Multi-View Graph Contrastive Learning for Solving Vehicle Routing Problems
(Supplementary Material)

A MULTI-HOP RANDOM WALK

Regarding the subgraph samples used in our graph contrastive learning (as mentioned in the subsection of Node-level
representation learning in the main paper), we first generate a n4-neighbourhood-subgraph (i.e., n, = 20 in our setting)
around an anchor node, and then apply multi-hop random walk (MHRW) [Zhang et al., [2013]] to generate subgraphs as the
augmented samples (i.e. g7 and ¢g*), which are fed into the GNN encoders. We elaborate MHRW as follows.

In general, a VRP graph is a weighted undirected graph G with n nodes, and the cost ¢;; (c;; > 0) denotes the length of the
edge e; ; between node v; and node v;, where we define c;; = 0. The random walk on the graph G acts like that we roll dice
at a node to decide which edge will be traversed next and lead to a new node. In order to sample a walk, we start from the
anchor node, and then iteratively move from the current node to another node v; within the n4-neighbourhood-subgraph of
the anchor node. In our implementation, the walk sampling depends on parameters that specify probabilities of walking
to each node at the current step, i.e., the transit probability matrix 7" = {¢;;}. As stated in the main paper, we intuitively
encourage more aggregation of the structural information from the vicinity than that from non-vicinity. Therefore, in our
walk sampling, we specify the transit probability ¢;; from node v; to node v; as 1/ ¢;;» where « is the hyperparameter
controlling the importance of edge cost during the walk (i.e., & = 1 in our setting). With the defined 7', we iteratively visit
the neighbourhood of the current node, until %nq nodes are collected for constructing a subgraph. Meanwhile, we hope the
random walk concentrates more around the anchor node, and thus introduce a positive probability r (i.e., r = 0.8 in our
setting) at each step for leading the walk back to the anchor node as did in [Tong et al., [2006].

During MHRW sampling, we collect the visited nodes to build the node set of the subgraph, and keep all edges between
these nodes from the original graph. The generated subgraphs are then used as augmented samples to be processed by the
GNN encoders for contrastive learning.

B DETAILS OF POMO AND ACTIVE SEARCH

B.1 POMO

In training, we adopt the state-of-the-art neural heuristic, i.e., Policy Optimization with Multiple Optima (POMO) [Kwon
et al.,|2020]], to learn the solution construction step by step. Since POMO is developed on top of another popular neural
heuristic, i.e., Attention Mode (AM) [Kool et al., [2019], we first introduce AM before POMO.

AM is a specialized encoder-decoder neural architecture for VRPs. The encoder mainly consists of multiple self-attention
layers, which encode each node with its relationship to other nodes into a vector (i.e. embedding). Then, the decoder creates
a route sequence (the solution) in a step-by-step manner, by utilizing the node embeddings and context embedding (from the
encoder) to compute the query, key and value vectors for the dot-product attention mechanism.

Given node embeddings {z;}?_, for each node v; (note: in our work, they are the learned node representations from

"https://github.com/wouterkool/attention-learn-to-route

Submitted to the 39" Conference on Uncertainty in Artificial Intelligence (UAI 2023). To be used for reviewing only.

the pre-trained GNN), the encoder of AM firstly computes dj-dim embeddings hEO) through two linear projections, i.e.,
hEO) = W?2(Wtx;+b')+b% Then the node embeddings are processed by L self-attention layers. The embeddings produced

by layer £ (¢ € {1,...,L}) is denoted as hz(-é). Specifically, each self-attention layer consists of two sub-layers, i.e., a
multi-head attention (MHA) layer that executes message passing between the nodes, and a node-wise fully connected
feed-forward (FF) layer, as follows,

hi = BN (B0 o MHAL (B, D)
. . ey
n? = BN (i + FF (h)),

where each sub-layer is also equipped with the skip-connection and batch normalization (BN) for stabilizing the training.
Afterwards, node embeddings hEL) from the last layer of the encoder are fed into the decoder. The decoder sequentially
calculates the probabilities of visiting each unvisited node with the attention layer followed by a Softmax function, which is
used to construct the solution in a node-by-node manner.

POMO is essentially developed on top of AM. During policy optimization, POMO samples a set of solution trajectories
{r!,72,...,7N} that start from each of all nodes, and gather each return R (%) (i.e. the negative of tour length). During
the training, it maximizes the expected return J by REINFORCE algorithm Williams| [1992], with gradients computed as

below,

Z (R (‘ri) — bi(s)) Vg log pg ('Ti | s) ,)

i=1

VoJ(0) ~

S|

where pg (Ti | s) means the probability produced by AM for the solution 7%, given the instance s. Additionally, POMO uses
a shared baseline b’ (s) for the above gradients to reduce the variance as below,

bi(s) = % > R(r7), foralli. 3)
j=1

During the inference, POMO produces multiple greedy trajectories by rotating each input instance and starting the trajectory
from each of all nodes. The final solution is specified as the best one among all the sampled trajectories.

B.2 ACTIVE SEARCH

The active search, known as an inference boosting mechanism, is originally proposed in Bello et al.|[2017]], which actively
updates the parameters of a model while it is used to infer the solution to an instance. Specifically, the inference starts
with a trained model and iteratively optimizes its parameters with inferred solutions to an individual testing instance, while
keeping track of the best one generated during the search (inference). This approach is verified to be competitive given
a long runtime since it focuses on updating parameter for each individual instance. However, updating all parameters of
the model as did in [Bello et al.,[2017]] is expensive and impractical. For example, it may cost several days to infer 10000
TSP100 instances. To tackle this issue, Efficient Active Search (EAS) is proposed in [Hottung et al., 2022] to only adjust a
subset of parameters during inference, while keeping all other parameters fixed.

We adopt a similar technique as EAS, which adds instance-specific residual layers before the output layer of the attention
decoder (within POMO) and only updates the parameters of these layers. In our MVGCL, the residual layers accept both
node embeddings from the last attention layer and the graph embedding x4, from the pre-trained encoder f,, as formulated
in Eq. (3) in the main paper. The instance-specific layers are updated with the aforementioned REINFORCE algorithm in
POMO, but we also use the imitation loss Jry, to increase the log-likelihood of generating the incumbent solutions such that,

Vo Jip(0) =logpy,, (T | s), “)

where 6’ represents parameters of the instance-specific layers and 7 is the incumbent solution so far, i.e., the best solution
till the current search iteration.

C IMPLEMENTATION DETAILS

All the experiments are conducted with a single NVIDIA GTX 2080Ti GPU and i9-10940X CPU with 14 cores, including
(pre-)training and inference. The implementation details of baselines and our method are described as below.

Problem I TSP50 I TSP100

Distribution Metric || Concorde| AM |POMO| LCP | HAC |DROP|MVGCL || Concorde| AM |POMO| LCP | HAC |DROP|MVGCL

Uniform Len. 572 | 591 | 586 | 586 | 587 | 587 | 5.82 778 | 810 | 793 | 794 | 8.08 | 7.97 | 7.92

Gap || 0.00% |[3.32%|245% |2.45% |2.62% |2.62% | 1.75% || 0.00% |4.11% | 1.93% |2.06% |3.86% | 2.44% | 1.80%

Avg.Inf. Time (s) || 008 | 0.07 | 0.01 | 053 | 0.08 | 001 | 087 || 050 | 022 | 002 | 1.50 | 023 | 0.03 | 3.70
Problem I CVRP50 I CVRP100

Distribution Metric|| HGS | AM |POMO| LCP | LKH |DROP|MVGCL| HGS | AM |POMO| LCP | LKH |DROP|MVGCL

Uniform Len. || 1055 |10.82 | 10.71 | 10.76 | 10.56 | 10.74 | 10.56 | 15.68 |16.26 | 16.10 | 16.20 | 15.78 | 16.18 | 15.72
Gap || 0.00% [2.56% | 1.52% |1.99% |0.09% |1.80% | 0.09% || 0.00% |3.70% | 2.68% |3.32%|0.64%|3.19% | 0.26%
Avg.Inf. Time (s) || 30 | 022 | 0.01 | 283 | 182 | 0.01 | 1.07 || 30 | 029 | 0.03 | 585 | 33.6 | 0.05 | 443

Table 1: Results of tour lengths and gaps for TSP and CVRP on the Uniform distribution, where LKH3 is also included

C.1 BASELINES

We calculate the optimal solution for TSP with Concorde solver Regarding CVRP, the best solution is calculated with
a Python wrappeﬂ for Hybrid Genetic Search algorithm (HGS). Regarding neural heuristic baselines, we adopt their
open-sourced code on Github by keeping most of their original hyperparameters unchanged, except that we reduce the batch
size in POMO [Kwon et al., 2020] to 56 for CVRP100 due to the memory limit. The original HAC was tested on TSP50
[Zhang et al., 2022], and we only change the node number to train a TSP100 model for its evaluation. In addition, we also
modify the data loading process in each baseline so that they can be compatible with the data format in our experiments.

C.2 MVGCL

We adopt a 5-layer Graph Isomorphism Networkﬂ (GIN) [Xu et al., |2018|] with 64 units per layer as the graph encoders
in our implementation. In MHRW, we sample subgraphs with o = 1, n, = 20 and r = 0.8. Regarding MoCo, we set the
Momentum m = 0.999 and InfoNCE temperature to 0.7.

Our MVGCL is developed on top of POM(f] and active searc}ﬂ For a fair comparison, we use the same neural architecture
in POMO as the one in our MVGCL, where the dimension for node embeddings is 128 and the dimension for hidden
units in the feed-forward layer is 512. The multi-head attention uses 8 heads and the dimension for the key in attention
layers is 16. Besides, we set the logit clipping value to 10 and the weight decay factor to 1e-6 for the policy network. For
the distribution-preserved augmentation, we set (pl, p2, p3) to (0.7,0.2,0.1). During training, we apply early stopping
when the gap reduction is not significant. Regarding active search, the iteration number for each instance is fixed to 200.
We add only one instance-specific residual layer before the output layer of the decoder for faster inference, though we
find more layers for active search slightly improve the performance at the expense of significantly longer runtime. The
implementation code of our MVGCL will be made publicly available.

D EXPERIMENTS ON UNIFORM DISTRIBUTION

We randomly generate 2000 instances of uniform distribution for the two VRP variants, i.e., TSP50, TSP100, CVRP50
and CVRP100. We test the same trained models as used in subsections of Generalization on TSP and Generalization on
CVRP in the main paper. We also include LKH3 [Helsgaun, [2017] with 3000 trails as a baseline on CVRP50 and CVRP100.
Results are gathered in Table[T} and it shows that our MVGCL can also deliver superior performance on uniform distribution,
where the other neural heuristic baselines cannot generalize well. For example, our MVGCL achieves gaps of 1.75% and
1.80% on TSP50 and TSP100, respectively, while other baselines report gaps around 2%-4%. Besides, the gaps of our
MVGCL on CVRP50 and CVRP100 are also fairly close to HGS at 0.09% and 0.26%, respectively, which outperform other

Zhttps://www.math.uwaterloo.ca/tsp/concorde.html
3https://github.com/chkwon/PyHygese
“https://github.com/weihua916/powerful-gnns
>https://github.com/ydkwon/POMO/tree/master/OLD_ipynb_ver
Shttps://github.com/ahottung/EAS/blob/main/source/eas_lay.py

neural heuristic baselines and even LKH3 on CVRP100.

E DETAILED RESULTS ON TSPLIB

Here we display the detailed results of the 25 instances from TSPLib [Reinelt, [1991]. These instances are gathered from
various sources, with different node distributions and problem sizes, which are desirable to be used for assessing the
generalization performance of neural heuristics. Specifically, we solve the instances with 51-299 nodes by the MVGCL
model trained on TSP100 with the mixed distributions. As shown in Table 2] (in the next page), our method significantly
outperforms the neural heuristic baselines and most gaps to the optimal solutions are within 2.5%. It suggests our MVGCL
is effective in tackling realistic instances from TSPLib, which are completely unseen during training.

References

Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial optimization with
reinforcement learning. In Proc. of ICLR, 2017.

Keld Helsgaun. An extension of the lin-kernighan-helsgaun tsp solver for constrained traveling salesman and vehicle routing
problems. Roskilde: Roskilde University, 2017.

André Hottung, Yeong-Dae Kwon, and Kevin Tierney. Efficient active search for combinatorial optimization problems. In
Proc. of ICLR, 2022.

Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In Proc. of ICLR, 2019.

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min. Pomo: Policy optimization
with multiple optima for reinforcement learning. In Proc. of NeurIPS, 2020.

Gerhard Reinelt. Tsplib—a traveling salesman problem library. ORSA journal on computing, 1991.

Hanghang Tong, Christos Faloutsos, and Jia-Yu Pan. Fast random walk with restart and its applications. In Proc. of ICDM,
2006.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine
learning, 1992.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? arXiv preprint
arXiv:1810.00826, 2018.

Zeyang Zhang, Ziwei Zhang, Xin Wang, and Wenwu Zhu. Learning to solve travelling salesman problem with hardness-
adaptive curriculum. In Proc. of AAAI, 2022.

Zhongzhi Zhang, Tong Shan, and Guanrong Chen. Random walks on weighted networks. Physical Review E, 2013.

Instance Metric | Opt. | AM | POMO | LCP | HAC | DROP | MVGCL
280 Len. 2579 | 3132 | 3024 | 3031 3390 3038 2765
Gap || 0.00% | 21.44% | 1727% | 17.52% | 31.43% | 17.80% | 7.20%
I 7542 | 7978 | 7681 | 7593 7749 7575 7573
Gap || 0.00% | 5.78% | 1.84% | 0.68% | 2.75% | 044% | 0.41%
bierlzy | Len || 118282 | 126705 | 120501 | 121492 | 122108 | 123110 | 119429
1
Gap || 0.00% | 7.12% | 1.88% | 271% | 3.23% | 4.08% | 097%
ehi30 Len. 6110 | 6360 | 6156 | 6140 6258 6262 6157
Gap || 0.00% | 4.10% | 075% | 0.50% | 242% | 249% | 0.76%
eh150 Len. 6528 | 6780 | 6600 | 6626 6986 6670 6572
Gap || 0.00% | 387% | 1.11% | 1.51% | 7.01% | 2.17% | 0.68%
198 Len. || 15780 | 18037 | 16660 | 16494 | 21455 | 17185 | 16203
Gap || 0.00% | 1430% | 5.58% | 4.53% | 3596% | 8.90% | 2.68%
iltol Len. 629 659 648 643 665 644 644
Gap || 0.00% | 4.73% | 2.98% | 2.26% | 569% | 242% | 2.43%
ilsi1 Len. 426 438 435 440 437 435 431
Gap || 0.00% | 2.88% | 2.08% | 324% | 2.53% | 2.06% | 1.10%
6 Len. 538 567 557 554 554 565 552
1
Gap || 0.00% | 533% | 350% | 2.97% | 3.05% | 5.08% | 2.55%
262 Len. 2378 | 4254 | 3226 | 3232 5117 3236 2649
1
8 Gap || 0.00% | 78.91% | 35.65% | 35.91% | 115.18% | 36.08% | 11.38%
Kroatso Len || 26524 | 28634 | 27126 | 26973 | 20045 | 26971 | 26842
Gap || 0.00% | 7.96% | 227% | 1.69% | 9.50% | 1.69% | 1.20%
Kropiso Len || 26130 | 26898 | 26632 | 26301 | 28337 | 26642 | 26302
Gap || 0.00% | 2.94% | 192% | 1.00% | 8.44% | 1.96% | 0.66%
in105 Len. || 14379 | 15272 | 14604 | 14718 | 15632 | 14513 | 14536
mn
Gap || 0.00% | 621% | 156% | 2.36% | 8.72% | 0.93% | 1.09%
107 Len. || 44303 | 45681 | 44933 | 46595 | 49153 | 45865 | 44416
P Gap || 0.00% | 3.11% | 142% | 517% | 10.95% | 3.53% | 0.25%
152 Len. || 73682 | 79293 | 74902 | 76145 | 79990 | 77069 | 75061
P Gap || 0.00% | 7.61% | 1.66% | 3.34% | 8.56% | 4.60% | 1.87%
26 Len. || 80369 | 87801 | 83754 | 85406 | 92527 | 85437 | 81896
P Gap || 0.00% | 925% | 421% | 627% | 15.13% | 631% | 1.90%
264 Len. || 49135 | 57716 | 54589 | 54735 | 71243 | 54445 | 50713
P Gap || 0.00% | 17.46% | 11.10% | 11.40% | 44.99% | 10.81% | 3.21%
1299 Len. || 48191 | 59850 | 53926 | 54920 | 67690 | 53479 | 51354
P Gap || 0.00% | 24.19% | 11.90% | 13.96% | 40.46% | 10.97% | 6.56%
6 Len. || 108159 | 108582 | 108404 | 111196 | 109787 | 108572 | 109826
P Gap || 0.00% | 039% | 0.23% | 2.81% | 1.50% | 038% | 1.54%
rat195 Len. 2323 | 2620 | 2490 | 2490 2693 2490 2374
Gap || 0.00% | 12.78% | 7.18% | 7.19% | 1593% | 7.17% | 2.18%
199 Len. 1211 1263 1237 1256 1297 1255 1232
Gap || 0.00% | 433% | 2.18% | 374% | 7.13% | 3.62% | 1.76%
La100 Len. 7910 | 8030 | soo4 | 8132 8140 7996 7922
Gap || 0.00% | 1.52% | 1.19% | 2.80% | 2.91% | 1.08% | 0.16%
70 Len. 675 693 685 691 693 683 678
Gap || 0.00% | 2.67% | 151% | 2.39% | 2.65% | 1.14% | 0.43%
(50225 Len. 3916 | 4352 | 4159 | 4200 4588 4215 4024
P Gap || 0.00% | 11.15% | 621% | 7.47% | 17.17% | 7.63% | 2.75%
. Len. || 42080 | 44908 | 42888 | 44062 | 47500 | 42751 | 42623
Gap || 0.00% | 672% | 192% | 471% | 12.88% | 1.59% | 1.29%
Avg.Gap || 0.00% | 1053% | 5.16% | 592% | 1675% | 579% | 1.58%
Avg.Inf.Time(s) || - | 048 | 047 | 6926 | 048 | 035 | 4811

Table 2: Results on TSPLib

5

	Multi-hop Random Walk
	Details of POMO and Active Search
	POMO
	Active Search

	Implementation Details
	Baselines
	MVGCL

	Experiments on Uniform distribution
	Detailed results on TSPLib

