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1 OMITTED DETAILS OF THEORETICAL RESULTS

PROOF OF THEOREM 3.1

Proof. ⇒: (1) Everyone who invests satisfies the threshold condition, implying that if xi = 1, Ui(xi,x−i|G) ≥ Ui(1−
xi,x−i|G) ⇒ Ui(1,x−i|G) ≥ Ui(0,x−i|G). (2) other agents do not satisfy threshold condition, implying that if xi = 0,
Ui(xi,x−i|G) < Ui(1− xi,x−i|G) ⇒ Ui(0,x−i|G) > Ui(1,x−i|G). Therefore, x is a PSNE.
⇐: If x is a PSNE and each user i breaks ties in favor of disclosing, then if xi = 1, Ui(xi,x−i|G) ≥ Ui(1− xi,x−i|G),
implying user i satisfies the threshold condition; if xi = 0, Ui(xi,x−i|G) < Ui(1 − xi,x−i|G), implying user i doesn’t
satisfy the threshold condition.
The proof is completed.

PROOF OF THEOREM 3.3

Proof. We prove this theorem by constructing a polynomial time reduction from the NP-complete problem subset sum
problem to OSDSP. Before the proof, we first introduce the decision problems of both subset sum and OSDSP:

Definition: The decision problem of subset sum.

▷ Instance: Given a set of M positive integers A = {a1, ..., aM} and a target sum value A.

▷ Question: Is there a subset A′ ⊆ A, such that the sum of the elements in A′ is equal to A, i.e.,
∑

ai∈A′ ai = A

Definition: The decision problem of OSDSP.

▷ Instance: Given an input network G in = (V, E in), impact coefficients {wi,j}i,j∈V , cost coefficients {ci}i∈V , a constant
U , and a budget limit B.

▷ Question: Whether exists a solution (x,G) such that the social welfare SW (x|G) ≥ U and |E| ≤ B.

We now construct the following OSDSP instance that maps to any subset sum problem instance:
1) There are 2M users (nodes) in the network, i.e., |V| = 2M ;
2) As Fig. 1 shows, G in is composed of M disjoint sub-graphs G in

1 , ...,G in
M , where each G in

i is composed of two nodes v2i−1

and v2i connecting by an edge e2i−1,2i with edge cost λ2i−1,2i = ai;
3) In each G in

i , the two nodes v2i−1 and v2i have their costs c2i−1 = c2i = 1.5ai, and w2i−1,2i = w2i,2i−1 = 2ai;
4) U = A and B = A.

This reduction process from subset sum to OSDSP is performed in polynomial time. Before showing the correctness of this
reduction, we first give Lemma 1.2 as a preparation:
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Figure 1: The OSDSP instance in the NP hard proof

Lemma 1.1. For each sub-graph G in
i , there are only two possible PSNEs:

(1) both nodes v2i−1 and v2i self-disclose, or
(2) neither nodes disclose itself.

Proof of Lemma 1.2: Case (2) can be achieved when no edge is promoted.

For Case (1), we can promote the edge e2i−1,2i in G in
i . In this case, if both nodes disclose themselves, then x2i = 1, and we

can derive both U2i(x2i,x−2i|G) and U2i(1− x2i,x−2i|G):

U2i(x2i,x−2i|G) = w2i−1,2ix2i−1x2i − c2ix2i = 2ai − 1.5ai = 0.5ai, (1)
U2i(1− x2i,x−2i|G) = 0, (2)

indicating that U2i(x2i,x−2i|G) > U2i(1 − x2i,x−2i|G). Similarly, we can prove that U2i−1(x2i−1,x−(2i−1)|G) >
U2i−1(1− x2i−1,x−(2i−1)|G). Therefore, Case (1) is a PSNE.

Note that there exists no PNSE in G in
i such that one node discloses and the other does not. For the sake of contradiction,

consider the case that v2i discloses and v2i−1 does not. Then, x2i = 1 and x2i−1 = 0,

U2i(x2i,x−2i|G) = 0− c2i ≤ 0− 1.5ai = −1.5ai (3)
U2i(1− x2i,x−2i|G) = 0 (4)

indicating that U2i(x2i,x−2i|G) < U2i(1−x2i,x−2i|G) and hence x2i should not be 1 in this PNSE, which is a contradiction.
The proof of Lemma 1.2 is completed.

Now we show the correctness of the polynomial reduction, i.e., a solution exists for the subset sum instance if only if there
exists a feasible solution for the OSDSP instance. Note that in Case (1) of Lemma 1.2, the total social welfare of G in

i is
ai

2 + ai

2 = ai and the total cost of the promoted edges is ai. In Case (2), the total social welfare of G in
i is 0 (no node disclosed

itself), and the total cost of the promoted edges is 0.

⇒: Assuming exists a solution A′ = {ai1 , ai2 , ..., aim} for the subset sum instance, i.e.,
∑m

l=1 ail = A, we can construct
a feasible solution of the OSDSP instance: For each sub-graph G in

il
(l = 1, ...,m), we promote the edge e2i−1,2i and let

the nodes disclose, i.e., x2i−1 = x2i = 1. The total social welfare in G in
il

is equal to
∑m

l=1 ail = A ≥ U and the total cost∑m
l=1 ail = A ≤ B.

⇐: Assuming exists a solution (x,G) in the OSDSP instance, where the edges (nodes resp.) in the sub-graphs G in
i1
,G in

i2
, ...,G in

im
are promoted (disclosed resp.). Hence,

SW (x|G) =
m∑
l=1

ail ≥ U = A and
∑

ei,j∈E
λi,j =

m∑
l=1

ail ≤ B = A (5)

indicating that
∑m

l=1 ail = A. This implies that A′ = {ai1 , ai2 , ..., aim} is a feasible solution of the subset sum instance.

PROOF OF LEMMA 1.2

Lemma 1.2. For each sub-graph G in
i , there are only two possible PSNEs:

(1) both nodes v2i−1 and v2i self-disclose, or
(2) neither nodes disclose itself.



Proof. Case (2) can be achieved when no edge is promoted.

For Case (1), we can promote the edge e2i−1,2i in G in
i . In this case, if both nodes disclose themselves, then x2i = 1, and we

can derive both U2i(x2i,x−2i|G) and U2i(1− x2i,x−2i|G):

U2i(x2i,x−2i|G) = w2i−1,2ix2i−1x2i − c2ix2i

= 2ai − 1.5ai = 0.5ai, (6)
U2i(1− x2i,x−2i|G) = 0, (7)

indicating that U2i(x2i,x−2i|G) > U2i(1 − x2i,x−2i|G). Similarly, we can prove that U2i−1(x2i−1,x−(2i−1)|G) >
U2i−1(1− x2i−1,x−(2i−1)|G). Therefore, Case (1) is a PSNE.

Note that there exists no PNSE in G in
i such that one node discloses and the other does not. For the sake of contradiction,

consider the case that v2i discloses and v2i−1 does not. Then, x2i = 1 and x2i−1 = 0,

U2i(x2i,x−2i|G) = 0− c2i ≤ 0− 1.5ai = −1.5ai

U2i(1− x2i,x−2i|G) = 0

indicating that U2i(x2i,x−2i|G) < U2i(1−x2i,x−2i|G) and hence x2i should not be 1 in this PNSE, which is a contradiction.
The proof of Lemma 1.2 is completed.

PROOF OF LEMMA 4.2

Proof. Base case - In the first iteration, each node i deactivated by MaxInvest cannot disclose in any PSNE.
The induction step - Assuming that the nodes deactivated by MaxInvest in the first k iterations cannot disclose in any
PSNE, then the nodes deactivated by MaxInvest in the (k + 1)th iteration cannot disclose in any PSNE. Therefore, any node
deactivated by MaxInvest cannot disclose in any other PSNE. The proof is completed.

PROOF OF THEOREM 4.2

Proof. For any PSNE x′, we have x′ ≤ x (according to Lemma 4.2). We let A and A′ denote the set of nodes disclosed in
x and x′, respectively, i.e., A′ ⊆ A. Then,

SW (x|G)− SW (x′|G) =
∑
i∈A

Ui (x|G)−
∑
i∈A′

Ui (x
′|G) (8)

=
∑

i∈A\A′

Ui (x|G)︸ ︷︷ ︸
≥0 since each i discloses

+
∑
i∈A′

(Ui (x|G)− Ui (x
′|G))

≥
∑
i∈A′

xi

∑
j∈Ni

wj,ixj − cixi − x′
i

∑
j∈Ni

wj,ix
′
j + cix

′
i

 (9)

=
∑
i∈A′

∑
j∈Ni

wj,i

(
xj − x′

j

)︸ ︷︷ ︸
≥0

 ≥ 0. (10)

indicating that SW (x|G) ≥ SW (x′|G) for any PSNE x′.

PROOF OF THEOREM 4.5

Proof. Let x and y denote the returned profiles of MaxInvest(S) and MaxInvest(T ).

(1) We prove x ≤ y by induction. Base Case: In the first iteration of MaxInvest(T ), for each node i satisfying∑
ei,j∈T wj,i < ci, we set y(0)i = 0. Correspondingly, each xi = 0 since S ⊆ T and

∑
ei,j∈S wj,i ≤

∑
ei,j∈T wj,i < ci.

Therefore x ≤ y(0).
The induction step: Assuming that in the kth iteration of MaxInvest(T ), x ≤ y(k). We will then prove in the k + 1th



iteration, x ≤ y(k+1). In the (k + 1)th iteration, suppose that node i is popped off Q, we have
∑

ei,j∈T wj,iy
(k)
j < ci and

y
(k+1)
i = 0. Given x ≤ y(k) and S ⊆ T , we have

∑
ei,j∈S wj,ixj ≤

∑
ei,j∈T wj,iy

(k)
j < ci. Since x is a PSNE, we have

y
(k+1)
i = xi = 0. Then in the iteration k + 1, x ≤ y(k+1).

We conclude that ∀k : x ≤ y(k), and thus x ≤ y.

(2) As
∑

i∈V xi ≤
∑

i∈V yi ⇒ I(S) ≤ I(T ).

(3) Then we show that σ(T ) ≥ σ(S). Let A(T ) and A(S) denote the set of disclosed nodes in MaxInvest(T ) and
MaxInvest(S).

σ(T )− σ(S) = SW (y|(V, T ))− SW (x|(V,S)) (11)

=
∑

i∈A(S)

(
Ui(y|(V, T ))− Ui(x|(V,S))

)
+

∑
i∈A(T )\A(S)

Ui(y|(V, T )) (12)

≥
∑

i∈A(S)

(
yi

∑
ei,j∈T

wj,iyj − ciyi − xi

∑
ei,j∈S

wj,ixj + cixi

)
(13)

=
∑

i∈A(S)

( ∑
ei,j∈T \S

wj,iyj +
∑

ei,j∈S
wj,i(yj − xj)

)
(14)

≥ 0 (15)

PROOF OF THEOREM 4.6

Proof. To demonstrate the super-modularity, we would like to prove that for any edge e∗ ∈ E(in), and all pairs of the set
S ⊆ T ⊆ E(in), σ(·) satisfies

σ(S ∪ {e∗})− σ(S) ≤ σ(T ∪ {e∗})− σ(T ) (16)

Let A(T ) and A(S) denote the set of disclosed nodes in MaxInvest(T ) and MaxInvest(S). Suppose e∗ = (u, v), we discuss
the following cases. According to the monontoncity, we have A(S) ⊆ A(T ).
(1) If e∗ connects the disclosed nodes in A(S), σ(S ∪ {e∗})− σ(S) = σ(T ∪ {e∗})− σ(T ) = wu,v + wv,u.
(2) If e∗ connects two nodes outside of A(T ), then σ(S ∪{e∗})−σ(S) = σ(T ∪ {e∗})−σ(T ) = wu,v − cv +wv,u − cw.
(3) If e∗ connects one node in A(S) and another node outside the set A(T ) (i.e. V\A(T )), σ(S ∪ {e∗}) − σ(S) =
σ(T ∪ {e∗})− σ(T ) = wu,v − cv + wv,u or wv,u − cw + wu,v .
(4) If e∗ connects one node in A(T )\A(S) and another node outside the set A(T ), we have σ(S ∪ {e∗}) − σ(S) =
wu,v − cv + wv,u − cw ≤ σ(T ∪ {e∗})− σ(T ) = wu,v + wv,u − cw or wu,v − cv + wv,u .
(5) If e∗ connects two nodes in A(T )\A(S), we have σ(S∪{e∗})−σ(S) = wu,v−cv+wv,u−cw ≤ σ(T ∪{e∗})−σ(T ) =
wu,v + wv,u.

PROOF OF THEOREM 1.1

Theorem 1.1. The optimal investment function I(E) is sub-modular when ci
wj,i

≤ 1,∀(i, j) ∈ E in.

Proof. To demonstrate the sub-modularity, we would like to prove that for any edge e∗ ∈ E(in), and all pairs of the set
S ⊆ T ⊆ E(in), σ(·) satisfies

I(S ∪ {e∗})− σ(S) ≥ I(T ∪ {e∗})− σ(T ) (17)

According to the monontoncity, we have A(S) ⊆ A(T ). Suppose e∗ = (u, v), we discuss the following cases. (1) If e∗

connects the disclosed nodes in A(S), then there are no new disclosing nodes. I(S∪{e∗})−I(S) = I(T ∪{e∗})−I(T ) = 0.
(2) If e∗ connects two nodes outside of A(T ), then I(S ∪ {e∗})− I(S) = I(T ∪ {e∗})− I(T ) = 2. (3) If e∗ connects one
node in A(S) and another node outside the set A(T ) (i.e. V\A(T )), I(S∪{e∗})−I(S) = I(T ∪{e∗})−I(T ) = 1. (4) If e∗

connects one node in A(T )\A(S) and another node outside the set A(T ), we have I(S∪{e∗})−I(S) = 2 ≥ I(T ∪{e∗})−
I(T ) = 1 . (5) If e∗ connects two nodes in A(T )\A(S), we have I(S∪{e∗})−I(S) = 2 ≥ I(T ∪{e∗})−I(T ) = 0.
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Figure 2: Instance of Remark 1.2 and Remark 1.3.

EXAMPLES OF REMARK 1.2 AND REMARK 1.3

Remark 1.2. σ(·) is in general non-supermodular.

Remark 1.3. I(·) is in general non-submodular.

Figure 2 gives an example of Remark 1.2: We assume that T = {e1.e2, e3, e4, e5, e6}, S = {e1.e2, e3, e4}. All the nodes
have the same cost c, and all the weights are w ≥ 0. We assume that c = 1.2w. The node will disclose only when there are
more than two neighbours disclose. We have σ(S ∪ {e∗})− σ(S) = 5(2w − c) = 4w > σ(T ∪ {e∗})− σ(T ) = 2w.

Figure 2 also gives an example of Remark 1.2: Assuming T = {e1.e2, e3, e4}, S = {e1}, ci
wj,i

= 2,∀(i, j) ∈ E in, we have
I(S ∪ {e∗})− I(S) = 0 < I(T ∪ {e∗})− I(T ) = 5.

2 OMITTED DETAILS OF EXPERIMENTS

SOCIAL INTERACTION GRAPHS

Figures 3, 4, 5 illustrate the respective social interaction graphs. Node size is proportional to node degree. Red nodes
represent users with a high self-disclosure rate (between 0.95 and 1).

Figure 3: April 2021. Figure 4: August 2020. Figure 5: September 2020.

OMITTED DETAILS OF SECTION 5.2 (LABEL GENERATION)

In the original dataset, each sentence is associated with 6 labels: informational disclosure, emotional disclosure, support,
general support, informational support, and emotional support. We use three of them in our task: informational disclosure,
emotional disclosure, and emotional support. For example, the following training sentence is labeled for emotional disclosure
and emotional support:

▷ I hope this chapter results in a better, healthier, more fulfilled you!!



While our initial study only focused on the disclosure label, we believe that the labeled dataset created for this study can be
of great value for future research in this area.

COMPUTATION TIME

In table 1, we present the computation time (in seconds) of our algorithm for the set of experiments in Section 5.2, which
demonstrates that our heuristics work efficiently in large-scale networks. We conducted 20 trials for each experiment.
Notably, our heuristics can solve the problem extremely quickly, particularly when the budget is large.

b=0.2 b=0.4 b=0.6 b=0.8 b=1.0 b=1.5 b=2.0 b=3.0

Aug 464.27 ± 65.74 282.78 ± 68.12 126.40 ± 59.00 28.78 ± 28.96 1.42 ± 0.38 1.16 ± 0.38 1.06 ± 0.28 1.03 ± 0.28
Sep 77.63 ± 15.03 36.91 ± 11.78 9.90 ± 6.92 0.52 ± 0.15 0.52 ± 0.14 0.38 ± 0.11 0.38 ± 0.11 0.38 ± 0.11
Apr 198.19 ± 32.51 132.17 ± 23.53 58.84 ± 10.57 18.45 ± 14.19 1.44 ± 2.05 0.65 ± 0.17 0.65 ± 0.17 0.63 ± 0.17

Table 1: The run-time (in secs).

MODEL VALIDATION

We provided a preliminary attempt to validate our assumption that users’ actions (disclose or not) depend on the threshold
function (Equ. (2)). The modeling method is the same as Section 5.2 (Algorithmic Results). However, we only consider the
self-disclosure information of the posts weekly due to the lack of time data regarding comments. Users are more conservative
about posting than commenting. In each month, we pick the users who have at least one response record each week (41
users in August 2020, 52 users in September 2020, and 22 users in April 2021). We first estimate users’ cost coefficients in
the first week and use the estimated cost coefficients to predict users’ responses in the remaining weeks of each month (4
weeks in April 2021, August 2020, and 2 weeks in September 2020). After, we compare whether the predicted responses are
consistent with the users’ actual responses, of which the results are listed in Table 2 (FPR and FNR stand for false positive
rate and false negative rate). The table demonstrates that the threshold condition (Equ. (2)) can accurately predict users’

Month FPR FNR F1 precision recall
August 2020 0.1388 0.4607 0.6427 0.7953 0.5393

September 2020 0.1675 0.6595 0.4516 0.6703 0.3405
April 2021 0.0921 0.8127 0.2928 0.6723 0.1873

Table 2: Model validation results.

responses, especially in indicating the disclosure of users (as FPR is low). This provides empirical evidence to incentivize
the disclosure of desired users by satisfying their threshold condition through edge promotion.

This simple modeling method is implicitly based on the assumptions that (1) the user behaves strategically, and (2) we
assume that the has converged to a PSNE. Filling the gap between the theoretical model and real data (real-world user
behavior) is non-trivial.

3 ADDITIONAL RELATED WORKS

Binary Networked Public Good Games. One line of relevant game theoretic research is the literature on binary networked
public goods games (BNPG).The binary networked public goods game (BNPG) is a variant of a graphical game, where
players’ utilities depend on the strategies of their neighbors in the social graph. Benefits are a function of accumulated efforts
Bramoullé and Kranton [2007] and investment strategies are binary Yu et al. [2020]. In Kempe et al. [2020], authors study
network design to induce equilibria in BNPGs. Altruism modeling has also been considered to achieve desired investment
profiles Yu et al. [2021]. Our model considers a setting similar to the BNPG but with different benefit functions designed for
the self-disclosure application.

Network Design. The outer OSDSP (i.e. content-sharing network design) is intrinsically a network structure design problem.
Despite the most similar work Corò et al. [2019], Coró et al. [2021], Yu et al. [2021], Kempe et al. [2020] mentioned before,



types of network designs include removing edges Kimura et al. [2008, 2009] or nodes Jia et al. [2020], adding nodes or
edges Sheldon et al. [2012], Amelkin and Singh [2019], and edge manipulation Chen et al. [2016], Castiglioni et al. [2020],
etc.

4 ADDITIONAL ANALYSIS OF PSNES IN NDG

In this section, we discover several PSNEs in NDG that can be obtained with low time complexity.

Theorem 4.1. If ci > 0,∀i, xi = 0,∀i is a PSNE.

Proof. When xj = 0,∀j ̸= i, we have gi = 0 and Ui = −cixi, from which we can obtain that Ui(1,0) < Ui(0,0). Due to
symmetric, xi = 0,∀i is a PSNE.

To show that xi = 0,∀i is a PSNE, we need to demonstrate that no player can gain by deviating from this strategy, given
that all other players are also using this strategy.

For any player i, if xi = 0, then Ui = 0. If xi = 1, then player i incurs a cost of ci. Therefore, player i has no incentive to
deviate from xi = 0, and this applies to all players.

Therefore, xi = 0,∀i is a PSNE.

Remark 4.2. In cases where ci > 0 for all i, we can generate PSNEs by considering each combination of connected
components (CCs) in the optimal PSNE graph. Specifically, setting xi to 1 for nodes within these CCs and to 0 for nodes
outside of them results in a PSNE.

To begin, we define the optimal PSNE graph G∗ as a subgraph of the promotion network G that includes only the nodes who
invest in the optimal solution x∗ and the corresponding edges among them. The algorithm MaxInvest is used to determine
x∗. As x∗ is the optimal solution, nodes with x∗

i = 0 will not disclose in any case (From Lemma 4.2).

As per the claim of the trivial PSNE, it is evident that xi = 0 for all i in a connected component C constitutes a PSNE among
the agents in that component (trivial PSNE of this connected component). This strategy does not impact the strategies of other
connected components. This is because the utility functions of nodes in different connected components are independent of
one another.

Therefore, to generate PSNEs, we can select a set of connected components in the optimal PSNE graph G∗ and apply the
strategy of setting xi to 1 for nodes within the selected connected components and 0 for other nodes in G. This strategy
results in a PSNE since no player can unilaterally change their strategy and increase their payoff.

Noted that we can use this approach to find PSNEs given a PSNE (not necessarily the optimal one).

Remark 4.3. When ∃ci = 0, we can use a spread process to find a PSNE.

(Spread Process) We consider the set of agents with ci = 0 as a “seed set” which are always disclosed as Ui(1,x−i) ≥
Ui(1,x−i) = 0. We can start from them and do a process similar to the diffusion of the Linear Threshold model Kempe
et al. [2003] to find a PSNE. The process can be described as follows: At each step, all nodes that have already disclosed in
the previous step remain disclosed. Any agent who satisfies the threshold condition in the current step will also disclose. We
continue iterating this process until no more agents can disclose. At this point, we have found a PSNE for the game.
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