# Incentivising Diffusion while Preserving Differential Privacy (Supplementary Material) 

Fengjuan Jia ${ }^{1}$<br>Mengxiao Zhang ${ }^{2}$<br>Jiamou Liu ${ }^{3}$<br>Bakh Khoussainov ${ }^{4}$<br>${ }^{1,2,4}$ University of Electronic Science and Technology of China, China<br>${ }^{3}$ The University of Auckland, New Zealand

## A IDM

Here, we introduce the first diffusion auction for selling single item, IDM [13]. A key concept of IDM is diffusion critical sequence. Given a profile digraph $G_{\theta^{\prime}}$, for any buyers $i, j \in V_{\theta^{\prime}}, i$ is $\theta^{\prime}$-critical to $j$, denoted by $i \preceq_{\theta^{\prime}} j$, if all paths from $s$ to $j$ in $G_{\theta^{\prime}}$ go through $i$. A diffusion critical sequence of $i$, denoted by $C_{i}$, is a sequence of all diffusion critical nodes of $i$ and $i$ itself ordered by $\theta^{\prime}$ critical relation. That is, $C_{i}=\left(x_{1}, x_{2} \ldots, x_{k}, i\right)$, where $x_{1} \preceq_{\theta^{\prime}} x_{2} \preceq_{\theta^{\prime}} \ldots \preceq_{\theta^{\prime}} x_{k} \preceq_{\theta^{\prime}} i$. Based on this concept, IDM works as follows. IDM first locates the buyer $m$ with the highest valuation among all buyers. Then it allocates the item to the buyer $w$, who has the highest valuation when the buyers after $w$ are not considered. The winner $w$ pays the highest bid without her participation, and each diffusion critical node is rewarded by the increased payment due to her participation.

## B PROOF OF LEMMA 4.6

Lemma 4.6. Given a reported global profile $\theta^{\prime}$, recursive DPDM REC is $\epsilon d_{\max } \Delta \sigma$-differentially private, where $\epsilon$ is the DP parameter of REC.

Proof. Let $\theta$ and $\theta^{\prime}$ be two profiles where a buyer $i$ 's reports $i$ reports $v_{i}$ in $\theta$ and $v_{i}^{\prime}$ in $\theta^{\prime}$ such that $v_{i} \neq v_{i}^{\prime}$. Consider the probabilities that $\operatorname{REC}(\theta)$ and $\operatorname{REC}\left(\theta^{\prime}\right)$ return a winner $w$. In a critical diffusion tree $T_{\theta}$, let $d_{w}$ denote the depth of $w, a_{w}^{\ell}$ be an ancestor of $w$ with distance $\ell$. Also, let $\operatorname{Exp}^{\theta}\left(T\left(a_{w}^{1}\right)-T(w)\right)$ and $\operatorname{Exp}^{\theta^{\prime}}\left(T\left(a_{w}^{1}\right)-T(w)\right)$ denote the value derived from $\theta$ and $\theta^{\prime}$, respectively. Then by Equa-
tion (3), we have

$$
\begin{array}{r}
\frac{\operatorname{Pr}\left[\operatorname{REC}(\theta)=o_{w}\right]}{\operatorname{Pr}\left[\operatorname{REC}\left(\theta^{\prime}\right)=o_{w}\right]}=\frac{\frac{\operatorname{Exp}(w)}{\operatorname{Exp}^{\theta}\left(T\left(a_{w}^{1}\right)-T(w)\right)}}{\frac{\operatorname{Exp}^{\theta^{\prime}}(w)}{\operatorname{Exp}^{\theta^{\prime}}\left(T\left(a_{w}^{1}\right)-T(w)\right)}} \\
\quad \times \frac{\operatorname{Pr}_{T\left[a_{w}^{1}\right]}^{\theta}-\operatorname{Pr}_{a_{w}^{1}}^{\theta}}{\operatorname{Pr}_{T\left[a_{w}^{1}\right]}^{\theta^{\prime}}-\operatorname{Pr}_{a_{w}^{1}}^{\theta^{\prime}}}
\end{array}
$$

We repeatedly replace $\operatorname{Pr}_{T\left[a_{w}^{\ell}\right]}^{\theta}, \operatorname{Pr}_{a_{w}^{\ell}}^{\theta}, \operatorname{Pr}_{T\left[a_{w}^{\ell}\right]}^{\theta^{\prime}}, \operatorname{Pr}_{a_{w}^{\ell}}^{\theta^{\prime}}$ by expressions of $a_{w}^{\ell+1}$ until we get an expression of $s$. For each distance $0 \leq \ell<d_{w}$, we denote $\frac{\operatorname{Exp}\left(T\left[a_{w}^{\ell}\right]\right)}{\operatorname{Exp}\left(T\left(a_{w}^{\ell+1}\right)\right)}$ as $A_{\ell}^{\theta}$, $\frac{\operatorname{Exp}\left(a_{w}^{\ell}\right)}{\operatorname{Exp}\left(T\left(a_{w}^{\ell+1}\right) \backslash T\left(a_{w}^{\ell}\right)\right)}$ as $B_{\ell}^{\theta}$. For $\theta^{\prime}$, we have similar notations as $A_{\ell}^{\theta^{\prime}}$ and $B_{\ell}^{\theta^{\prime}}$. Then the above ratio can be written as

$$
\frac{\operatorname{Pr}\left[\operatorname{REC}(\theta)=o_{w}\right]}{\operatorname{Pr}\left[\operatorname{REC}\left(\theta^{\prime}\right)=o_{w}\right]}=\frac{B_{0}^{\theta}}{B_{0}^{\theta^{\prime}}} \times \prod_{\ell=1}^{d_{w}-1} \frac{A_{\ell}^{\theta}-B_{\ell}^{\theta}}{A_{\ell}^{\theta^{\prime}}-B_{\ell}^{\theta^{\prime}}}
$$

Next we show for each $0 \leq \ell<d_{w}, \frac{A_{\ell}^{\theta}-B_{\ell}^{\theta}}{A_{\ell}^{\theta^{\prime}}-B_{\ell}^{\theta^{\prime}}}$ is bounded by $\exp (\epsilon \Delta \sigma)$. To prove it, we first show for for each $\ell$, $\left(A_{\ell}^{\theta}-A_{\ell}^{\theta^{\prime}}\right) \times\left(B_{\ell}^{\theta}-B_{\ell}^{\theta^{\prime}}\right) \geq 0$ by cases.
(1) When $i \in T\left[a_{w}^{\ell}\right]$, we have $A_{\ell}^{\theta}-A_{\ell}^{\theta^{\prime}} \leq 0, B_{\ell}^{\theta}-B_{\ell}^{\theta^{\prime}} \leq 0$ or $A_{\ell}^{\theta}-A_{\ell}^{\theta^{\prime}} \geq 0, B_{\ell}^{\theta}-B_{\ell}^{\theta^{\prime}} \geq 0$
(2) When $i \in T\left[a_{w}^{\ell+1}\right] \backslash T\left[a_{w}^{\ell}\right]$, then $A_{\ell}^{\theta}-A_{\ell}^{\theta^{\prime}} \leq 0, B_{\ell}^{\theta}-$ $B_{\ell}^{\theta^{\prime}} \leq 0$ or $A_{\ell}^{\theta}-A_{\ell}^{\theta^{\prime}} \geq 0, B_{\ell}^{\theta}-B_{\ell}^{\theta^{\prime}} \geq 0$
(3) When $i \notin T\left[a_{w}^{\ell+1}\right]$, then $A_{\ell}^{\theta}-A_{\ell}^{\theta^{\prime}}=0, B_{\ell}^{\theta}-B_{\ell}^{\theta^{\prime}}=0$.

Without loss of generality, we assume that $A_{\ell}^{\theta^{\prime}}=$ $\alpha_{1} A_{\ell}^{\theta}, B_{\ell}^{\theta^{\prime}}=\alpha_{2} B_{\ell}^{\theta}, \alpha_{1}, \alpha_{2} \in \mathbb{R}^{+}$. Plug in these two equations, and we get

$$
\frac{A_{\ell}^{\theta}-B_{\ell}^{\theta}}{A_{\ell}^{\theta^{\prime}}-B_{\ell}^{\theta^{\prime}}}=\frac{A_{\ell}^{\theta}-B_{\ell}^{\theta}}{\alpha_{1} A_{\ell}^{\theta}-\alpha_{2} B_{\ell}^{\theta}}
$$

Then we consider two cases:
(1) When $\alpha_{1} \geq \alpha_{2}$, we have $\frac{A_{\ell}^{\theta}-B_{\ell}^{\theta}}{\alpha_{1} A_{\ell}^{\theta}-\alpha_{2} B_{\ell}^{\theta}} \leq \frac{A_{\ell}^{\theta}-B_{\ell}^{\theta}}{\alpha_{1} A_{\ell}^{\theta}-\alpha_{1} B_{\ell}^{\theta}} \leq$ $\frac{1}{\alpha_{1}}$.
(2) When $\alpha_{2} \geq \alpha_{1}$, we have $\frac{A_{\ell}^{\theta}-B_{\ell}^{\theta}}{\alpha_{1} A_{\ell}^{\theta}-\alpha_{2} B_{\ell}^{\theta}} \leq \frac{A_{\ell}^{\theta}-B_{\ell}^{\theta}}{\alpha_{2} A_{\ell}^{\theta}-\alpha_{2} B_{\ell}^{\theta}} \leq$ $\frac{1}{\alpha_{2}}$.

After that, we show that both $\frac{1}{\alpha_{1}}$ and $\frac{1}{\alpha_{2}}$ are bounded by $\exp (\epsilon \Delta \sigma)$ as follows. By definition of $\alpha_{1}$, we have $\frac{1}{\alpha_{1}}=$ $\frac{A_{\ell}^{\theta}}{A_{\ell}^{\theta^{\prime}}}=\frac{\operatorname{Exp}^{\theta}\left(T\left[a_{w}^{\ell}\right]\right)}{\operatorname{Exp}^{\theta^{\prime}}\left(T\left[a_{w}^{\ell}\right]\right)} \times \frac{\operatorname{Exp}^{\theta^{\prime}}\left(T\left(a_{w}^{\ell+1}\right)\right)}{\operatorname{Exp}^{\theta}\left(T\left(a_{w}^{\ell+1}\right)\right)}$.
(1) When valuation $v_{i}^{\prime} \leq v_{i}$, the second ratio is at most 1 . Then we have

$$
\begin{aligned}
\frac{1}{\alpha_{1}} & =\frac{A_{\ell}^{\theta}}{A_{\ell}^{\theta^{\prime}}} \leq \frac{\operatorname{Exp}^{\theta}\left(T\left[a_{w}^{\ell}\right]\right)}{\operatorname{Exp}^{\theta^{\prime}}\left(T\left[a_{w}^{\ell}\right]\right)} \\
& \leq \frac{\sum_{k \in T\left[a_{w}^{\ell}\right]} \exp \left(\epsilon \sigma\left(\theta, o_{k}\right)\right)}{\sum_{k \in T\left[a_{w}^{\ell}\right]} \exp \left(\epsilon\left(\sigma\left(\theta, o_{k}\right)-\Delta \sigma\right)\right)} \leq \exp (\epsilon \Delta \sigma)
\end{aligned}
$$

(2) When valuation $v_{i}^{\prime} \geq v_{i}$, the first ratio is at most 1 . We have

$$
\begin{aligned}
\frac{1}{\alpha_{1}} & =\frac{A_{\ell}^{\theta}}{A_{\ell}^{\theta^{\prime}}} \leq \frac{\operatorname{Exp}^{\theta^{\prime}}\left(T\left(a_{w}^{\ell+1}\right)\right)}{\operatorname{Exp}^{\theta}\left(T\left(a_{w}^{\ell+1}\right)\right)} \\
& \leq \frac{\sum_{k \in T\left(a_{w}^{\ell+1}\right)} \exp \left(\epsilon\left(\sigma\left(\theta, o_{k}\right)+\Delta \sigma\right)\right)}{\sum_{k \in T\left(a_{w}^{\ell+1}\right)} \exp \left(\epsilon \sigma\left(\theta, o_{k}\right)\right)} \leq \exp (\epsilon \Delta \sigma)
\end{aligned}
$$

In a similar way, we can show that $\frac{1}{\alpha_{2}} \leq \exp (\epsilon \Delta \sigma)$.
Therefore we have

$$
\begin{aligned}
\frac{\operatorname{Pr}\left[\operatorname{REC}(\theta)=o_{w}\right]}{\operatorname{Pr}\left[\operatorname{REC}\left(\theta^{\prime}\right)=o_{w}\right]} & \leq \exp (\epsilon \Delta \sigma) \times \prod_{1 \leq \ell<d_{w}} \exp (\epsilon \Delta \sigma) \\
& \leq \exp \left(\epsilon d_{w} \Delta \sigma\right) \leq \exp \left(\epsilon d_{\max } \Delta \sigma\right)
\end{aligned}
$$

## C PROOF OF LEMMA 5.2

Lemma 5.2. Given a reported global profile $\theta^{\prime}$, layered DPDM LAY is $\epsilon \Delta \sigma$-differential private, where $\epsilon$ is the privacy parameter of LAY.

Proof. Given a global profile $\theta$, for each buyer $i$ with $\left(v_{i}, r_{i}\right)$, we have

$$
\begin{aligned}
\mathbf{E}_{\mathrm{LAY}}\left[u_{i}(\theta)\right] & =\left(v_{i}-p_{i}(\theta)\right) \operatorname{Pr}_{i}\left(\theta_{i}\right) \\
& =\int_{0}^{v_{i}} \operatorname{Pr}_{i}^{\mathrm{LAY}}\left(\left(x, r_{i}\right)\right) d x \geq 0 .
\end{aligned}
$$

Therefore, the lemma holds.

## D PROOF OF LEMMA 5.4

Lemma 5.4. Given a reported global profile $\theta^{\prime}$, layered DPDM LAY is $\epsilon \Delta \sigma$-differential private, where $\epsilon$ is the privacy parameter of LAY.

Proof. Given two reported global profiles $\theta$ and $\theta^{\prime}$ that differ in an arbitrary buyer $i$ 's reported valuation such that $i$ reports $v_{i}$ in $\theta$ and $v_{i}^{\prime}$ in $\theta^{\prime}$, we consider the probabilities that $\operatorname{LAY}(\theta)$ and $\operatorname{LAY}\left(\theta^{\prime}\right)$ return a winner $w$.

Without loss of generality, we assume that $w$ is in $L_{\ell}$, then we have

$$
\begin{aligned}
\frac{\operatorname{Pr}\left[\operatorname{LAY}(\theta)=o_{w}\right]}{\operatorname{Pr}\left[\operatorname{LAY}\left(\theta^{\prime}\right)=o_{w}\right]} & =\frac{\operatorname{Pr}_{L_{\ell}} \times \frac{\operatorname{Exp}^{\theta}(w)}{\operatorname{Exp}^{\theta}\left(L_{\ell}\right)}}{\operatorname{Pr}_{L_{\ell}} \times \frac{\operatorname{Exp}^{\theta^{\prime}}(w)}{\operatorname{Exp}^{\theta^{\prime}\left(L_{\ell}\right)}}} \\
& =\frac{\operatorname{Exp}^{\theta}(w)}{\operatorname{Exp}^{\theta^{\prime}}(w)} \frac{\operatorname{Exp}^{\theta^{\prime}}\left(L_{\ell}\right)}{\operatorname{Exp}^{\theta}\left(L_{\ell}\right)}
\end{aligned}
$$

When $i$ is not on layer $L_{\ell}, \frac{\operatorname{Pr}\left[\operatorname{LAY}(\theta)=o_{w}\right]}{\operatorname{Pr}\left[\operatorname{LAY}\left(\theta^{\prime}\right)=o_{w}\right]}=1 \leq$ $\exp (\epsilon \Delta \sigma)$. Otherwise, when $i$ is on layer $L_{\ell}$, we consider two cases.
(1) $v_{i}<v_{i}^{\prime}$. As $\sigma(\cdot)$ is non-decreasing in $v_{i}$, the first ratio is at most 1 . Then we have

$$
\begin{aligned}
\frac{\operatorname{Pr}\left[\operatorname{LAY}(\theta)=o_{w}\right]}{\operatorname{Pr}\left[\operatorname{LAY}\left(\theta^{\prime}\right)=o_{w}\right]} & \leq \frac{\operatorname{Exp}^{\theta^{\prime}}\left(L_{\ell}\right)}{\operatorname{Exp}^{\theta}\left(L_{\ell}\right)} \\
& \leq \frac{\sum_{j \in L_{\ell}} \exp \left(\epsilon\left(\sigma\left(\theta, o_{j}\right)+\Delta \sigma\right)\right)}{\sum_{j \in L_{\ell}} \exp \left(\epsilon \sigma\left(\theta, o_{j}\right)\right)} \\
& \leq \exp (\epsilon \Delta \sigma)
\end{aligned}
$$

(2) $v_{i}>v_{i}^{\prime}$. In this case, the second ratio is at most 1 . Then we have

$$
\begin{aligned}
\frac{\operatorname{Pr}\left[\operatorname{LAY}(\theta)=o_{w}\right]}{\operatorname{Pr}\left[\operatorname{LAY}\left(\theta^{\prime}\right)=o_{w}\right]} & \leq \frac{\operatorname{Exp}^{\theta}(w)}{\operatorname{Exp}^{\theta^{\prime}}(w)} \leq \frac{\exp \left(\epsilon \sigma\left(\theta, o_{w}\right)\right)}{\exp \left(\epsilon\left(\sigma\left(\theta, o_{w}\right)-\Delta \sigma\right)\right)} \\
& \leq \exp (\epsilon \Delta \sigma)
\end{aligned}
$$

## E PROOF OF THEOREM 5.6

Theorem 5.6 Given a global profile $\theta$, layered DPDM LAY has $\mathbf{E}_{\mathrm{LAY}}\left[s w_{\mathrm{LAY}}(\theta)\right] \geq \gamma_{d_{\max }} \mathbf{E}_{\mathrm{EMD}}\left[s w_{\mathrm{EMD}}(\theta)\right]$.

Proof. Given a global profile $\theta$, the expected social welfare of LAY is

$$
\begin{aligned}
\mathbf{E}_{\mathrm{LAY}}\left[s w_{\mathrm{LAY}}(\theta)\right] & =\sum_{i \in V}\left(v_{i} \times \operatorname{Pr}_{i}^{\mathrm{LAY}}\left(\theta_{i}\right)\right) \\
& =\sum_{i \in V} v_{i} \frac{\exp \left(\epsilon, \sigma\left(\theta, o_{i}\right)\right)}{\sum_{j \in L_{d_{i}}} \frac{1}{\gamma_{d_{i}}} \exp \left(\epsilon, \sigma\left(\theta, o_{j}\right)\right)} \\
& \geq \gamma_{d_{\max }} \sum_{i \in N} v_{i} \frac{\exp \left(\epsilon, \sigma\left(\theta, o_{i}\right)\right)}{\sum_{j \in L_{d_{i}}} \exp \left(\epsilon, \sigma\left(\theta, o_{j}\right)\right)} \\
& \geq \gamma_{d_{\max }} \sum_{i \in N} v_{i} \frac{\exp \left(\epsilon, \sigma\left(\theta, o_{i}\right)\right)}{\sum_{j \in V} \exp \left(\epsilon, \sigma\left(\theta, o_{j}\right)\right)} \\
& =\gamma_{d_{\max }} \mathbf{E}_{\mathrm{EMD}}\left[s w_{\mathrm{EMD}}(\theta)\right]
\end{aligned}
$$

