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Abstract

Recent real-world applications of deep learning
have led to the development of machine learning
as a service (MLaaS). However, the scenario of
client-server inference presents privacy concerns,
where the server processes raw data sent from the
user’s client device. One solution to this issue is
to provide an obfuscator function to the client de-
vice using Adversarial Representation Learning
(ARL). Prior works have primarily focused on the
privacy-utility trade-off while overlooking the com-
putational cost and memory burden on the client
side. In this paper, we propose an effective and ef-
ficient ARL method that incorporates feature noise
into the ARL pipeline. We evaluated our approach
on various datasets, comparing it with state-of-the-
art ARL techniques. Our experimental results in-
dicate that our method achieves better accuracy,
lower computation and memory overheads, and
improved resistance to information leakage and
reconstruction attacks.

1 INTRODUCTION

In recent years, machine learning as a service (MLaaS) has
gained popularity mainly due to cloud computing and deep
learning advances. Often raw data generated on an edge
device is sent to the cloud, where machine learning algo-
rithms process it. However, transferring raw data has the
drawback of directly leaking privacy-related information
to the cloud server, which might violate user privacy. For
example, we can consider an edge device transmitting im-
ages to the cloud to perform person identification. While
a person’s picture can be used for identification, the im-
age can further reveal the person’s gender, emotional state,
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race, or location. Ideally, before transmission to the cloud
server, privacy-related information should be removed from
the images while preserving task utility. Additionally, such
a private data representation should be secure against at-
tacks from adversarial actors who attempt to breach a user’s
privacy by retrieving private attributes from the data repre-
sentation. It is important to note that the service provider
might also be considered a possible adversarial actor. Hence,
it is in the clients’ interest to remove utility-unrelated infor-
mation since the representation transmitted from the client
is out of their control. We refer to this scenario as client-
server inference: (1) on the client-side, the privacy-related
information is removed from the data. After the data is trans-
mitted, (2) the server-side performs the remaining inference
computation without violating the user’s privacy.

Many works have focused on the training framework of
ARL (Roy and Boddeti, 2019; Bertran et al., 2019; Li et al.,
2021; Edwards and Storkey, 2015; Raval et al., 2017; Huang
et al., 2017; Wu et al., 2018; Pittaluga et al., 2019; Xiao
et al., 2020; Ng et al., 2022; Osia et al., 2018; Mireshghallah
et al., 2020, 2021) to mitigate the leakage of sensitive at-
tributes in the context of client-server inference. Commonly,
the ARL framework consists of three entities, (1) an obfus-
cator, which transforms input data into a representation that
retains task utility while resolving the correlation of image
features to private attributes, and (2) a task model, perform-
ing the utility task on the new data representation and (3) a
proxy-adversary, attempting to extract sensitive attributes
from the representation. In the above scenario of MLaaS,
the service providers train an obfuscator, a task model, and
a proxy adversary. Then, they deploy the obfuscator to the
user’s client device. For the sake of the users’ privacy, the ob-
fuscator should effectively remove all information unrelated
to the utility task while using as least resources of the client
as possible and retaining high utility with the obfuscated
representation.

Another critical aspect of the obfuscator is client-side com-
putational cost. Client-side resource burden should be as
least as possible. To this end, we need a training scheme that
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outputs a lightweight obfuscator. Hence, in this work, we
introduce a novel ARL approach to improve an obfuscator
to be (1) robust against attacks of adversarial actors while re-
taining task utility (privacy-utility trade-off ) and (2) limiting
the computational resources on the edge device (efficiency-
performance trade-off ). To solve these problems simulta-
neously, we extend the standard ARL training scheme and
propose noisy adversarial training and noisy inference. The
proposed method utilizes off-the-shelf convolutional neural
network (CNN) models for mobile-friendly and privacy-
preserving machine learning inference. We demonstrate
that our method outperforms the state-of-the-art ARL meth-
ods in terms of (1) privacy-utility trade-off, (2) efficiency-
performance trade-off, (3) is readily applicable to commonly
used CNN architectures, and (4) robust to privacy leakage
and reconstruction attacks.

2 RELATED WORKS AND
BACKGROUND

Data Privacy in Machine Learning Privacy attacks or
preservation in machine learning is a vibrant research area
with various approaches. The most well-known threats to
data privacy are membership inference attacks (Shokri et al.,
2017), inversion attacks (Fredrikson et al., 2014), and in-
formation leakage attacks (Roy and Boddeti, 2019). The
membership inference attack is not applicable in the context
of client-server inference since its purpose is to determine
whether a single data point is used for model training. In the
scenario of the client-server inference, attackers attempt to
breach the transmitted representations. With the breached
data, they can train their adversary models (a) to reconstruct
the original data (inversion attack) or (b) to retrieve private
information that users might not want to reveal (information
leakage attack).

Recently, various methods have been proposed for privacy-
preserving machine learning. Federated learning (Konečnỳ
et al., 2016) and split learning (Gupta and Raskar, 2018;
Vepakomma et al., 2018) are methods to train a new machine
learning model without the direct input of raw user data.
However, these methods focus on protecting privacy during
the training phase, not at the inference stage.

In various contexts of deep learning, membership inference
attacks have been defended with differential privacy (Dwork,
2008) by adding noise to the representations (Abadi et al.,
2016; Arachchige et al., 2019; Fan, 2019a,b; Croft et al.,
2021; Chen et al., 2021). However, differential privacy is
designed to make two neighboring datasets or data points
statistically indistinguishable, not to transform raw data into
a new representation that is privacy-safe and usable for the
intended tasks (Zhao et al., 2020). Training deep neural
networks (DNN) with cryptographic methods has also been
explored, such as secure multiparty computation (Cramer
et al., 2015) and homomorphic encryption (Nandakumar

et al., 2019). However, these are still difficult to deploy in
practice due to the computational complexity of the involved
operations.

Adversarial Representation Learning In the context of
the client-server inference, the most suitable solution is
to find a function that transforms data into a new repre-
sentation that can be utilized for machine learning while
being robust to privacy leakage attacks. For this purpose,
adversarial representation learning (ARL) tries to find a rep-
resentation function by optimizing an information-theoretic
formulation of privacy and utility (Hsu et al., 2021). In the
information-theoretic formulation, we represent the origi-
nal data, the transformed representation, and the sensitive
information from the original data as three random vari-
ables X , Z, and Y , respectively. To protect privacy, the
mutual information between the sensitive information and
the transformed representation, I(Y ;Z), should be as mini-
mal as possible. Meanwhile, in terms of preserving utility
information, I(X;Z), the mutual information between the
original and transformed data should be as maximal as pos-
sible. Thus, the objective of ARL is to find a probability
distribution PZ|X that minimizes I(Y ;Z) while retaining
the utility of the representation to a certain degree:

arg min
PZ|X

I(Y ;Z) s.t. I(X;Z) ≥ u (1)

where u is the desired utility level. ARL approaches com-
monly set PZ|X as a deterministic function O : X → Z,
where O stands for an obfuscator. As the objective suggests,
the trade-off between privacy and utility is inevitable since
ARL is an optimization problem between two conflicting
objectives. Zhao et al. (2020) and Wu et al. (2018) showed
that it is possible to define the lower bound of the trade-
off formally and confirmed it with experiments on various
tasks.

Various prior works have tried to findO in the image domain
with deep neural networks (Singh et al., 2021; Roy and
Boddeti, 2019; Edwards and Storkey, 2015; Raval et al.,
2017; Pittaluga et al., 2019; Xiao et al., 2020; Mireshghallah
et al., 2020; Osia et al., 2018). They solved Equation 1
by setting up two proxy models, T : Z → Yt and A :
Z → Yp, where T stands for the utility task model and
A stands for the proxy adversary model. Yt stands for the
information that needs to be inferred for utility, and Yp is the
one that an adversary could leak. It has been demonstrated
that the theoretical bounds for privacy and utility can be
empirically reproduced by optimizing three models, O, T,
andA, simultaneously (Bertran et al., 2019; Hsu et al., 2020;
Xiao et al., 2020; Osia et al., 2018). The optimization is
mainly done with stochastic data-driven training of deep
neural networks, (a) by cooperatively training O and T
to retain utilizable information in Z, (b) while training O
and A to adversarially learn to remove private information
from Z. After the models are fully trained, O and T are
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deployed to the client device and the service provider’s
server, respectively. Finally, O transforms raw data X to the
privacy-safe representation Z, and T processes the received
Z to infer Yt for the utility task.

Previous ARL methods differ in various aspects, such as loss
function design, model architecture, and training scheme.
For example, MaxEnt (Roy and Boddeti, 2019) optimizes
the entropy-based loss to make the ARL objective task-
agnostic. DISCO (Singh et al., 2021) selectively removes
features via pruning filters in the latent space. DeepObfus-
cator (Li et al., 2021) introduces a training scheme, which
incorporates an additional adversary model that reconstructs
X from Z. Similar to our approach, Shredder (Mireshghal-
lah et al., 2020) and DPFE (Osia et al., 2018) utilize noisy
representations. Their information-theoretic analysis has
shown that privacy can be guaranteed by adding noise to
encoded representations. Shredder learns a set of noise dis-
tributions with regard to a fixed neural net encoder, while
our method trains an encoder to adapt to a fixed noise dis-
tribution. DPFE uses an auto-encoder during training and
noise addition during testing to provide privacy, while our
method only uses noise addition for both the training and
testing phase. While some methods try to reduce the client-
side computation burden with ARL (Mireshghallah et al.,
2020; Osia et al., 2018), we propose that privacy can be
achieved by choosing a split point of a model and simply
training it with a noisy adversarial representation learning
scheme.

3 PROBLEM FORMULATION

As mentioned in Section 2, we define three models for our
ARL task; an obfuscator O : X → Z, a task model T :
Z → Yt, and an adversary model A : Z → Yp. The models
are represented through CNNs. We consider X to be in
RGB image domain, i.e. x ∼ X ⊂ RH×W×3 where H and
W represent height and width. We define an obfuscator O,
which aims to convert each data point x into the obfuscated
representation z ∈ Z. We also set the utility task model
T and the adversarial attacker A, which are to infer utility
attributes yt and private attributes yp from the obfuscated
representation z, respectively, such that T (z) = ŷt ' yt
and A(z) = ŷp ' yp. From the attacker’s perspective, ŷp
should be similar to the private attributes yp. In terms of
the user and the service provider, however, ŷp should be as
dissimilar as possible from yp while ŷt should be similar
to the utility attributes yt. Previous works (Bertran et al.,
2019; Singh et al., 2021) have shown that the ARL training
scheme effectively achieve the mutual information objective
(Eq. 1).

As an example of a practical attack scenario, we assume an
attacker who is in control of an edge device such as a CCTV
camera or an IoT device. The device holds an obfuscator
model and transforms the raw data before data transmis-

Figure 1: (Top) The training scheme of our method. (Bot-
tom) Inference scenario with possible adversary attack.

sion. It allows attackers to generate their own datasets to
train an adversary model, e.g. original input and obfuscated
representation pairs. Further, we assume that the attackers
are also aware of the original training dataset and the ar-
chitecture of the service provider’s models. Note that this
constitutes a strong threat model, which makes it difficult to
protect privacy for the service provider. We show that our
method protects privacy even under severe conditions.

We identify two possible attack scenarios: information leak-
age attack and the reconstruction attack. For the infor-
mation leakage attack, an attacker can attempt to train a
model Aleak : Z → Yp that directly leaks the represen-
tations’ private information, i.e. Aleak(z) = ŷp. In the re-
construction attack, the attacker attempts to obtain a model
Arecon : Z → X which retrieves the original image from
the intermediate representation, from which the private at-
tributes can then be inferred Arecon(z) = x̂.

4 METHODOLOGY

4.1 NOISY ADVERSARIAL REPRESENTATION
LEARNING

As shown in Figure 1, we split an off-the-shelf CNN, such
as ResNet (He et al., 2016)M(x) = (M2◦M1)(x), and use
the earlier layers M1 as a client-side encoder while using
the remaining layers M2 as a server-side task model T . We
discuss the influence of the splitting point on the efficiency-
performance trade-off in Section 8.1. The encoded feature
M1(x) is then added with noise η ∈ RHz×Wz×Cz sam-
pled from a Gaussian distribution N (0, σ2) where Hz,Wz ,
and Cz represent height, width, and number of channels
of z, respectively. The obfuscated feature is z = O(x) =
M1(x) + η, which will be transmitted from the client-side
to the server.
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Algorithm 1 Noisy ARL Training Algorithm
Input: Dataset D : X × Yt × Yp, model initial parameters
θO=M1 , θT=M2 , θA, loss functions Lt, Lleak, noise stan-
dard deviation σ, loss balance parameter λ, mini-batch size
m, number of iterations I
Output: Parameters θ̂O, θ̂T

1: for iteration = 1, . . . , I do
2: B ∼ D: |B| = m // Sample mini-batch
3: η ∼ N (0, σ2) // Sample noise
4: z ←M1(x) + η
5: gT ← ∇θTE(x,yt)∼B [Lt(T (z), yt)]

// Calculate gradient
6: gA ← ∇θAE(x,yp)∼B [Lleak(A(z), yp)]

// Calculate gradient
7: gO ← ∇θOE(x,yt,yp)∼B [Lt(T (z), yt)

−λ ∗ Lleak(A(z), yp)]
// Calculate gradient

8: θO, θT , θA ←
Optim(θO,gO), Optim(θT ,gT ), Optim(θA,gA)

// Update parameters
9: end for

10: return θO, θT

During training (Figure 1 Top), we train the obfuscator
model jointly with the task model and the proxy adversary.
We combine our noise module with the standard ARL train-
ing scheme. The obfuscator O, the task model T , and the
proxy adversary network A are parameterized through their
respective weights θO, θT , and θA. Since the objective of
the task model is to perform well on the utility task, its loss
is defined as lt = Ex∼X [Lt(T (z), yt)], where Lt indicates
the task loss function. In case the information leakage attack
is chosen as the proxy adversary, the adversary loss can be
calculated with lleak = Ex∼X [Lleak(Aleak(z), yp)], where
Lleak indicates the adversary task loss function. We use
simple cross-entropy for Lt and Lleak. Some ARL meth-
ods (Singh et al., 2021; Li et al., 2021) used the proxy recon-
struction loss to defend against the reconstruction attack, i.e.,
lrecon = Ex∼X [Lrecon(Arecon(z), x)], additional to lleak.
In Section 6.2, it is shown that our method is robust to the
reconstruction attack. Finally, the obfuscator model should
incorporate two objectives, retaining useful task information
while discarding privacy-related information. Hence, the ob-
fuscation loss lo = lt−λ∗lleak is minimized by the obfusca-
tor, where λ is a hyper-parameter that balances the two loss
terms. To sum up, the final objective is: minθO,θT maxθA lo.

Algorithm 1 describes the optimization process to solve the
min-max objective. For each mini-batch, sampled noise is
added to the intermediate feature fromO. Then, noise added
feature is fed into T and A to calculate the utility task loss
and the proxy adversary loss. With the two losses, the gra-
dients gT and gA are computed, while the gradient gO is
computed from the weighted sum of the losses. Finally, the
models are updated with the gradients via an off-the-shelf

optimizer. Note that A is discarded after training since its
purpose is to simulate the possible attacks and give supervi-
sion to O and T .

During the inference phase (Figure 1 Bottom), the original
images are first fed into the obfuscation module on the client
side, which includes the encoder O and the noise module.
The obfuscated feature is then sent to the server, where the
final task predictions are performed with the task network.

4.2 EVALUATION PROTOCOL

To properly evaluate the performance of our approach, we
outline our evaluation protocol in the following.
Performance Bounds Theoretically, the utility and privacy
adversary accuracy is upper bounded by 100% for a globally
optimal model. However, this is not true in real situations.
Hence, we provide a “practical" upper bound for utility and
privacy through the performance of models trained on the
original images for each task, respectively.
Information Leakage Attack It is common to measure
the effectiveness of information leakage attacks with the
privacy-utility trade-off (Singh et al., 2021). The trade-off
is measured with the difference (∆) between the accuracy
of the utility task and the leakage attack. In the perspective
of privacy protection, the higher, the better for the utility
task accuracy, and the lower, the better for the leakage at-
tack accuracy. This naturally leads for ∆ to be higher the
better. Specifically, given a fully trained fixed obfuscator,
we calculate the accuracy with a separately trained utility
task model and an adversary model. The separate utility task
model is trained to correctly predict target attributes, while
the independent privacy leakage attack model is trained to
infer private labels. Both models receive obfuscated features
as input.
Reconstruction Attack Additionally, we consider the re-
construction (inversion) attack. We perform reconstruction
attacks by training CNNs to recover original images from
the corresponding obfuscated features. For example, for
face images, reconstructed images should (1) not reveal a
person’s identity and (2) not show private attributes.
Model Efficiency One focus of this work is to consider
the performance on the client-side since its computational
capacity can often be restricted on the client-side. We evalu-
ate the performance with two metrics on the client device,
Giga FLoating point OPerations (GFLOPs) and memory
consumption. We count all floating point operations such as
additions, multiplications, and divisions on one-time infer-
ence to calculate GFLOPs. We also consider all parameters
and buffers of models to measure memory usage.

5 EXPERIMENTAL SETUP
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Table 1: Comparison of the privacy-utility trade-off (∆). We compare our method with existing ARL approaches focusing
on the privacy-utility trade-off. Regarding ∆, our method outperforms all other methods while showing comparable utility
accuracy with the performance bound. Comparison with ‘No Noise’ shows the effectiveness of our noisy adversarial training
and inference.

Fairface(Race/Gender) CelebA(Gender/Smiling) CIFAR10(Multi/Binary)
Method Privacy ↓ Utility ↑ ∆ ↑ Privacy ↓ Utility ↑ ∆ ↑ Privacy ↓ Utility ↑ ∆ ↑
RN18 63.57 92.11 - 98.14 93.48 - 94.51 98.79 -

Image Noise 42.61 74.33 31.72 91.71 85.38 -6.33 54.37 87.77 33.40
No Noise (RN183) 45.22 89.55 44.33 94.54 93.38 -1.16 69.34 97.64 28.30
No Noise (RN184) 31.56 89.87 58.31 93.19 93.43 0.24 56.02 97.97 41.95

MaxEnt 24.56 90.52 65.96 59.28 93.43 34.15 24.61 97.74 73.13
DISCO 19.00 81.50 62.50 61.20 91.00 29.80 22.30 91.98 69.68
DeepObfs. 50.83 89.64 38.81 97.63 91.92 -5.71 73.79 92.86 19.07

Ours (RN183) 19.47 89.08 69.61 57.77 93.07 35.30 21.71 96.92 75.21
Ours (RN184) 15.60 88.34 72.74 53.77 90.86 37.09 19.81 94.25 74.44

5.1 IMPLEMENTATION DETAILS

Models We chose the commonly used CNN, ResNet18
(RN18) (He et al., 2016) as the base architecture to split.
RN18 consists of one convolution layer, four residual blocks,
and a fully connected layer. We choose the splitting point
after each of the four residual blocks. We indicate the differ-
ent configurations as RN18{1,2,3,4}, respectively, where the
subscript indicates the block after which the network was
split.

Note that for the proxy adversary model, we only consider
a proxy for information leakage attack, as discussed in Sec-
tion 4, since we empirically show that our method is robust
to reconstruction attacks without considering them during
training. For the task and proxy adversary models we use
the remaining part of the split architecture, e.g. for RN184,
the remaining part would consist of the fully connected
layer. This setting is consistent with previous works (Singh
et al., 2021; Roy and Boddeti, 2019; Li et al., 2021). The
noise parameter is chosen based on the dataset and model’s
privacy-utility trade-off. A separate Adam (Kingma and Ba,
2014) optimizer is used for all three models with a learning
rate of 10−3, and λ = 10−2 is used to balance the losses.
Settings for Information Leakage Attack First, we com-
pare the experiment setting from the previous ARL method
DISCO (Singh et al., 2021). We set “Smiling" as the
utility attribute and “Gender" as the privacy attribute for
CelebA (Liu et al., 2015), “Gender" as the utility attribute,
and “Race" as the privacy attribute for FairFace (Karkkainen
and Joo, 2021). For CIFAR10 (Krizhevsky et al., 2009), fol-
lowing the setting from MaxEnt (Roy and Boddeti, 2019),
the utility task is defined as classifying living objects (e.g.
“bird", “cat", etc.) or non-living objects (e.g. “airplane", “au-
tomobile", etc.) and privacy task as classifying separate 10
classes. All datasets used the official train and validation
split. Furthermore, results on more complex task settings,
such as multi-class classification and facial landmark detec-
tion, are provided in the supplementary material.

Settings for the Reconstruction Attack The reconstruc-
tion attack is performed on the CelebA dataset with the de-
coder architecture from DeepObfs (Li et al., 2021), which is
trained with the Adam optimizer with a learning rate of 10−3

and MSE between the original and the reconstructed image.
We depict the qualitative results, and additionally provide
quantitative visual dissimilarity comparison between the
original and reconstructed images. Various visual metrics
are reported, such as MSE, L1, SSIM (Wang et al., 2004),
MS-SSIM (Wang et al., 2003), PSNR (Horé and Ziou, 2010),
and LPIPS (Zhang et al., 2018), which are commonly consid-
ered as proxies for human vision. Additionally, a qualitative
user study is provided in Section 7.

5.2 BASELINES & COMPARED METHODS

ResNet18 We report the utility and privacy performance
for ResNet18 (RN18) models trained on the respective task
with original images to indicate the practical performance
bounds.
Image Noise Directly adding sufficient noise to the input
image is a simple way to obfuscate without any trainable
parameters. We add Gaussian noise sampled from N (0, σ2)
to the input image directly while obeying the image range
of pixels in the range (0,1), where σ = 2 is used for CelebA
and FairFace and σ = 0.8 for CIFAR10. The σ is chosen
based on the noise that fully obfuscates the image for a hu-
man observer. We used the entire ResNet18 model for both
the utility and privacy models.
No Noise As an ablation experiment on our method, we
conduct basic ARL training without a noise module. We
report the performance of RN183 and RN184.
MaxEnt We compare the ARL method MaxEnt, which uses
full ResNet18 as a client-side obfuscator. The obfuscator’s
final output is a vector with length d. d = 128 is used for
CIFAR10, which is the original setting from MaxEnt, and
d = 256 is used for FairFace and CelebA by considering
the size of the input images.
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Table 2: The efficiency of each client model. An image
with a size of (178 × 178 × 3) is used to measure the
performance. Our method (Bottom) shows the lowest com-
putational costs compared to all the baselines (Top).

Benchmark DeepObfs. DISCO MaxEnt RN18

Comp. Cost (GFLOPs) ↓ 6.00 2.52 2.52 2.52
Memory (MB) ↓ 1.00 42.80 43.17 42.69

Benchmark RN181 RN182 RN183 RN184

Comp. Cost (GFLOPs) ↓ 0.75 1.31 1.92 2.52
Memory (MB) ↓ 0.60 2.61 10.63 42.67

DISCO We report the privacy-utility trade-off numbers as
in the original work. We reconfirm the reconstruction vul-
nerability of DISCO as reported in their work with their
parameters.
DeepObfuscator Since the authors did not open-source
their code, we re-implemented DeepObfuscator based on
the provided information in the paper.

6 EXPERIMENTAL RESULTS

6.1 PRIVACY-UTILITY TRADE-OFF AND
EFFICIENCY

Table 1 compares baselines and state-of-the-art methods
with our proposed approach regarding the privacy-utility
trade-off (∆). First, we observe that ‘Image Noise’ decreases
the performance for both privacy and utility. This is because
that the method obfuscates the images without taking util-
ity and privacy tasks into account. For RN18{3,4} without
noise, which can be considered an ablation of our method,
the utility task accuracy is nearly retained compared to the
performance upper bound. However, the adversary achieved
high accuracy for the leakage attack compared to other meth-
ods. The results show that it is hard for the obfuscator to
learn to remove private information even with the adversary
proxy loss. Another notable point is that training the ob-
fuscator to remove the private information becomes more
challenging with the lower layers, as it can be confirmed
with the privacy accuracy gap between RN183 and RN184

(e.g. For FairFace 45.22% and 31.56%, respectively). This
phenomenon is discussed in Section 8.1.

Among the state-of-the-art methods, MaxEnt and DISCO
successfully achieve high ∆, with MaxEnt constituting the
most robust technique. DeepObfs. shows limited privacy
protection under our strong evaluation protocol.

Our methods (RN18{3,4}) show the best ∆ among all the
information leakage attack settings. The privacy accuracy is
comparably lower than other methods, such that the biggest
∆ could be achieved even with the utility accuracies that are
not always the highest. These are notable results since our
models are efficient and lighter than compared methods, as

Table 3: Quantitative results of the reconstruction attack on
CelebA. Visual dissimilarity scores between original and
reconstructed images. The result shows that our method
outperforms the other methods with all the metrics.

Method MSE ↑ L1 ↑ SSIM ↓ MS-SSIM ↓ PSNR ↓ LPIPS ↑

Image Noise 584.88 16.97 0.6017 0.7776 20.46 0.3710
No Noise (RN183) 1391.39 26.89 0.4666 0.6155 16.70 0.4882
No Noise (RN184) 1841.70 31.70 0.4558 0.5829 15.48 0.4857

MaxEnt 4955.44 58.83 0.3893 0.4057 11.19 0.6619
DeepObfs. 182.63 9.47 0.7834 0.9298 25.52 0.1864
DISCO 567.17 15.94 0.5765 0.7611 20.60 0.4351

Ours (RN183) 5437.02 63.22 0.3086 0.1682 10.78 0.8045
Ours (RN184) 5454.12 63.48 0.3301 0.1571 10.77 0.8197

indicated in Table 2. Our RN184 is comparable to MaxEnt
and DISCO in terms of memory and computational cost.
Hence, under similar efficiency, we observe that our noisy
adversarial training and inference have a noticeable effect on
the privacy-utility trade-off, outperforming all baselines and
previous approaches with significant margins. For example,
our approach achieves a privacy-utility trade-off of 72.74%
for Fairface, a 7%p increase compared to MaxEnt.

Additionally, our proposed approach with an RN18 split
after the third block (RN183) also achieves a higher privacy-
utility trade-off than all methods. This is especially signifi-
cant since RN183 achieves a noticeably smaller client-side
burden, with an approximate memory reduction by a factor
of 4 and a computational cost of only 76% (1.92 GFLOPS
compared to 2.52 GFLOPs) of MaxEnt and DISCO.

While DeepObfs. exhibits a comparably small memory foot-
print, its low ∆ and high computational cost indicate its
inferiority to other approaches.

In summary, our noisy adversarial training and inference
showed increased ∆ with decreased client-side resources
cost, outperforming various methods on other benchmarks.

6.2 RECONSTRUCTION ATTACK

Figure 2 shows the visual evaluation of the compared meth-
ods for the reconstruction attack. First, the reconstruction
results of DeepObfs., DISCO, and ‘Image Noise’ show a
slightly different identity from the original. However, they
are still distinguishable regarding the private attribute, in
this case, ‘Gender’. The ‘No Noise’ method appears to have
removed the identity and the background context, but it also
shows the distinguishable ‘Gender’ attribute. Our method
and MaxEnt are the only methods that successfully defended
the attack concerning the identity and private attribute. It is
noticeable that the reconstructed images of MaxEnt overall
show the same identity and the ‘Smile’ task attribute, while
nearly no facial features are distinguishable for our method.

Table 3 reaffirms our results quantitatively. DeepObfs.,
DISCO, and ‘Image Noise’ have the lowest visual dissimilar-
ity, since they showed similar identity and private attribute
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Figure 2: Reconstruction attack on CelebA. Except for our
method and MaxEnt, all other methods failed to defend the
reconstruction attack. While a few methods (e.g. ‘Image
Noise’, No Noise (RN184)) have successfully defended
revealing the exact identity of the person, they failed to
remove the private attribute (‘Gender’).

on Figure 2. ‘No Noise’ and MaxEnt have shown high dis-
similarity, but still, our method shows the best score since
no distinguishable objects are present.

In summary, our method showed the best robustness to the
reconstruction attack in terms of both qualitative and quan-
titative results. Note that our method is robust against the
reconstruction attack even without incorporating it into our
optimization process. With our noisy adversarial training,
the obfuscator successfully learns an obfuscated representa-
tion robust against the reconstruction attack, while retaining
task utility and removing private information.

7 USER STUDY

In addition to the quantitative results of the reconstruction
attack, we present a user study to show that our method’s
robustness against reconstruction is aligned with human

Figure 3: Results for user study on reconstructed images.

vision. We obfuscate the images using each technique shown
in Figure 3. Finally, we attack the obfuscated images using
settings from Section 5.1. We randomly selected 30 people
and set 270 images from the reconstruction attackers for the
survey. We asked them to distinguish whether the person
in the image is either smiling for the “Smiling" utility task,
or whether the person is male or female for the “Gender"
privacy task. We also provide the option to select “cannot
judge" for instances in which the reconstructed image is too
obfuscated for the person’s gender or facial expression to be
discernible.

As shown in Figure 3, we present that users correctly iden-
tified the “Gender" attribute on the reconstructed images
when the obfuscated representations are from DeepObfs.,
DISCO, and No Noise (RN184). Only ours and MaxEnt
show protections against the reconstruction attack for the
“Gender" classification task. For the smiling attribute, we
note that the wrong proportion of answers on original im-
ages is about 20%. This result is because judging whether
a person is smiling or not is subjective. The results for the
“Smiling" classification present that all methods other than
ours failed to defend against the attacks. We highlight these
results since concealing the “Smiling" attribute for utility
tasks is out of our interest. We note that RN181 performs
worse compared to (RN18{3,4}) as expected. However, it
outperforms the other compared methods by a consider-
able margin. We conclude that our approach successfully
hides sensitive information from humans even under the
reconstruction attack and outperforms previous methods.
We report detailed settings for impartial results in the sup-
plementary materials.
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Figure 4: Performance-efficiency trade-off. The result shows
better performance when choosing the split point from the
higher layers. Nevertheless, our approach shows comparable
performance even with the split at the lower layers.

8 ABLATION EXPERIMENTS

8.1 EFFICIENCY-PERFORMANCE TRADE-OFF
FOR DIFFERENT SPLIT POINTS

Choosing the split point from the lower layers of the model
results in compromised privacy, whereas choosing from the
higher layers is advantageous for preserving privacy (Yosin-
ski et al., 2014). However, choosing a split from the higher
layer increases the client-side burden due to higher memory
usage and computational cost. Thus, selecting an appropri-
ate splitting point is essential by considering the trade-off
between model efficiency and performance.

We report the privacy and utility accuracy for each variant
of ResNet18 model in Figure 4. The result confirms that a
better performance (∆) can be achieved with a split point
at higher layers. The privacy accuracy decreases as the split
is at higher layers since the features are being processed
to be more specific to the utility task. The utility accuracy
remains similar, independent of the split location, which
increases ∆ for the higher layers. Note that our approach
has comparable performance even with the lower layer split
model. For example, RN182 achieves 88.10% for utility
accuracy and 22.38% for privacy, which leads to the privacy-
utility gap of 65.72%. This is 3.22%p better than DISCO
and only 0.24%p worse than MaxEnt while having only half
the computational cost and 1/16 memory burden.

8.2 OTHER NETWORK ARCHITECTURES

We further investigate whether our method applies to other
network architectures. We use three commonly used CNN
models, MobileNetV2 (Sandler et al., 2018) split at the
16th convolution layer out of 19, AlexNet (Krizhevsky et al.,
2012) split at the fifth convolution layer out of 8, VGG11 (Si-
monyan and Zisserman, 2014) split at the fourth convolution
layer out of 5 with σ = 30, 15, 60, respectively. For each
model, we followed the evaluation protocol for the Fair-
Face dataset. The models are trained with proxy adversarial
loss (Adv loss) and our proposed method (ARL with noise).
Table 4 confirms that our method also works with various

Table 4: Model Ablation. Trained on FairFace dataset.

Method GFLOPs Memory
(MB)

Privacy ↓ Utility ↑ ∆ ↑

MobileNetV2 (MNV2) Orig. 0.4457 8.62 54.40 91.07 36.67

MNV216 + Adv loss 0.3585 3.97 38.23 90.48 52.25
MNV216 + Noise + Adv loss 22.22 90.07 67.85

AlexNet Orig. 0.8952 217.47 61.60 88.47 26.87

AlexNet4 + Adv loss 0.6679 7.17 51.09 88.42 37.33
AlexNet4 + Noise + Adv loss 31.59 86.79 55.20

VGG11 Orig. 9.5548 491.26 65.86 90.66 24.80

VGG115 + Adv loss 5.8864 8.19 63.40 89.62 26.22
VGG115 + Noise + Adv loss 42.11 87.80 45.69

generally adopted architectures. For all three models, the
utility is reasonably retained while effectively protecting
privacy. This result shows that the training scheme with our
noise module can be readily applied to off-the-shelf model
architectures. The computational cost and memory usage
is also compared between the original and split model. It
is noticeable that the MobileNetV2 architecture could even
further reduce the computational burden on the client side
with our method.

9 DISCUSSION

In terms of adding noise to the representation, differen-
tial privacy based methods (Wang et al., 2018) for privacy
protection in deep learning might seem similar to ours. How-
ever, differential privacy is not designed to be robust against
the information leakage attack. Our method can consider
possible information leakage attacks in advance by follow-
ing the information-theoretic ARL formulation. Further, ef-
ficiency improvements can be achieved via pruning (Han
et al., 2015), quantization (Jacob et al., 2018), and knowl-
edge distillation (Hinton et al., 2015) which are orthogonal
to our proposed method.

10 CONCLUSION

We proposed a novel ARL method that incorporates feature
noise during training and inference. Compared to SOTA
ARL methods, our approach achieves better accuracy, lower
computation and memory overheads, and stronger resistance
to information leakage and reconstruction attacks. In partic-
ular, we conducted a user study to validate the qualitative
superiority of our method against reconstruction attacks.
Moreover, with thorough ablation experiments, we demon-
strated the insight for choosing model split points and the
general applicability of our method to off-the-shelf CNNs.
Overall, our findings highlighted the potential of feature
noise in ARL as a promising direction for future research.
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