. Note that Tar-

bouriech et al. [2021b], Cohen et al. [2021], Chen et al.
[2021] have proposed OFU algorithms that in theory have
closed this gap for minimax regret. But as we will see in
Section 5, the empirical performance of our PS algorithm
is much better than that of the OFU algorithms proposed
therein. Our algorithm is the first PS algorithm for the
SSP setting. And as for finite-horizon [Osband et al., 2013]
and the infinite-horizon average-cost MDPs [Ouyang et al.,
2017b], despite a

√
S gap to the lower bound in theory,

PS algorithms significantly outperform the OFU-type al-
gorithms empirically. The

√
S gap is understood to be an

artifact of the analysis and it remains an open question how
to bridge it via tighter analysis for PS algorithms in general.

The main contributions of this paper are as follows:

Algorithmic novelty: A strength of PS algorithms is that their
design follows the same general template, and in the infinite-
horizon setting, it essentially boils down to the design of
the epochs since the rest of the algorithm is natural. This
is indeed non-trivial in the SSP setting for three reasons.
First, although the SSP model seems closer to the finite-
horizon MDPs (as previous OFU algorithms suggest [Cohen
et al., 2021]), applying the PS algorithm of the finite-horizon
MDPs [Osband et al., 2013] that samples in the beginning of
the episodes does not work for the SSP model, because the
policy obtained for the sampled transition kernel may not be
proper. Second, artificially switching to the fast policy after
some time if the current policy does not reach the goal (as
in Tarbouriech et al. [2020]), makes the algorithm unneces-
sarily complicated. Third, applying the PS algorithm of the
infinite-horizon average-cost MDPs [Ouyang et al., 2017b]
to the SSP setting leads to the sub-optimal regret bound of
O(K2/3). We propose a simple yet effective epoch design
that yields the near-optimal regret bound of Õ(B?S

√
AK).

Our epoch is determined based on two criteria. The first
criterion encourages exploration by controlling the number
of episodes in each epoch. The second criterion controls the
number of visits to state-action pairs and is responsible to
switch policies if the current policy is not proper.

Analytical novelty: In finite-horizon MDPs, the regret of an
episode is at-most a constant proportional to the horizon.
However, the variable length of the episodes in the SSP set-
ting, imposes a significant challenge in the analysis because
there is no upper-bound on the regret of a single episode,
let alone K episodes. Therefore, applying direct analysis of
previous posterior sampling approaches is not possible. To
handle this issue, we have used the notion of “interval” (only
in the analysis) to artificially limit the total cost by definition.
Then, used concentration bounds, posterior-sampling prop-
erty, and careful algebraic manipulation to self-bound the to-
tal cost CM afterM intervals in terms of

√
CM . This allows

us to show CM = O(
√
M) and then translate it in terms

of regret. This type of analysis is inspired by Rosenberg
et al. [2020] and is not common in previous PS algorithms
in finite-horizon/infinite-horizon MDPs. Note that applying
the optimism-based analysis of Rosenberg et al. [2020] to
the PS setting imposes new challenges that are successfully
handled. More specifically, the optimistic transition kernel
of Rosenberg et al. [2020] is in the confidence set with high
probability. However, in the PS setting, the case where the
sampled transition kernel falls outside the confidence set
needs to be handled separately (see e.g., how (9) is handled
with any-time Bernstein inequality). Moreover, following
Hoeffding-type concentration as in Ouyang et al. [2017b],
yields a sub-optimal regret bound of O(K2/3). Instead, we
propose a different analysis using Bernstein-type concen-
tration inspired by the work of Rosenberg et al. [2020] to
achieve O(

√
K) regret bound (see Lemma 4.5). The new

design of the epochs requires a novel analysis in Lemma 4.4
as well.
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Numerical performance: Our simulations on SSP-
MountainCar and two synthetic environments verify that
the PSRL-SSP algorithm outperforms the optimism-based
competitors significantly, with no hyper-parameter tuning.

Related Work. Posterior Sampling. The idea of PS al-
gorithms dates back to the pioneering work of Thompson
[1933]. The algorithm was ignored for several decades un-
til recently. In the past two decades, PS algorithms have
successfully been developed for various settings including
multi-armed bandits Scott [2010], Chapelle and Li [2011],
Kaufmann et al. [2012], Agrawal and Goyal [2012, 2013],
MDPs [Strens, 2000, Osband et al., 2013, Fonteneau et al.,
2013, Gopalan and Mannor, 2015, Osband and Van Roy,
2017, Kim, 2017, Ouyang et al., 2017b, Banjević and Kim,
2019], Partially Observable MDPs [Jafarnia-Jahromi et al.,
2022], Stochastic Games [Jafarnia-Jahromi et al., 2021],
and Linear Quadratic Control [Abeille and Lazaric, 2017,
Ouyang et al., 2017a]. The reader is referred to Russo et al.
[2017] for a more comprehensive literature review.

Online Learning in SSP. Another related line of work is
online learning in the SSP model, which was introduced
by Tarbouriech et al. [2020]. They proposed an algorithm
with Õ(K2/3) regret bound. Subsequent work of Rosenberg
et al. [2020] improved the regret bound to Õ(B?S

√
AK).

Cohen et al. [2021], Tarbouriech et al. [2021b], Chen et al.
[2021] proved a minimax regret bound of Õ(B?

√
SAK).

However, none of these works propose a PS-type algorithm.
We refer the reader to Yin et al. [2022] for offline learning
of the SSP model, Rosenberg and Mansour [2020], Chen
et al. [2020], Chen and Luo [2021] for the SSP model with
adversarial costs and Tarbouriech et al. [2021a] for sample
complexity of the SSP model with a generative model.

2 PRELIMINARIES

A Stochastic Shortest Path (SSP) model is denoted byM =
(S,A, c, θ, sinit, g) where S is the state space,A is the action
space, c : S × A → [0, 1] is the cost function, sinit ∈ S
is the initial state, g /∈ S is the goal state, and θ : S+ ×
S × A → [0, 1] represents the transition kernel such that
θ(s′|s, a) = P(s′t = s′|st = s, at = a) where S+ =
S ∪ {g} includes the goal state as well. Here st ∈ S and
at ∈ A are the state and action at time t = 1, 2, 3, · · ·
and s′t ∈ S+ is the subsequent state. We assume that the
initial state sinit is a fixed and known state and S and A
are finite sets with size S and A, respectively. A stationary
policy is a deterministic map π : S → A that maps a state
to an action. The value function (also called the cost-to-go
function) associated with policy π is a function V π(·; θ) :
S+ → [0,∞] given by V π(g; θ) = 0 and V π(s; θ) :=

E[
∑τπ(s)
t=1 c(st, π(st))|s1 = s] for s ∈ S, where τπ(s) is

the number of steps before reaching the goal state (a random
variable) if the initial state is s and policy π is followed
throughout the episode. Here, we use the notation V π(·; θ)

to explicitly show the dependence of the value function on
θ. Furthermore, the optimal value function can be defined as
V (s; θ) = minπ V

π(s; θ). Policy π is called proper if the
goal state is reached with probability 1, starting from any
initial state and following π (i.e., maxs τπ(s) <∞ almost
surely), otherwise it is called improper.

We consider the reinforcement learning problem of an agent
interacting with an SSP model M = (S,A, c, θ∗, sinit, g)
whose transition kernel θ∗ is randomly generated according
to the prior distribution µ1 at the beginning and is then fixed.
We will focus on SSP models with transition kernels in the
set ΘB? with the following standard properties:

Assumption 2.1. For all θ ∈ ΘB? , the following holds: (1)
there exists a proper policy, (2) for all improper policies πθ,
there exists a state s ∈ S , such that V πθ (s; θ) =∞, and (3)
the optimal value function satisfies maxs V (s; θ) ≤ B?.

Bertsekas and Tsitsiklis [1991] prove that the first two con-
ditions in Assumption 2.1 imply that for each θ ∈ ΘB? ,
the optimal policy is stationary, deterministic, proper, and
can be obtained by the minimizer of the Bellman optimality
equations given by V (s; θ) =

min
a

{
c(s, a) +

∑
s′∈S+

θ(s′|s, a)V (s′; θ)
}
,∀s ∈ S. (1)

Standard techniques such as Value Iteration and Policy It-
eration can be used to compute the optimal policy if the
SSP model is known [Bertsekas, 2017]. Here, we assume
that S, A, and the cost function c are known (though the
algorithm can be extended easily when unknown); and the
transition kernel θ∗ is unknown. Moreover, we assume that
the support of the prior distribution µ1 is a subset of ΘB? .

The agent interacts with the environment in K episodes.
Each episode starts from the initial state sinit and ends at
the goal state g (the agent may never reach the goal). At
time t, the agent observes state st and takes action at. The
environment then yields the next state s′t ∼ θ∗(·|st, at). If
the goal is reached (i.e., s′t = g), then the current episode
completes, a new episode starts, and st+1 = sinit. If the goal
is not reached (i.e., s′t 6= g), then st+1 = s′t. The goal of the
agent is to minimize the expected cumulative cost after K
episodes, or equivalently, minimize the Bayesian regret:

RK := E

[
TK∑
t=1

c(st, at)−KV (sinit; θ∗)

]
,

where TK is the total number of time steps before reach-
ing the goal state for the Kth time, and V (sinit; θ∗) is the
optimal value function from (1). Here, expectation is with
respect to the prior distribution µ1 for θ∗, the horizon TK ,
the randomness in the state transitions, and the randomness
of the algorithm. If the agent does not reach the goal state at
any of the episodes (i.e., TK =∞), we define RK =∞.
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3 THE PSRL-SSP ALGORITHM

In this section, we propose the Posterior Sampling Rein-
forcement Learning (PSRL-SSP) algorithm (Algorithm 1)
for the SSP model. The input of the algorithm is the prior
distribution µ1. At time t, the agent maintains the poste-
rior distribution µt on the unknown parameter θ∗ given by
µt(Θ) = P(θ∗ ∈ Θ|Ft) for any set Θ ⊆ ΘB? . Here Ft is
the information available at time t (i.e., the sigma algebra
generated by s1, a1, · · · , st−1, at−1, st). Upon observing
state s′t by taking action at at state st, the posterior can be
updated according to

µt+1(dθ) =
θ(s′t|st, at)µt(dθ)∫
θ′(s′t|st, at)µt(dθ′)

. (2)

The PSRL-SSP algorithm proceeds in epochs ` =
1, 2, 3, · · · . Let t` denote the start time of epoch `. In the
beginning of epoch `, parameter θ` is sampled from the
posterior distribution µt` and the actions within that epoch
are chosen according to the optimal policy with respect to
θ`. Each epoch ends if either of the two stopping criteria
are satisfied. The first criterion is triggered if the number
of visits to the goal state during the current epoch (denoted
by K`) exceeds that of the previous epoch. This ensures
that K` ≤ K`−1 + 1 for all `. The second criterion is trig-
gered if the number of visits to any of the state-action pairs
is doubled compared to the beginning of the epoch. This
guarantees that nt(s, a) ≤ 2nt`(s, a) for all (s, a) where
nt(s, a) =

∑t−1
τ=1 1{sτ=s,aτ=a} denotes the number of vis-

its to state-action pair (s, a) before time t.

The second stopping criterion is similar to that used by
Jaksch et al. [2010], Rosenberg et al. [2020], Agrawal and
Jia [2017], and is one of the two stopping criteria in the pos-
terior sampling algorithm (TSDE) for the infinite-horizon
average-cost MDPs [Ouyang et al., 2017b]. This stopping
criterion is crucial since it allows the algorithm to switch
policies if the generated policy is improper and cannot reach
the goal. Note that updating the policy only at the beginning
of an episode (as done in the posterior sampling for finite-
horizon MDPs [Osband et al., 2013]) does not work for SSP
models, because if the generated policy in the beginning of
the episode is improper, the goal is never reached and the
regret is infinity.

The first stopping criterion is novel. A similar stopping
criterion used in the posterior sampling for infinite-horizon
MDPs [Ouyang et al., 2017b] is based on the length of the
epochs, i.e., a new epoch starts if the length of the current
epoch exceeds the length of the previous epoch. This leads
to a bound of O(

√
TK) on the number of epochs which

translates to a final regret bound ofO(K2/3) in SSP models.
However, our first stopping criterion allows us to bound the
number of epochs by O(

√
K) rather than O(

√
TK) (see

Lemma 4.2). This is a key step in avoiding dependency on
c−1min (i.e., a lower bound on the cost function) and achieve a

Algorithm 1 PSRL-SSP
Input: µ1

Initialization: t← 1, `← 0,K−1 ← 0, t0 ← 0, kt0 ← 0
for episodes k = 1, 2, · · · ,K do

st ← sinit
while st 6= g do

if k−kt` > K`−1 or nt(s, a) > 2nt`(s, a) for some
(s, a) ∈ S ×A then

K` ← k − kt`
`← `+ 1
t` ← t
kt` ← k
Generate θ` ∼ µt`(·) and compute
π`(·) = π∗(·; θ`) according to (1)

Choose action at = π`(st) and observe
s′t ∼ θ∗(·|st, at)
Update µt+1 according to (2)
st+1 ← s′t
t← t+ 1

final regret bound of O(
√
K).

Remark 3.1. PSRL-SSP only requires to know the prior
distribution µ1. Unlike Cohen et al. [2021], knowledge of
B?, T? (an upper bound on the expected time the optimal
policy takes to reach the goal) is not needed.
Remark 3.2. Computing the posterior can be done through
conjugate distributions. For a fixed state-action pair (s, a),
the likelihood distribution of the next state follows a cate-
gorical distribution. Thus, the Dirichlet distribution should
be chosen as the conjugate prior.
Remark 3.3. PSRL-SSP can easily deal with unknown cost
functions in the exact same way as Osband et al. [2013] has
done with only a constant overhead for the regret. More
precisely, one can maintain a posterior distribution on both
the cost function and the transition kernel separately (by
choosing a normal-gamma distribution for the cost function
and Dirichlet distribution for the transition kernel). Then,
at the time of sampling, the algorithm samples both the
transition kernel and the cost function from the posterior
and computes the optimal policy for the sampled SSP. Our
known cost function assumption is just for simplicity of
explanation and is not a limitation of the algorithm, or its
analysis.

Main Results. Our first result considers the case where
the cost function is strictly positive for all state-action pairs.
Subsequently, we extend the result to the general case by
adding a small positive perturbation to the cost function
and running the algorithm with the perturbed costs. We first
assume make a standard assumption for SSP models:

Assumption 3.4. There exists cmin > 0, such that c(s, a) ≥
cmin for all state-action pairs (s, a).
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This assumption allows us to bound the total time spent
in K episodes with the total cost, i.e., cminTK ≤ CK ,
where CK :=

∑TK
t=1 c(st, at) is the total cost during the

K episodes. To facilitate the presentation of the results, we
assume that S ≥ 2, A ≥ 2, and K ≥ S2A. The first main
result is as follows.

Theorem 3.5. Suppose Assumptions 2.1 and 3.4 hold. Then,
the regret of PSRL-SSP is upper bounded as

RK = O

B?S√KAL2 + S2A

√
B?

3

cmin
L2

 ,

where L = log(B?SAKc
−1
min).

Note that when K � B?S
2Ac−1min, the regret bound scales

as Õ(B?S
√
KA). A crucial point about the above result

is that the dependency on c−1min is only in the lower order
term. This allows us to extend the O(

√
K) bound to the

general case where Assumption 3.4 does not hold by us-
ing the perturbation technique of Rosenberg et al. [2020]
(see Theorem 3.6). We avoid dependency on c−1min in the
main term by use of a Bernstein-type confidence set in the
analysis inspired by Rosenberg et al. [2020]. We note that
using a Hoeffding-type confidence set in the analysis as in
Ouyang et al. [2017b] gives a regret bound ofO(

√
K/cmin)

which results in O(K2/3) regret bound if Assumption 3.4
is violated.

Theorem 3.6. Suppose Assumption 2.1 holds and let
L̃ := log(KB?T?SA). Running PSRL-SSP with costs
cε(s, a) := max{c(s, a), ε} for ε = (S2A/K)2/3 yields

RK = O
(
B?S
√
KAL̃2 + (S2A)

2
3K

1
3 (B

3
2
? L̃

2 + T?)

+ S2AT
3
2
? L̃

2
)
.

Note that when K � S2A(B3
? + T?(T?/B?)

6), the regret
bound scales as Õ(B?S

√
KA). These results have similar

regret bounds as the Bernstein-SSP algorithm [Rosen-
berg et al., 2020], and have a gap of

√
S with the lower

bound of Ω(B?
√
SAK).

4 THEORETICAL ANALYSIS

In this section, we prove Theorem 3.5. Proof of Theorem 3.6
can be found in the Appendix.

A key property of posterior sampling is that conditioned on
the information at time t, θ∗ and θt have the same distribu-
tion if θt is sampled from the posterior distribution at time t
[Osband et al., 2013]. Since PSRL-SSP samples θ` at the
stopping time t`, we use the stopping time version of the
posterior sampling property stated as follows.

Lemma 4.1 (Adapted from Lemma 2 of Ouyang et al.
[2017b]). Let t` be a stopping time with respect to the
filtration (Ft)∞t=1, and θ` be the sample drawn from the
posterior distribution at time t`. Then, for any measurable
function f and any Ft` -measurable random variable X , we
have E[f(θ`, X)|Ft` ] = E[f(θ∗, X)|Ft` ].

We now sketch the proof of Theorem 3.5. Let 0 < δ < 1
be a parameter to be chosen later. We distinguish between
known and unknown state-action pairs. A state-action pair
(s, a) is known if the number of visits to (s, a) is at least
α · B?Scmin

log B?SA
δcmin

for some large enough constant α (to be
determined in Lemma A.6), and unknown otherwise. We
divide each epoch into intervals. The first interval starts
at time t = 1. Each interval ends if any of the following
conditions hold: (i) the total cost during the interval is at
least B?; (ii) an unknown state-action pair is met; (iii) the
goal state is reached; or (iv) the current epoch completes.
The idea of introducing intervals is that after all state-action
pairs are known, the cost accumulated during an interval
is at least B? (ignoring conditions (iii) and (iv)), which
allows us to bound the number of intervals with the total
cost divided by B?. Introducing intervals and distinguishing
between known and unknown state-action pairs is only in
the analysis and thus knowledge of B? is not required.

Instead of bounding RK , we bound RM defined as

RM := E

[
TM∑
t=1

c(st, at)−KV (sinit; θ∗)

]
,

for any number of intervals M as long as K episodes are
not completed. Here, TM is the total time of the first M
intervals. Let CM denote the total cost of the algorithm
after M intervals and define LM as the number of epochs
in the first M intervals. Observe that the number of times
conditions (i), (ii), (iii), and (iv) trigger to start a new interval
are bounded byCM/B?,O(B?S

2A
cmin

log B?SA
δcmin

),K, and LM ,
respectively. Thus, the number of intervals is bounded as

M ≤ CM
B?

+K + LM +O(
B?S

2A

cmin
log

B?SA

δcmin
). (3)

Moreover, since the cost function is lower bounded by
cmin, we have cminTM ≤ CM . Our argument proceeds
as follows.1 We bound RM . B?S

√
MA which implies

E[CM ] . KE[V (sinit; θ∗)] + B?S
√
MA. From the defi-

nition of intervals and once all the state-action pairs are
known, the cost accumulated within each interval is at
least B? (ignoring intervals that end when the epoch or
episode ends). This allows us to bound the number of inter-
vals M with CM/B? (or E[CM ]/B?). Solving for E[CM ]
in the quadratic inequality E[CM ] . KE[V (sinit; θ∗)] +
B?S
√
MA . KE[V (sinit; θ∗)] + S

√
E[CM ]B?A implies

that E[CM ] . KE[V (sinit; θ∗)] + B?S
√
AK. Since this

1Lower order terms are neglected.
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bound holds for any number of M intervals as long as K
episodes are not passed, it holds for E[CK ] as well. More-
over, since cmin > 0, this implies that the K episodes even-
tually terminate and proves the final regret bound.

Bounding the Number of Epochs. Before proceeding with
bounding RM , we first prove that the number of epochs is
bounded as O(

√
KSA log TM ). Recall that the length of

the epochs is determined by two stopping criteria. If we
ignore the second criterion for a moment, the first stopping
criterion ensures that the number of episodes within each
epoch grows at a linear rate which implies that the number
of epochs is bounded byO(

√
K). If we ignore the first stop-

ping criterion for a moment, the second stopping criterion
triggers at mostO(SA log TM ) times. The following lemma
shows that the number of epochs remains of the same order
even if these two criteria are considered simultaneously.

Lemma 4.2. The number of epochs is bounded as LM ≤√
2SAK log TM + SA log TM .

We now provide the proof sketch for bounding RM . With
abuse of notation let tLM+1 := TM + 1 and write

RM := E

[
TM∑
t=1

c(st, at)−KV (sinit; θ∗)

]

= E

[
LM∑
`=1

t`+1−1∑
t=t`

c(st, at)

]
−KE [V (sinit; θ∗)] .

Note that within epoch `, action at is taken according to the
optimal policy with respect to θ`. Thus, with the Bellman
equation we can write

c(st, at) = V (st; θ`)−
∑
s′

θ`(s
′|st, at)V (s′; θ`).

Substituting this, and adding and subtracting V (st+1; θ`)
and V (s′t; θ`), decomposes RM as

RM = R1
M +R2

M +R3
M ,

where

R1
M := E

[
LM∑
`=1

t`+1−1∑
t=t`

[V (st; θ`)− V (st+1; θ`)]

]
,

R2
M := E

[
LM∑
`=1

t`+1−1∑
t=t`

[
V (st+1; θ`)

− V (s′t; θ`)

]]
−KE [V (sinit; θ∗)] ,

R3
M := E

[
LM∑
`=1

t`+1−1∑
t=t`

[
V (s′t; θ`)

−
∑
s′

θ`(s
′|st, at)V (s′; θ`)

]]
.

We proceed by bounding these terms separately. Proof of
these lemmas can be found in the supplementary material.
R1
M is a telescopic sum and can be bounded by the following

lemma.

Lemma 4.3. The first term R1
M is bounded as R1

M ≤
B?E[LM ].

To bound R2
M , recall that s′t ∈ S+ is the next state of the

environment after applying action at at state st, and that
s′t = st+1 for all time steps except the last time step of an
episode (right before reaching the goal). In the last time
step of an episode, s′t = g while st+1 = sinit. This proves
that the inner sum of R2

M can be written as V (sinit; θ`)K`,
where K` is the number of visits to the goal state during
epoch `. UsingK` ≤ K`−1+1 and the property of posterior
sampling completes the proof. This is formally stated in the
following lemma.

Lemma 4.4. The second term R2
M is bounded as R2

M ≤
B?E[LM ].

The rest of the proof proceeds to bound the third term R3
M

which contributes to the dominant term of the final regret
bound. The detailed proof can be found in Lemma 4.5. Here
we provide the proof sketch. R3

M captures the difference
between V (·; θ`) at the next state s′t ∼ θ∗(·|st, at) and
its expectation with respect to the sampled θ`. Applying
the Hoeffding-type concentration bounds [Weissman et al.,
2003], as used by Ouyang et al. [2017b] yields a regret
bound of O(K2/3) which is sub-optimal. To achieve the
optimal dependency on K, we use a technique based on
the Bernstein concentration bound inspired by the work
of Rosenberg et al. [2020]. This requires a more careful
analysis. Let nt`(s, a, s

′) be the number of visits to state-
action pair (s, a) followed by state s′ before time t`. For a
fixed state-action pair (s, a), define the Bernstein confidence
set using the empirical transition probability θ̂`(s′|s, a) :=
nt` (s,a,s

′)

nt` (s,a)
as

B`(s, a) :=

{
θ(·|s, a) : |θ(s′|s, a)− θ̂`(s′|s, a)| ≤

4

√
θ̂`(s′|s, a)A`(s, a) + 28A`(s, a),∀s′ ∈ S+

}
. (4)

Here A`(s, a) :=
log(SAn+

` (s,a)/δ)

n+
` (s,a)

and n+` (s, a) :=

max{nt`(s, a), 1}. This confidence set is similar to the
one used by Rosenberg et al. [2020] and contains the
true transition probability θ∗(·|s, a) with high probability
(see Lemma A.2). Note that B`(s, a) is Ft`-measurable
which allows us to use the property of posterior sampling
(Lemma 4.1) to conclude thatB`(s, a) contains the sampled
transition probability θ`(·|s, a) as well with high probability.
With some algebraic manipulation, R3

M can be written as
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(with abuse of notation ` := `(t) is the epoch at time t)

R3
M = E

[
TM∑
t=1

∑
s′∈S+

[θ∗(s
′|st, at)− θ`(s′|st, at)]

(
V (s′; θ`)

−
∑

s′′∈S+

θ∗(s
′′|st, at)V (s′′; θ`)

)]
.

Under the event that both θ∗(·|st, at) and θ`(·|st, at) belong
to the confidence set B`(st, at), Bernstein bound can be
applied to obtain

R3
M ≈ O

(
E

[
TM∑
t=1

√
SA`(st, at)V`(st, at)

])

= O

(
M∑
m=1

E

[
tm+1−1∑
t=tm

√
SA`(st, at)V`(st, at)

])
,

where tm denotes the start time of interval m and V` is the
empirical variance defined as

V`(st, at) :=
∑
s′∈S+

θ∗(s
′|st, at)

(
V (s′; θ`)

−
∑

s′′∈S+

θ∗(s
′′|st, at)V (s′′; θ`)

)2

. (5)

Applying Cauchy Schwarz on the inner sum twice implies
that

R3
M ≈ O

(
M∑
m=1

(√√√√SE

[
tm+1−1∑
t=tm

A`(st, at)

]

·

√√√√E

[
tm+1−1∑
t=tm

V`(st, at)

]))
.

Using the fact that all the state-action pairs (st, at) within
an interval except possibly the first one are known, and
that the cumulative cost within an interval is at most 2B?,
one can bound E

[∑tm+1−1
t=tm

V`(st, at)
]

= O(B2
?) (see

Lemma A.5 for details). Applying Cauchy Schwarz implies
R3
M ≈

O

B?
√√√√MSE

[
TM∑
t=1

A`(st, at)

] ≈ O (B?S√MA
)
.

This argument is formally presented in the following lemma.

Lemma 4.5. The third term R3
M can be bounded as

R3
M ≤ 288B?S

√
MA log2 SAE[TM ]

δ

+ 1632B?S
2A log2 SAE[TM ]

δ
+ 4SB?δE[LM ].

Detailed proofs of all lemmas and the theorem can be found
in the appendix in the supplementary material.

5 EXPERIMENTS

The literature on regret-minimization for the SSP model
mostly lacks numerical evaluation except for Tarbouriech
et al. [2020]. Standard OpenAI Gym environments Brock-
man et al. [2016] are either not designed for the SSP setting
(e.g., FrozenLake-v0, CartPole-v1, and MuJoCo), or more
suitable for algorithms with function approximation (e.g.,
Atari and Box2D). In this section, we attempt to design some
benchmark environments and compare the performance of
our PSRL-SSP algorithm with existing OFU-type algo-
rithms in the literature. Three environments are considered:
RandomMDP, GridWorld, and SSP-MountainCar.

Description of Environments. RandomMDP [Ouyang
et al., 2017b, Wei et al., 2020] is an SSP with 8 states
and 2 actions whose transition kernel and cost function are
generated uniformly at random (cmin = 0.04).

GridWorld [Tarbouriech et al., 2020] is a 3× 4 grid (total
of 12 states including the goal state) and 4 actions (LEFT,
RIGHT, UP, DOWN) with c(s, a) = 1 for any state-action
pair (s, a) ∈ S × A. The agent starts from the initial state
located at the top left corner of the grid, and ends in the goal
state at the bottom right corner. At each time step, the agent
attempts to move in one of the four directions. However, the
attempt is successful only with probability 0.85. With prob-
ability 0.15, the agent takes any of the undesired directions
uniformly at random. If the agent tries to move out of the
boundary, the attempt will not be successful and it remains
in the same position.

The SSP-MountainCar environment is a modification of
the standard MountainCar-v0 environment [Moore, 1990]
and simulates a car positioned between two mountains and
wants to drive up the mountain on the right, however, the
engine is not powerful enough to ascend directly. It needs
to drive back and forth to build adequate momentum. This
is a continuous state space SSP model with three actions
(LEFT, RIGHT, NEUTRAL). The state is the pair of (posi-
tion, velocity), where position can take values in [−1.2, 0.6]
and velocity can take values in [−0.07, 0.07]. The agent
suffers a cost of 1 at each time before reaching the goal. We
discretize the state space with the step size of 0.1 for the
position and 0.02 for the velocity (total of 126 = 18 × 7
states). Note that this discretization is only from the perspec-
tive of the agent and the underlying dynamics are unchanged.
Although the underlying environment is deterministic, the
agent observes stochastic transitions due to the discretiza-
tion. Note that the standard MountainCar-v0 environment
artificially terminates the interaction between the agent and
the environment after 200 steps and is much simpler than the
SSP-MountainCar where the interaction only terminates if
the goal is reached. Indeed, the standard RL algorithms Sut-
ton and Barto [2018] (such as Q-learning and SARSA) that
work well in the MountainCar-v0 cannot reach the goal even
in the first episode in the SSP-MountainCar environment.
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Figure 1: Cumulative regret of existing SSP algorithms on
RandomMDP (top) and GridWorld (bottom) for 10, 000
episodes. The results are averaged over 10 runs and 95%
confidence interval is shown with the shaded area. Our pro-
posed PSRL-SSP algorithm outperforms all the existing
algorithms considerably if the confidence intervals of other
algorithms are not tuned (left plots). PSRL-SSP (with no
hyper-parameter tuning) has similar performance to OFU
algorithms if their confidence intervals are tuned as a hyper-
parameter (right plots).

In the experiments, we evaluate the frequentist regret of
PSRL-SSP for a fixed environment (i.e., the environment is
not sampled from a prior distribution). A Dirichlet prior with
parameters [0.1, · · · , 0.1] is considered for the transition
kernel, which remain the same across environments and
are not tuned as hyper-parameters. Dirichlet is a common
prior in Bayesian statistics since it is a conjugate prior for
categorical and multinomial distributions.

We compare the performance of our proposed
PSRL-SSP against all provable existing online learning
algorithms for the SSP problem (UC-SSP [Tarbouriech
et al., 2020], Bernstein-SSP [Rosenberg et al., 2020],
ULCVI [Cohen et al., 2021], and EB-SSP [Tarbouriech
et al., 2021b]). The results are averaged over 10 independent
runs. 95% confidence interval is considered to compare
the performance of the algorithms. All the experiments are
performed on a 2015 Macbook Pro with 2.7 GHz Dual-Core
Intel Core i5 processor and 16GB RAM.

We compare PSRL-SSP with OFU algorithms in two sce-
narios. The first scenario, considers the case where the
theoretical confidence intervals are used for the OFU al-
gorithms (Figure 1 (left)). The second scenario is when a
multiplicative coefficient (smaller than 1) is used in front
of the confidence intervals for the OFU algorithms to ex-
pedite learning (Figure 1 (right)). This coefficient is tuned
as a hyper-parameter. It can be seen from Figure 1 (left)
that PSRL-SSP significantly outperforms all the previously
proposed algorithms for the SSP problem if the theoret-

0 250 500 750 1000 1250 1500 1750 2000
Episode

500

1000

1500

2000

2500

3000

Av
er

ag
e 

Co
st

 P
er

 E
pi

so
de

SSP-MountainCar

PSRL-SSP

Figure 2: (left) SSP-MountainCar environment. (right) Av-
erage cost per episode of the PSRL-SSP algorithm. OFU
algorithms did not learn in reasonable time (and thus not
included) due to the large state space.

ical confidence intervals are used. In particular, it outper-
forms the recently proposed ULCVI [Cohen et al., 2021] and
EB-SSP [Tarbouriech et al., 2021b] which match the theo-
retical lower bound. Our numerical evaluation reveals that
the ULCVI algorithm does not show any evidence of learn-
ing even after 80,000 episodes (not shown here). Figure 1
(right) verifies that the performance of PSRL-SSP (with
no hyper parameter tuning) is similar to the tuned OFU
algorithms (where confidence interval is tuned as a hyper
parameter). The poor performance of OFU algorithms en-
sures the necessity to consider PS algorithms in practice.

The gap between the performance of PSRL-SSP and OFU
algorithms is even more apparent in the GridWorld environ-
ment which is more challenging compared to RandomMDP.
Note that in RandomMDP, it is possible to go to the goal
state from any state with only one step. This is since the
transition kernel is generated uniformly at random. How-
ever, in the GridWorld environment, the agent has to take a
sequence of actions to the right and down to reach the goal
at the bottom right corner. Figure 1 (bottom) verifies that
PSRL-SSP is able to learn this pattern significantly faster
than OFU algorithms.

Figure 2 evaluates the performance of PSRL-SSP in the
SSP-MountainCar environment which has a much larger
state space. The large state space of this environment pre-
vents OFU algorithms from learning in reasonable amount
of time (and thus not shown in the figure). However,
PSRL-SSP improves quickly after a few episodes.

These results confirm the intuition that OFU-type algorithms
are too conservative in uncertainty estimation, whereas PS-
type algorithms are statistically more efficient and hence
perform better empirically across almost all settings.

CONCLUSIONS

In this paper, we have proposed the first posterior sampling-
based reinforcement learning algorithm for the SSP mod-
els with unknown transition probabilities. The algorithm
is very simple as compared to the optimism-based algo-
rithm proposed for SSP models recently [Tarbouriech et al.,
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2020, Rosenberg et al., 2020, Cohen et al., 2021, Tar-
bouriech et al., 2021b]. It achieves a Bayesian regret bound
of Õ(B?S

√
AK), where B? is an upper bound on the ex-

pected cost of the optimal policy, S is the size of the state
space, A is the size of the action space, and K is the num-
ber of episodes. This has a

√
S gap from the best known

bound for an optimism-based algorithm but numerical ex-
periments suggest a better performance in practice. A next
step would be to extend the algorithm to continuous state
and action spaces, and to propose model-free algorithms for
such settings. Designing posterior sampling-based model-
free algorithms for even average MDPs remains an open
problem. Another interesting future direction is to extend
ideas from Tiapkin et al. [2022] to obtain frequentist regret
bound for posterior-sampling based algorithms in the SSP
setting.
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