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A IDM

Here, we introduce the first diffusion auction for selling
single item, IDM [13]. A key concept of IDM is diffusion
critical sequence. Given a profile digraph Gθ′ , for any buy-
ers i, j ∈ Vθ′ , i is θ′-critical to j, denoted by i ⪯θ′ j,
if all paths from s to j in Gθ′ go through i. A diffusion
critical sequence of i, denoted by Ci, is a sequence of
all diffusion critical nodes of i and i itself ordered by θ′-
critical relation. That is, Ci = (x1, x2 . . . , xk, i), where
x1 ⪯θ′ x2 ⪯θ′ . . . ⪯θ′ xk ⪯θ′ i. Based on this concept,
IDM works as follows. IDM first locates the buyer m with
the highest valuation among all buyers. Then it allocates the
item to the buyer w, who has the highest valuation when
the buyers after w are not considered. The winner w pays
the highest bid without her participation, and each diffusion
critical node is rewarded by the increased payment due to
her participation.

B PROOF OF LEMMA 4.6

Lemma 4.6. Given a reported global profile θ′, recursive
DPDM REC is ϵdmax∆σ-differentially private, where ϵ is
the DP parameter of REC.

Proof. Let θ and θ′ be two profiles where a buyer i’s reports
i reports vi in θ and v′i in θ′ such that vi ̸= v′i. Consider
the probabilities that REC(θ) and REC(θ′) return a winner
w. In a critical diffusion tree Tθ, let dw denote the depth
of w, aℓw be an ancestor of w with distance ℓ. Also, let
Expθ(T (a1w)− T (w)) and Expθ

′
(T (a1w)− T (w)) denote

the value derived from θ and θ′, respectively. Then by Equa-

tion (3), we have

Pr[REC(θ) = ow]

Pr[REC(θ′) = ow]
=

Exp(w)
Expθ(T (a1

w)−T (w))

Expθ′ (w)

Expθ′ (T (a1
w)−T (w))

×
PrθT [a1

w] − Prθa1
w

Prθ
′

T [a1
w] − Prθ

′

a1
w

We repeatedly replace PrθT [aℓ
w], Pr

θ
aℓ
w

, Prθ
′

T [aℓ
w], Pr

θ′

aℓ
w

by
expressions of aℓ+1

w until we get an expression of s. For
each distance 0 ≤ ℓ < dw, we denote Exp(T [aℓ

w])

Exp(T (aℓ+1
w ))

as Aθ
ℓ ,

Exp(aℓ
w)

Exp(T (aℓ+1
w )\T (aℓ

w))
as Bθ

ℓ . For θ′, we have similar notations

as Aθ′

ℓ and Bθ′

ℓ . Then the above ratio can be written as

Pr[REC(θ) = ow]

Pr[REC(θ′) = ow]
=

Bθ
0

Bθ′
0

×
dw−1∏
ℓ=1

Aθ
ℓ −Bθ

ℓ

Aθ′
ℓ −Bθ′

ℓ

Next we show for each 0 ≤ ℓ < dw, Aθ
ℓ−Bθ

ℓ

Aθ′
ℓ −Bθ′

ℓ

is bounded

by exp(ϵ∆σ). To prove it, we first show for for each ℓ,
(Aθ

ℓ −Aθ′

ℓ )× (Bθ
ℓ −Bθ′

ℓ ) ≥ 0 by cases.
(1) When i ∈ T [aℓw], we have Aθ

ℓ −Aθ′

ℓ ≤ 0, Bθ
ℓ −Bθ′

ℓ ≤ 0

or Aθ
ℓ −Aθ′

ℓ ≥ 0, Bθ
ℓ −Bθ′

ℓ ≥ 0

(2) When i ∈ T [aℓ+1
w ] \ T [aℓw], then Aθ

ℓ − Aθ′

ℓ ≤ 0, Bθ
ℓ −

Bθ′

ℓ ≤ 0 or Aθ
ℓ −Aθ′

ℓ ≥ 0, Bθ
ℓ −Bθ′

ℓ ≥ 0

(3) When i /∈ T [aℓ+1
w ], then Aθ

ℓ −Aθ′

ℓ = 0, Bθ
ℓ −Bθ′

ℓ = 0.

Without loss of generality, we assume that Aθ′

ℓ =

α1A
θ
ℓ , B

θ′

ℓ = α2B
θ
ℓ , α1, α2 ∈ R+. Plug in these two equa-

tions, and we get

Aθ
ℓ −Bθ

ℓ

Aθ′
ℓ −Bθ′

ℓ

=
Aθ

ℓ −Bθ
ℓ

α1Aθ
ℓ − α2Bθ

ℓ

.

Then we consider two cases:
(1) When α1 ≥ α2, we have Aθ

ℓ−Bθ
ℓ

α1Aθ
ℓ−α2Bθ

ℓ

≤ Aθ
ℓ−Bθ

ℓ

α1Aθ
ℓ−α1Bθ

ℓ

≤
1
α1

.
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(2) When α2 ≥ α1, we have Aθ
ℓ−Bθ

ℓ

α1Aθ
ℓ−α2Bθ

ℓ

≤ Aθ
ℓ−Bθ

ℓ

α2Aθ
ℓ−α2Bθ

ℓ

≤
1
α2

.

After that, we show that both 1
α1

and 1
α2

are bounded by
exp(ϵ∆σ) as follows. By definition of α1, we have 1

α1
=

Aθ
ℓ

Aθ′
ℓ

=
Expθ(T [aℓ

w])

Expθ′ (T [aℓ
w])

×Expθ′ (T (aℓ+1
w ))

Expθ(T (aℓ+1
w ))

.

(1) When valuation v′i ≤ vi, the second ratio is at most 1.
Then we have

1

α1
=

Aθ
ℓ

Aθ′
ℓ

≤ Expθ(T [aℓw])

Expθ
′
(T [aℓw])

≤
∑

k∈T [aℓ
w] exp(ϵσ(θ, ok))∑

k∈T [aℓ
w] exp(ϵ(σ(θ, ok)−∆σ))

≤ exp(ϵ∆σ)

(2) When valuation v′i ≥ vi, the first ratio is at most 1. We
have

1

α1
=

Aθ
ℓ

Aθ′
ℓ

≤ Expθ
′
(T (aℓ+1

w ))

Expθ(T (aℓ+1
w ))

≤
∑

k∈T (aℓ+1
w ) exp(ϵ(σ(θ, ok) + ∆σ))∑

k∈T (aℓ+1
w ) exp(ϵσ(θ, ok))

≤ exp(ϵ∆σ)

In a similar way, we can show that 1
α2

≤ exp(ϵ∆σ).

Therefore we have

Pr[REC(θ) = ow]

Pr[REC(θ′) = ow]
≤ exp(ϵ∆σ)×

∏
1≤ℓ<dw

exp(ϵ∆σ)

≤ exp(ϵdw∆σ) ≤ exp(ϵdmax∆σ)

C PROOF OF LEMMA 5.2

Lemma 5.2. Given a reported global profile θ′, layered
DPDM LAY is ϵ∆σ-differential private, where ϵ is the pri-
vacy parameter of LAY.

Proof. Given a global profile θ, for each buyer i with
(vi, ri), we have

ELAY[ui(θ)] = (vi − pi(θ))Pri(θi)

=

∫ vi

0

PrLAY
i ((x, ri))dx ≥ 0.

Therefore, the lemma holds.

D PROOF OF LEMMA 5.4

Lemma 5.4. Given a reported global profile θ′, layered
DPDM LAY is ϵ∆σ-differential private, where ϵ is the pri-
vacy parameter of LAY.

Proof. Given two reported global profiles θ and θ′ that dif-
fer in an arbitrary buyer i’s reported valuation such that i
reports vi in θ and v′i in θ′, we consider the probabilities
that LAY(θ) and LAY(θ′) return a winner w.

Without loss of generality, we assume that w is in Lℓ, then
we have

Pr[LAY(θ) = ow]

Pr[LAY(θ′) = ow]
=

PrLℓ
× Expθ(w)

Expθ(Lℓ)

PrLℓ
× Expθ′ (w)

Expθ′ (Lℓ)

=
Expθ(w)

Expθ
′
(w)

Expθ
′
(Lℓ)

Expθ(Lℓ)

When i is not on layer Lℓ,
Pr[LAY(θ)=ow]
Pr[LAY(θ′)=ow] = 1 ≤

exp(ϵ∆σ). Otherwise, when i is on layer Lℓ, we consider
two cases.
(1) vi < v′i. As σ(·) is non-decreasing in vi, the first ratio is
at most 1. Then we have

Pr[LAY(θ) = ow]

Pr[LAY(θ′) = ow]
≤ Expθ

′
(Lℓ)

Expθ(Lℓ)

≤
∑

j∈Lℓ
exp(ϵ(σ(θ, oj) + ∆σ))∑
j∈Lℓ

exp(ϵσ(θ, oj))

≤ exp(ϵ∆σ)

(2) vi > v′i. In this case, the second ratio is at most 1. Then
we have

Pr[LAY(θ) = ow]

Pr[LAY(θ′) = ow]
≤ Expθ(w)

Expθ
′
(w)

≤ exp(ϵσ(θ, ow))

exp(ϵ(σ(θ, ow)−∆σ))

≤ exp(ϵ∆σ)

E PROOF OF THEOREM 5.6

Theorem 5.6 Given a global profile θ, layered DPDM LAY
has ELAY[swLAY(θ)] ≥ γdmax

EEMD[swEMD(θ)]. .

Proof. Given a global profile θ, the expected social welfare
of LAY is

ELAY[swLAY(θ)] =
∑
i∈V

(
vi × PrLAY

i (θi)
)

=
∑
i∈V

vi
exp(ϵ, σ(θ, oi))∑

j∈Ldi

1
γdi

exp(ϵ, σ(θ, oj))

≥ γdmax

∑
i∈N

vi
exp(ϵ, σ(θ, oi))∑

j∈Ldi
exp(ϵ, σ(θ, oj))

≥ γdmax

∑
i∈N

vi
exp(ϵ, σ(θ, oi))∑

j∈V exp(ϵ, σ(θ, oj))

= γdmax
EEMD[swEMD(θ)]
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