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A IDM

Here, we introduce the first diffusion auction for selling
single item, IDM [13]. A key concept of IDM is diffusion
critical sequence. Given a profile digraph G/, for any buy-
ers i,j € Vi, i is 0'-critical to j, denoted by i =<y 7,
if all paths from s to j in G- go through ¢. A diffusion
critical sequence of i, denoted by C;, is a sequence of
all diffusion critical nodes of ¢ and i itself ordered by 6'-
critical relation. That is, C; = (z1,22...,%k, %), where
r1 ¢ T3 ¢ ... ¢ T =g 1. Based on this concept,
IDM works as follows. IDM first locates the buyer m with
the highest valuation among all buyers. Then it allocates the
item to the buyer w, who has the highest valuation when
the buyers after w are not considered. The winner w pays
the highest bid without her participation, and each diffusion
critical node is rewarded by the increased payment due to
her participation.

B PROOF OF LEMMA

Lemma Given a reported global profile 0', recursive
DPDM REC is edmax Ao-differentially private, where € is
the DP parameter of REC.

Proof. Let 0 and 6’ be two profiles where a buyer i’s reports
i reports v; in 6 and v} in €’ such that v; # v}. Consider
the probabilities that REC(#) and REC(6) return a winner
w. In a critical diffusion tree Ty, let d,, denote the depth
of w, a%, be an ancestor of w with distance £. Also, let
Exp?(T(al) — T(w)) and Exp? (T'(al,) — T'(w)) denote
the value derived from 6 and 6’, respectively. Then by Equa-

tion (3), we have

Exp(w)
Pr[REC(0) = 0]  ®xp?(T(al,)—T(w))
Pr[REC(0') = 0y] Exp?’ (w)
Exp?’ (T (a,)—T(w))
Prfjay) — Pray
“ P Pr?;
I7T(a] = tTal,

We repeatedly replace PrgT[aﬁ’], Przﬁ, PrGT/[aﬁ)], PrZ:{) by

£+1

expressions of a,

until we get an expression of s. For

£

each distance 0 < ¢ < d,,, we denote % as AY,
Exp(afv)

Exp(T(ast)\T(al,))

as A9 and BY'. Then the above ratio can be written as

as Bg. For 0, we have similar notations

Pr[REC(0) = o] _ Bf dﬁl A9 — Bf
Pr[REC(¢') = 0,,] BY o AY - BY

0_po .
Next we show for each 0 < /7 < d,,, % is bounded
e

by exp(eAo). To prove it, we first shéw for for each ¢,
(A9 — AY') x (BY — BY') > 0 by cases.

(1) When i € T[a’,], we have A) — A9 <0,B) —BY <0
or A9 — A9 >0,B) —BY >0

(2) When i € T[a™] \ T[a’)], then A) — A9 < 0, Bf —
BY <0or A —AY >0,Bf —BY >0

(3) When i ¢ T[a’t!], then A — A =0, B! — BY = 0.

Without loss of generality, we assume that Ag/ =

a1 A9, BY = ayBY, ay, a5 € RT. Plug in these two equa-
tions, and we get

] ]

Ay — By

0’ 0’
Al - Bé

0 0
AZ — BZ
OélAZ — ang

Then we consider two cases:

Af-B]
(1) When a1 > o, we have T AT —as BT
1
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oy’
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> 0 7 >
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(2) When oy > «q, we have

1
oy’

After that, we show that both a% and O% are bounded by
exp(eAo) as follows. By definition of «, we have 0%1 =
Al _ Exp’(Tlal]) | Exp” (T(at))

A7 Exp?(Tlal,]) " Exp?(T(al )

(1) When valuation v; < wv;, the second ratio is at most 1.
Then we have

1A Ex(Tlah)
a1 AY T Exp”(T[al,))
< ZkET[a{U] exp(ec (6, or))
T Ykeriar) €xP(e(0 (0, 0x) — Acr))

(2) When valuation v > v;, the first ratio is at most 1. We
have

< exp(eAo)

1Ay Exp” (T(al))
ar A7 T Exp”(T(aw'))
a1y €Xp(€ o(0,01) + Ao
< ZkeT( AR (e(o (8, 0r) ) < exp(eAo)
ZkeT(aF+l exp(ea (0, or))

In a similar way, we can show that - < exp(eAo).
2
Therefore we have

Pr[REC(0) = o4)
Pr[REC(¢") = o0y)

< exp(eAo) x

H exp(eAo)

1<0<d,,

< exp(ed,Ac) < exp(edmaxAo)

O

C PROOF OF LEMMA

Lemma Given a reported global profile ¢, layered
DPDM LAY is eAo-differential private, where € is the pri-
vacy parameter of LAY.

Proof. Given a global profile 6, for each buyer i with
(vi,7;), we have

Epay[ui(0)] = (vi — pi(0))Pri(0;)

= / ’L PriAY ((z,7;))dz > 0.
0

Therefore, the lemma holds. O

D PROOF OF LEMMA

Lemma Given a reported global profile 0', layered
DPDM LAY is eAo-differential private, where € is the pri-
vacy parameter of LAY .

Proof. Given two reported global profiles 6 and 6’ that dif-
fer in an arbitrary buyer ¢’s reported valuation such that ¢
reports v; in 6 and v} in #’, we consider the probabilities
that LAY (0) and LAY (¢) return a winner w.

Without loss of generality, we assume that w is in Ly, then
we have

Exp?
PrLAY(0) = 0u] _ e

PHLAY(P) = ou] ~ pry, x Lol
XPp 4

~ Exp’(w) Exp” (L)
Exp” (w) Exp’(Ly)

PI‘LZ X

Pr[LAY (0)=0.] 1 <
Pr[LAY (0)=0u] =
exp(eAo). Otherwise, when ¢ is on layer L,, we consider
two cases.
(1) v; < v}. As o(+) is non-decreasing in v;, the first ratio is
at most 1. Then we have
Pr[LAY(0) = 0,] _ Exp” (L)
Pr[LAY (0") = 0,] — Expe(LZ)
< Yjer, &pe((0,05) + Ad))
- ZjeL[ exp(eo(@, Oj))
< exp(eAo)

When ¢ is not on layer Ly,

(2) v; > v}. In this case, the second ratio is at most 1. Then
we have

Pr[LAY () = o0y] Exp’ (w) exp(ea (6, 0y))
Pr[LAY (6") = 0u] ~ Exp” (w) ~ exp(e(a(0,0u) — Ao))
< exp(eAo)
O

E PROOF OF THEOREM

Theorem [5.6| Given a global profile 0, layered DPDM LAY
has Epay [swpay (0)] > Y. EBEMD [SwWEMD (0)]. -

Proof. Given a global profile 6, the expected social welfare
of LAY is

Epay[swray (9)] = > (v x PriAY(6;))
eV
exp(e, 0(6,0:))
_,LGZV ZJeLd ’y}i exp(€ 0'(9 OJ))

exp(e, (6, 0;))

Z Ydmax Z Z]eLd exp(e 0(9 Oj))

iEN

exp(e,a(6,0;))
2 mxz Z cv exp(e,a(0,05))

i€EN

= Vdgmax EEMD [SWEMD (0)]
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