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Abstract

Recently, neural heuristics based on deep learn-
ing have reported encouraging results for solving
vehicle routing problems (VRPs), especially on
independent and identically distributed (i.i.d.) in-
stances, e.g. uniform. However, in the presence
of a distribution shift for the testing instances,
their performance becomes considerably inferior.
In this paper, we propose a multi-view graph con-
trastive learning (MVGCL) approach to enhance
the generalization across different distributions,
which exploits a graph pattern learner in a self-
supervised fashion to facilitate a neural heuristic
equipped with an active search scheme. Specifi-
cally, our MVGCL first leverages graph contrastive
learning to extract transferable patterns from VRP
graphs to attain the generalizable multi-view (i.e.
node and graph) representation. Then it adopts the
learnt node embedding and graph embedding to
assist the neural heuristic and the active search
(during inference) for route construction, respec-
tively. Extensive experiments on randomly gener-
ated VRP instances of various distributions, and
the ones from TSPLib and CVRPLib show that our
MVGCL is superior to the baselines in boosting
the cross-distribution generalization performance.

1 INTRODUCTION

Vehicle routing problem (VRP) is essentially a combina-
torial optimization problem (COP) with many important
real-world applications, especially in logistics [Bernhard
and Vygen, 2012]. In reality, it occurs more than often that
vehicle routing tasks are repeatedly carried out which share
similar problem structures but only differ in data. For exam-
ple, a logistic company may dispatch a fleet of trucks to pick
up or deliver packages for customers in the same city on a

daily basis, with only discrepancies in customer locations
and/or demands. However, conventional heuristic methods
always treat each of those tasks independently, which may
yield limited computation efficiency and/or solution quality.
Hence, developing neural heuristics based on deep learn-
ing has become a sought-after alternative for solving VRPs,
which aim to improve the performance by exploiting the
underlying patterns in the instances [Bengio et al., 2021].

The early neural heuristics for VRPs primarily fall into the
supervised category, which requires the optimal solution as
supervised labels [Vinyals et al., 2015, Joshi et al., 2019].
The resulting performance highly relies on the quality of the
labels, rendering the supervised methods are less favourable
since it is computationally expensive to attain optimal solu-
tions due to the NP-hardness. Moreover, it is also difficult
for supervised methods to generalize to problem sizes differ-
ent from the training ones. In contrast, the neural heuristics
based on (deep) reinforcement learning only need a reward
(e.g. the current tour length) rather than the optimal solu-
tion at each decision step, to indicate whether a move or a
selection is favourable or not [Bello et al., 2017, Kool et al.,
2019, Kwon et al., 2020, Kim et al., 2021]. Meanwhile, it
is also relatively easier for them to generalize to different
problem sizes than the supervised ones.

Although the neural heuristics have reported many encour-
aging results for VRPs, most of their underlying models
are trained and evaluated on independent and identically
distributed (i.i.d.) instances with respect to the node loca-
tions, especially the uniform distribution. An ideal neural
heuristic should be able to generalize to various distribu-
tions, since the real-world instances may follow different
and sometimes even unknown distributions. Unfortunately,
directly applying existing neural heuristics trained on the
uniform distribution to instances of other distributions will
result in considerably inferior solutions [Geisler et al., 2022,
Zhang et al., 2022b], which may hinder their applications.
On the other hand, some preliminary studies have been con-
ducted to alleviate this generalization issue, which leverage
group distributionally robust optimization (DRO) [Jiang
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et al., 2022] or adaptive hardness assisted curriculum learn-
ing (HAC) [Zhang et al., 2022b] to train the model. However,
the former needs to label typical and atypical instances, and
the latter is mainly extended to Gaussian distribution only.

Motivated by the facts that, 1) a VRP instance can always
be represented as a graph, 2) the VRP solution depends
on the pattern of the graph (e.g. the distribution of nodes)
[Chen et al., 2020a, Wu et al., 2021b, Hudson et al., 2022],
we postulate that transferable structural patterns across di-
verse graphs could be helpful to improve the generalization
against different distributions [Qiu et al., 2020, Leskovec
et al., 2005]. Especially, similar local patterns may distribute
across graphs even if those graphs belong to different dis-
tributions. On the other hand, recent advances in computer
vision (CV) and natural language processing (NLP) [He
et al., 2020, Chen et al., 2020b, Giorgi et al., 2021, Gao
et al., 2021, Hassani and Khasahmadi, 2020, You et al.,
2021] have testified that pre-training an encoder network in
a contrastive learning manner can produce more informative
and transferable representation for downstream tasks.

With the above principle, in this paper, we propose a multi-
view graph contrastive learning (MVGCL) approach to fos-
ter the generalization capability of neural heuristics for
VRPs, through mining the underlying patterns across graphs.
Specifically, given a collection of graphs of VRP instances
of various distributions, our MVGCL exploits contrastive
learning with a weighted random walk augmentation to
identify the local transferable patterns, and a distribution-
preserved augmentation to identify the global distribution
across these graphs. This pre-trained graph neural network
(GNN) acts as the encoder, which learns the representation
in two views, 1) a node embedding with respect to the local
structural similarity; 2) a graph embedding with respect to
the overall distribution information. Subsequently, the two
learnt embeddings are employed to facilitate a neural heuris-
tic (i.e. POMO [Kwon et al., 2020]) and its active search
scheme [Hottung et al., 2022] (in the inference phase) for
downstream route construction, respectively. In this way,
our approach not only learns the transferable pattern across
various distributions, but also adjusts itself with individual
instances. We conduct extensive experiments on two widely
studied VRP variants, i.e., the travelling salesman problem
(TSP) and capacitated vehicle routing problem (CVRP). Re-
sults on randomly generated instances and benchmark ones
(i.e. TSPLib and CVRPLib) verified its effectiveness.

2 RELATED WORKS

2.1 NEURAL HEURISTICS FOR VRPS

In recent years, the neural heuristics based on deep (re-
inforcement) learning for routing problems have been ex-
tensively explored. The pointer network (PtrNet) [Vinyals
et al., 2015], as the first modern deep architecture for VRPs

is essentially developed from the encoder-decoder-based
sequence-to-sequence model for NLP. Bello et al. [2017]
propose to train PtrNet with reinforcement learning since
ground-truth labels are computationally expensive. Kool
et al. [2019] further boost the performance by introducing a
self-attention encoder [Vaswani et al., 2017] and an attentive
decoder, which stands as the well-known attention model
(AM). Kwon et al. [2020] propose the POMO model on top
of AM by augmenting the input instances and starting the in-
ference from multiple nodes. Hottung et al. [2022] conceive
three different strategies to integrate the active search with
POMO during the inference phase, which deliver noticeably
superior performance. Differently, a concurrent line of im-
provement methods [Chen and Tian, 2019, Lu et al., 2019,
d O Costa et al., 2020, Wu et al., 2021b, Kim et al., 2021]
emphasize improving an initial but complete solution via
iterative local operations. Among them, Kim et al. [2021]
propose to learn collaborative policies (LCP) with a seeder
to explore large solution space and a reviser to improve the
solution for local segments. On the other hand, GNNs or
its variants such as graph convolutional networks (GCNs)
and graph attention networks (GATs) are also exploited on
VRP graphs [Khalil et al., 2017, Deudon et al., 2018, Joshi
et al., 2019]. Besides, Li et al. [2018] propose guided tree
search by leveraging GCN embeddings. Fu et al. [2021] use
a graph convolutional residual network and a Monte Carlo
tree to generalize to larger instances on TSP.

The aforementioned neural methods have exhibited impres-
sive performance when the training and testing instances
share the same distribution regarding the node locations,
e.g., uniform [Kwon et al., 2020, Kool et al., 2022]. How-
ever, Geisler et al. [2022] and Zhang et al. [2022b] show that
simply applying those neural heuristics to other distributions
may cause considerably inferior solutions. To generalize the
neural heuristics beyond the single (uniform) distribution
used in training, Jiang et al. [2022] exploit group distribu-
tionally robust optimization (DRO) to train deep models
(i.e. POMO and GCN) across multiple distributions, which
needs to label typical and atypical instances. Zhang et al.
[2022b] propose a curriculum learning-based AM trained on
instances of different hardness. Those instances are gener-
ated by a hardness-adaptive generator with mixed-Gaussian
distribution, which limits its generalization to more others.

2.2 GRAPH CONTRASTIVE LEARNING

Contrastive learning (CL) is a type of self-supervised learn-
ing. It is usually used to identify the similarity among the
unlabeled data and learn inherent representations across
instances, which has been widely explored in CV [He
et al., 2020, Tian et al., 2020, Chen et al., 2020b] and NLP
[Mikolov et al., 2013, Giorgi et al., 2021].

To tackle the graphic data, graph contrastive learning (GCL)
has been proposed [Qiu et al., 2020, Hassani and Khasah-
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madi, 2020, Liu et al., 2022], and a series of augmentation
techniques to generate contrastive samples based on the
original graph have also been accordingly developed [You
et al., 2021, Yin et al., 2022, Zhou et al., 2022], such as at-
tribute removing, edge adding/masking, and subgraph/graph
diffusion. Among them, Qiu et al. [2020] define the con-
trastive samples as the r-ego sub-network of the input nodes
and then apply the pre-trained GNN on tasks of node or
graph classification. Hassani and Khasahmadi [2020] con-
trastively learn embeddings from the first-order neighbours
and graph diffusion. GraphCL [You et al., 2020] handpicks
ad-hoc augmentations (node dropping, edge perturbation, at-
tribute masking and subgraph sampling) to provide specific
contrastive samples for graph-level representation learning,
while this augmentation selection is made automated in its
subsequent work [You et al., 2021]. Similarly, Yin et al.
[2022] propose adaptive augmentation to remove edges.

However, the augmentation methods of existing graph con-
trastive learning are not directly applicable to our routing
tasks in that, 1) nodes in VRPs like TSP only has coor-
dinates as the attribute (unlike social networks with rich
attributes such as age, gender and country of a person),
which makes it harder to distinguish the node from each
other by attribute masking [You et al., 2020]; 2) VRP graphs
are fully-connected, augmentations like node dropping or
edge perturbation [Wu et al., 2021a, Liu et al., 2022] may
violate the connectedness. Worse still, the original graph
distribution could be distorted by altering its structure. Al-
though recent works [Yin et al., 2022, Zhang et al., 2022a]
attempt to preserve graph class labels during augmentation,
it is impractical to acquire all distribution labels for VRPs.
Furthermore, unlike traditional network embeddings [Per-
ozzi et al., 2014, Tang et al., 2015, Grover and Leskovec,
2016] or recent works that pre-train GNNs with attributed
graphs and then directly apply them to instances of the same
domain [Hu et al., 2020], our goal is to pre-train a GNN
for learning local structure across distributions and global
graph embedding of the instance, which allows the neural
heuristic to solve VRPs of various distributions effectively.

3 METHODOLOGY

We first present the graph representation of TSP and CVRP,
followed by our multi-view graph contrastive learning
(MVGCL) approach for solving the two problems.

3.1 PRELIMINARY

We consider the two classic VRP variants, i.e., travelling
salesman problem (TSP) and capacitated vehicle routing
problem (CVRP) in the Euclidean space. Particularly, a
problem instance with n nodes is represented as an undi-
rected graph G = (V,E) with complete connections. The
cost cij for edge eij (eij ∈ E) denotes the distance between
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Figure 1: The illustration of our MVGCL, where the multi-
view embeddings from the pre-trained GNN will be used to
facilitate the subsequent training and inference.

node vi and vj (vi, vj ∈ V ). The vehicle in TSP needs to
visit each node once and return to the starting one. In CVRP,
a vehicle with capacity Q begins and ends its round trips
at the depot node, while visiting each of other nodes once
to satisfy customer demand di. The vehicle has to be fully
replenished at the depot if the remaining capacity is not
enough to serve any unvisited node. The optimal solution is
defined as the route with the shortest length that complies
with all the above constraints.

3.2 MULTI-VIEW GCL FOR VRPS

When solving real-world VRP instances, an inevitable issue
faced by neural heuristics is how to generalize the trained
models to different distributions. In fact, most existing neu-
ral heuristics [Kool et al., 2019, Joshi et al., 2019, Kwon
et al., 2020] for VRPs did not explicitly consider such matter
and thus the underlying models trained on one distribution
often yield inferior cross-distribution generalization.

To tackle this issue, we present a multi-view graph con-
trastive learning (MVGCL) approach for solving VRPs.
Given graphs of VRP instances, our key idea is pre-training
a GNN encoder to learn useful cross-distribution represen-
tations of nodes and graphs, which can be used to enhance
the generalization of the neural heuristics. Unlike CV [Tian
et al., 2020, Chen et al., 2020b] or NLP [Giorgi et al., 2021,
Gao et al., 2021], in which the common patterns could be
similar image patches or words, the common patterns in
VRP graphs are more obscure. From the geographic view,
1) a pattern could be clusters where customers concentrate
on small areas; 2) it could also be hollows where only a
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Figure 2: The framework of our node-level and graph-level
contrastive learning, where the node augmentation in (a) and
graph augmentation in (b) will share the same pre-training
paradigm in (c) to attain the GNN fq (fk will be discarded).

few or even no customers exist. Rather than dominating
the whole graph, these patterns may exist locally as small
subgraphs across various distributions. Regarding the neural
heuristics for routing problems [Kool et al., 2019, Kwon
et al., 2020], explicitly (pre-)training over such patterns may
help them learn more informative representation and poten-
tially alleviate overfitting, thus fostering the generalization
capability. To this end, in our MVGCL, we pre-train a GNN
encoder on the corpus with various instance distributions
for learning the representation of local structural patterns of
nodes and global patterns of graphs. Then the learnt node
embedding is employed to facilitate the neural heuristic
(i.e. POMO [Kwon et al., 2020]) trained with reinforcement
learning, and the learnt graph embedding is employed to
facilitate the active search [Hottung et al., 2022] equipped to
the neural heuristic during inference. The overall framework
of our MVGCL is depicted in Figure 1.

3.3 PRE-TRAINING WITH GCL

In order to identify local patterns for nodes and global
patterns for graphs, we exploit graph contrastive learning
(GCL) to pre-train graph neural networks (GNN) in a self-
supervised fashion. A contrastive learning framework for
a specific problem usually comprises a properly defined
contrastive objective and query/key samples. Regarding the
former, we exploit the InfoNCE for subgraph as the objec-
tive function [Wu et al., 2018, He et al., 2020, Qiu et al.,
2020], given its fit to our problem. Regarding the latter, typ-
ically, there will be an encoded query q (a local or global
pattern) and a dictionary with a set of K+1 encoded keys
K = {ki}K+1

i=0 , where both positive keys (similar patterns)
and negative keys (dissimilar patterns) exist. The similarity

between the query and keys is measured by the dot product
between q> and ki. The positive key k+ should match the
query q, which shares a similar pattern as q and produces a
high value for q>k+. The similarity between q and nega-
tive keys should be low. Accordingly, the loss function of
InfoNCE in our method is expressed as follows,

Lq = − log
exp

(
q>k+/τ

)∑K
i=0 exp (q>ki/τ)

, (1)

where τ is a hyper-parameter of temperature that regulates
the weights of penalties on negative samples [Wu et al.,
2018]. Intuitively, the above (K+1)-element softmax loss
function encourages the model to classify q as k+, which
allows our GNN encoder to learn similar representations for
nodes or graphs with similar patterns in the VRP instances.

3.3.1 Node-level representation learning

The performance of contrastive learning highly relates to
how contrastive samples are defined for producing query
q and keys K. Pertaining to the general graphic tasks, it
is natural to define samples as nodes with rich attributes
or r-ego subgraphs produced based on the connectivity of
nodes [You et al., 2020, Qiu et al., 2020]. However, these
ideas cannot be directly applied to routing tasks. On the
one hand, nodes in VRPs may not carry rich attributes, e.g.,
only coordinates for TSP (plus demands for CVRP). On the
other hand, the connectivity is not informative for complete
graphs of VRP. Given these points, we resort to geographic
information to define the samples for contrastive learning.

Intuitively, the decision of visiting the next node in VRP
is often subject to its geographical neighbourhoods [Joshi
et al., 2019, Fu et al., 2021], where the probability for visit-
ing a node in the same cluster should be higher than visiting
others. It motivates us to strengthen the cross-distribution
generalization by mining the local structural patterns. In-
stead of directly feeding coordinates of nodes into deep
models as did in existing neural heuristics, we expect that a
pre-trained GNN encoder could empower the neural heuris-
tic with informative local structure representations of each
node. In this sense, subgraphs around a node are deemed as
natural choices to acquire positive and negative samples for
contrastive learning. Therefore, we propose to discriminate
subgraphs for different nodes as our pre-training task, where
we feed them to the GNN encoder to produce representa-
tions for local structural patterns of the nodes.

We present the process of collecting positive and negative
pairs of samples for each node. Specifically, as demonstrated
in Figure 2 (a), we first extract a nq-nearest-neighbours
subgraph for a node and then apply the multi-hop random
walk (MHRW) [Zhang et al., 2013] on this subgraph to fur-
ther generate MHRW subgraphs as the augmented samples,
which are then fed into the GNN encoder. Since the MHRW
subgraphs of the same node may contain similar customer
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sets and structures, we specify two samples augmented from
the same nq-nearest-neighbours subgraph as a positive pair,
and those sampled from different nodes as negative ones.
For our VRPs, we further specify the weight of walking
from node vi to vj as 1/cij in MHRW, which is inversely
proportional to the distance between them. This setting en-
courages to aggregate more structural information from the
vicinity than non-vicinity, and such local patterns may po-
tentially foster the generalization across distributions. The
details of our adapted MHRW can be found in Appendix A.

Meanwhile, we adopt the Momentum Contrast (MoCo) [He
et al., 2020, Chen et al., 2020b] mechanism to pre-train
the encoder with augmented samples in a contrastive way.
In our approach, the MoCo includes an online GNN fq
and a smoothly-varying momentum GNN fk as encoding
networks with q = fq (gq) and k = fk

(
gk
)

(Figure 2 (c)),
where gq and gk are the MHRW subgraphs sampled from
the input graph. To keep consistent dictionary and stable
training, the parameters θk of fk are updated according to
θq of fq with a momentum coefficientm ∈ [0, 1) as follows,

θk ← mθk + (1−m)θq. (2)

In each epoch, our approach samples a batch of gq and
gk augmented from the same node as the positive pairs to
produce q and k+. The MoCo enqueues key (i.e. the repre-
sentations produced by fk) from preceding mini-batches in
each epoch to maintain a large dictionary without additional
back-propagation costs. The InfoNCE loss in Eq. (1) is cal-
culated with the q, k+ and the key representations from the
dictionary, and it only back-propagates to fq . Then the node
embeddings {xi}ni=1 from this pre-trained GNN fq will be
used to facilitate generalizing the neural heuristic to various
local structures of nodes for potentially reducing the route
length on unseen VRP graphs.

3.3.2 Graph-level representation learning

From the multi-view perspective, the node embedding is
more specific for local information, while the graph embed-
ding may carry more useful global information. As verified
in previous works on the selection of combinatorial opti-
mization solvers [Sievers et al., 2019, Zhao et al., 2021], the
embedding of the global graph is important for the decision-
making to a targeted instance. In our MVGCL, we propose
a new augmentation mechanism for the graph embedding
(as shown in Figure 2 (b)), which could limit the variance of
distribution shift to a reasonable level and avoid alternating
the distribution significantly as encountered in the general
GCL augmentations [You et al., 2020, Zhou et al., 2022].

First, we normalize the coordinates of each node in the
VRP graph to [0, 1]2. To generate an augmented graph, for
each node of the input VRP graph, we sample a perturbation
level η from a categorical distribution, i.e.,η ∈ {0.1, 0.2, 1},

where η ∼ Categorical(p1, p2, p3), p1 +p2 +p3 = 1, p1 >
p2 � p3. Then, the perturbation of the coordinate vi of
node vi, can be described as follows,

v′i = vi + η ·∆vi; ∆vi ∼ U [−η, η]
2
, (3)

where ∆vi is uniformly sampled in a square with length 2η.
In this way, most (about p1∗n) nodes are relocated within its
adjacent area ∆vi ∼ U [−0.1, 0.1]

2; a small part (about p2∗
n) of nodes are relocated within lager adjacent area ∆vi ∼
U [−0.2, 0.2]

2; only a very few (about p3 ∗ n) nodes are
likely relocated to farther area ∆vi ∼ U [−1, 1]

2. The idea
behind this is that we keep the majority of nodes stay around
the original position and thus the overall distribution is
preserved after perturbation. To boost the generalization of
this pre-trained model, we increase augmentation diversity
by allowing the minority of nodes to shift farther.

Next, we randomly rotate the perturbed graphs. Then aug-
mentations from the same input graph are deemed as posi-
tive pairs and those from different ones are negative pairs.
Note that the graph representation learning share the same
training paradigm as the node representation learning (i.e.,
Figure 2 (c)). During the training of MoCo [He et al., 2020],
we feed those pairs into the encoders. Finally, GNN fq learns
to produce representations for similar distributions close in
the embedding space and also invariant to perturbations.

For solving VRPs, the inference based on active search
iteratively updates the model parameters for each individual
instance [Bello et al., 2017, Hottung et al., 2022], and the
incorporation of global graph-aware information has the
potential to further boost the performance. To this end, in
the inference phase of the neural heuristic, the GNN encoder
fq passes the graph embedding xg of the input graph, as the
auxiliary information to favourably guide the active search.

3.4 SOLVING VRPS WITH PRE-TRAINED GNN

The goal of solving VRPs is to attain a valid trajectory for
the given problem instance. Taking TSP as an example,
the policy in reinforcement learning iteratively outputs an
action at to select the next node to visit at step t, until
all nodes have been included in the final trajectory π =
{a1, · · · , an}. And the pre-trained GNN can be used in
both policy optimization and active search in inference.

3.4.1 Policy optimization with node embedding

In the training phase, we use Policy Optimization with Mul-
tiple Optima (POMO) [Kwon et al., 2020] as the neural
heuristic to learn route construction step by step. POMO
employs a self-attention encoder and an attention decoder
to generate the solution (route) autoregressively. In our ap-
proach, instead of directly feeding coordinates into the at-
tention network [Kwon et al., 2020, Kim et al., 2021, Zhang
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et al., 2022b], we pass the node embeddings {xi}ni=1 from
the pre-trained GNN encoder fq as the input to the self-
attention encoder of POMO. In doing so, it is supposed
to strengthen the generalization of POMO since more use-
ful local structural information is injected. The attention
decoder in POMO accepts the output of its self-attention
encoder as the keys and values for its multi-head attention
layers. Finally, a softmax layer computes the probabilities
of visiting each node at the next step. To preserve desir-
able training performance, we follow the multiple greedy
trajectories and instance augmentation with REINFORCE
algorithm [Williams, 1992], as did in the original POMO.

3.4.2 Active search with graph embedding

In the inference phase, to better generalize the trained model
on unseen instances, we exploit active search [Bello et al.,
2017] to dynamically adjust the parameters for each target
instance. Since updating all parameters of the model is ex-
pensive and impractical during inference, we adopt a similar
technique as [Hottung et al., 2022], which adds instance-
specific residual layers before the output layer of the decoder
in POMO. And we only update the parameters of these resid-
ual layers. In our multi-view approach, the residual layers
accept both node embeddings from preceding layers and
the graph embedding xg from the pre-trained encoder, as
illustrated in Figure 1. Therefore, the representation of the
entire graph could be exploited by the instance-specific lay-
ers to capture high-level information (e.g. the distribution of
nodes) of the targeted VRP graph, so as to more effectively
guide the active search to solve the corresponding instance.
Particularly, the l-th trainable residual layer is inserted into
the attention decoder as

hl = ĥ+
((

ReLu
(
ĥW 1

l + b1l

)
W 2

l + b2l

)
,

ĥ =

{
[hn, xg] , l = 1,

hl−1 , l > 1,

(4)

where W 1 and W 2 are the weight matrix; b1 and b2 are bias
vectors; ĥ of the first layer is the concatenation of the output
of the last attention layer hn and the graph embedding xg
from the pre-trained GNN. For more details of POMO and
active search, please refer to Appendix B.

4 EXPERIMENTS

Our MVGCL is proposed to pre-train a GNN encoder to
assist the neural heuristic in boosting the cross-distribution
generalization performance. We evaluate our MVGCL on
synthetic TSP and CVRP instances of various distributions,
as well as those from the benchmark datasets, i.e., TSPLib
and CVRPLib. We also conduct ablation studies to verify
the respective key components of our MVGCL.

4.1 EXPERIMENTAL SETTINGS

Baselines. For TSP, we compare with the exact solver
Concorde [Applegate et al., 2006] and representative
neural heuristics including Attention Model (AM) [Kool
et al., 2019], Policy Optimization with Multiple Optima
(POMO) [Kwon et al., 2020], Learning Collaborative Poli-
cies (LCP) [Kim et al., 2021], Distributionally Robust
Optimization with POMO (DROP) [Jiang et al., 2022],
and Hardness-Adaptive Curriculum (HAC) [Zhang et al.,
2022b], Efficient Active Search (EAS) [Hottung et al., 2022].
Among them, DROP and HAC are recent works for tack-
ling the generalization issue pertaining to routing problems.
For CVRP, it is hard for existing solvers to attain optimal
solutions in a reasonable time, we instead use the strong
meta-heuristic HGS [Vidal, 2022] as a conventional baseline,
which reported superior performance to LKH3 [Hottung and
Tierney, 2020]. Moreover, since HAC is originally designed
for TSP only, we do not consider it for CVRP. We refer to
the result of EAS in Table 4 for ablation study.

Implementation. We adopt the Graph Isomorphism Net-
work (GIN) [Xu et al., 2018] as the encoders for fq and fk,
while it is also free to try other GNN variants. We use the
same hyperparameters as the original POMO [Kwon et al.,
2020], except that the batch size is reduced from 64 to 56 for
CVRP100 due to the memory limit. During training, we ap-
ply early stopping when the gap reduction is not significant.
We set the number of iterations in active search for each in-
stance to 200. The details of our implementation, including
hardware, hyperparameters and network architecture, are
presented in Appendix C.

Dataset. Instead of solely testing on uniform distribution
as most existing neural heuristics did, we evaluate all meth-
ods on various distributions, i.e., Explosion, Compression,
Cluster, Expansion and Rotation, respectively. These distri-
butions are more visually and quantitatively diverse than
the uniform one [Bossek et al., 2019], thus intensifying the
hardness for neural heuristics to generalize. To guarantee
the essential diversity of local structural patterns and ensure
that the (pre-)training instances are unseen in testing, we
generate (pre-)training instances from mixed distributions
by, 1) sampling an instance uniformly, 2) then randomly
applying three non-repetitive mutation operators1 from TSP-
GEN on this instance. We generate 6M such instances as the
pre-training corpus of GCL and another 1.2M for training
in our method. For other baselines without pre-training, we
use all those 7.2M instances in their training phases. After
training, we evaluate the models on 2000 instances from
each of the above five testing distributions (i.e. 10000 in-
stances in total). For HAC, we use its built-in data generator
(i.e. hardness-adaptive generator) for the best performance.
We specify the last applied mutation as the class label for

1https://github.com/jakobbossek/tspgen/tree/master/R

989



Table 1: Results of tour lengths and gaps to Concorde solver on various distributions (TSP)

Problem TSP50 TSP100

Distribution Metric Concorde AM POMO LCP HAC DROP MVGCL Concorde AM POMO LCP HAC DROP MVGCL

Explosion Len. 4.74 4.88 4.84 4.85 4.85 4.88 4.80 6.09 6.31 6.22 6.23 6.38 6.27 6.17
Gap 0.00% 2.95% 2.11% 2.32% 2.32% 2.95% 1.27% 0.00% 3.61% 2.13% 2.30% 4.76% 2.96% 1.31%

Compression Len. 5.22 5.37 5.33 5.32 5.35 5.34 5.30 6.89 7.16 7.06 7.07 7.18 7.12 7.02
Gap 0.00% 2.87% 2.11% 1.92% 2.49% 2.30% 1.53% 0.00% 3.92% 2.47% 2.61% 4.21% 3.34% 1.89%

Cluster Len. 5.37 5.56 5.50 5.54 5.53 5.52 5.47 7.26 7.58 7.45 7.48 7.63 7.46 7.40
Gap 0.00% 3.54% 2.42% 3.17% 2.98% 2.79% 1.86% 0.00% 4.41% 2.62% 3.03% 5.10% 2.75% 1.93%

Expansion Len. 4.44 4.58 4.55 4.56 4.58 4.60 4.52 5.57 5.80 5.72 5.78 5.88 5.74 5.68
Gap 0.00% 3.15% 2.48% 2.70% 3.15% 3.60% 1.80% 0.00% 4.13% 2.69% 3.77% 5.57% 3.05% 1.97%

Rotation Len. 4.54 4.69 4.64 4.68 4.66 4.64 4.61 6.02 6.28 6.17 6.20 6.34 6.23 6.13
Gap 0.00% 3.30% 2.20% 3.08% 2.64% 2.20% 1.54% 0.00% 4.32% 2.49% 2.99% 5.32% 3.49% 1.83%

Avg. Inf. Time (s) 0.08 0.07 0.01 0.53 0.08 0.01 0.87 0.50 0.22 0.02 1.50 0.23 0.03 3.70

each instance, since the training of DROP needs this label.

4.2 GENERALIZATION ON TSP

In Table 1, we display the average values of tour lengths,
gaps to the optimal solutions (attained by Concorde solver)
and the inference time, on the unseen instances from the
five distributions for TSP50 and TSP100. Overall, the ex-
act solver Concorde performs the best in terms of the tour
length, since it is highly specialized for TSP. Among neu-
ral heuristic methods, our MVGCL achieves the smallest
gap and significantly improves the generalization perfor-
mance on the five testing distributions. For example, our
MVGCL reduces the gap by 2.49% (1.83% vs 4.32%) on
Rotation distribution of TSP100 compared to AM, and even
for the strong neural baseline POMO, our MVGCL brings
0.82% (1.31% vs 2.13%) reduction of the gap on Explo-
sion distribution of TSP100. While HAC fails to generalize
well on TSP100 instances with relatively large gaps (4.21-
5.32%), MVGCL consistently delivers smaller gaps (1.31-
2.15%). Meanwhile, DROP exhibits unstable generalization
performance, which might be caused by the training on in-
stances of mixed-distributions without clear class division.
Hence, our MVGCL outperforms the two state-of-the-art
methods on cross-distribution generalization. Regarding the
efficiency, Concorde, LCP and MVGCL iteratively improve
solutions or adjust parameters, thus induce longer runtime.

4.3 GENERALIZATION ON CVRP

We display the results for CVRP50 and CVRP100 in Ta-
ble 2. As aforementioned, it is much harder to find the
optimal solution for CVRP, thus we specify the heuristic
solver HGS with runtime 30s as the baseline to compute
the gaps. Despite the good performance of AM, POMO and
LCP on uniform distribution (as reported in their original
papers), we observe that they drastically deteriorate when

generalizing to other distributions. For example, the strong
neural baseline POMO reported gaps of 0.45% and 0.32%
for CVRP50 and CVRP100 on uniform distribution in its
original paper, whereas its gaps increase to about 2.5% on
the five distributions. In fact, generalizing to different dis-
tributions on CVRP100 is challenging for neural baselines,
which yield large gaps around 2.3%-3.7%. However, our
MVGCL achieves significantly smaller gaps (by up to 10x)
than those of neural baselines, which are comparable to
HGS that runs much longer. The reason might be that our
MVGCL is less sensitive to the varied distributions as it
exploits the universal local patterns. Furthermore, we also
present results on TSP and CVRP instances of uniform dis-
tribution in Appendix D. To sum up, our method attains
higher-quality solutions over most of the distributions.

4.4 RESULTS ON BENCHMARKS

We continue to evaluate our MVGCL on public bench-
mark datasets, i.e., TSPLib [Reinelt, 1991] and CVRPLib
[Queiroga et al., 2021], to demonstrate that our method is
also effective in addressing more realistic distributions. Re-
garding TSPLib, we solve the instances with 51-299 nodes.
Regarding CVRPLib, we solve XML100 which contains
10000 CVRP100 instances with heterogeneous distributions.
The coordinates in each of the above instances are normal-
ized to [0, 1] for a fair comparison. Instead of training a
new model for each testing instance set with identical distri-
bution [Hottung et al., 2022], we directly use the models
trained on TSP100 and CVRP100 (with mixed distributions)
to solve those instances.

The upper half of Table 3 shows the average results on
TSPLib instances. It is revealed that our MVGCL can gener-
alize well to real-world distributions and varied sizes, with
a low gap (1.58%), which is significantly smaller than those
of neural baselines (i.e. 5.16%-16.75%). The advantage of
our MVGCL over HAC suggests that training with simi-
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Table 2: Results of tour lengths and gaps to HGS solver on various distributions (CVRP)

Problem CVRP50 CVRP100

Distribution Metric HGS AM POMO LCP DROP MVGCL HGS AM POMO LCP DROP MVGCL

Explosion Len. 9.79 10.02 9.92 9.97 9.91 9.81 14.30 14.79 14.65 14.73 14.70 14.33
Gap 0.00% 2.35% 1.33% 1.84% 1.23% 0.20% 0.00% 3.43% 2.45% 3.01% 2.80% 0.21%

Compression Len. 10.14 10.39 10.28 10.35 10.32 10.15 14.82 15.36 15.21 15.30 15.32 14.85
Gap 0.00% 2.47% 1.38% 2.07% 1.78% 0.10% 0.00% 3.64% 2.63% 3.24% 3.37% 0.20%

Cluster Len. 10.35 10.60 10.49 10.57 10.49 10.37 15.44 15.99 15.83 15.89 15.90 15.48
Gap 0.00% 2.42% 1.35% 2.13% 1.35% 0.19% 0.00% 3.56% 2.53% 2.91% 2.98% 0.26%

Expansion Len. 9.40 9.64 9.53 9.60 9.61 9.42 13.70 14.18 14.02 14.14 14.19 13.74
Gap 0.00% 2.55% 1.38% 2.13% 2.23% 0.21% 0.00% 3.50% 2.34% 3.21% 3.58% 0.29%

Rotation Len. 9.43 9.66 9.56 9.64 9.58 9.45 13.97 14.46 14.30 14.42 14.39 14.00
Gap 0.00% 2.44% 1.38% 2.23% 1.59% 0.21% 0.00% 3.51% 2.36% 3.22% 3.01% 0.21%

Avg. Inf. Time (s) 30 0.22 0.01 2.83 0.01 1.07 30 0.29 0.03 5.85 0.05 4.43

Table 3: Results on TSPLib and CVRPLib

Dataset Metric Opt. AM POMO LCP HAC DROP MVGCL

TSPLib
Len. 6.86 8.02 7.44 7.48 8.65 7.48 7.05
Gap 0.00% 10.53% 5.16% 5.92% 16.75% 5.79% 1.58%

Avg. Time (s) - 0.48 0.47 69.26 0.48 0.35 48.11

CVRPLib
Len. 16.97 17.82 17.71 17.83 - 17.84 17.09
Gap 0.00% 6.05% 4.52% 5.23% - 5.25% 0.70%

Avg. Time (s) - 0.29 0.03 7.22 - 0.05 4.8

Table 4: Ablation studies on MVGCL

Component TSP100
Name Node Embed. Graph Embed. EAS Len. Gap.

M1 % % % 6.760 2.41%

M2 ! % % 6.732 1.98%

M3 ! % ! 6.722 1.83%

M4 % % ! 6.729 1.94%

M5 % ! ! 6.725 1.88%

M6′ ! !

–

! 6.720 1.80%

M6 ! ! ! 6.717 1.76%

lar distributions (e.g. Gaussian mixture distributions) may
limit the generalization performance, while pre-training with
diverse patterns from various heterogeneous distributions
could be more beneficial. The lower half of Table 3 shows
the average results on CVRPLib instances, which reveal
that our MVGCL can also generalize well to miscellaneous
instances, which are completely unseen in training.

4.5 ABLATION STUDIES

We further conduct ablation studies to verify the effective-
ness of key components in our MVGCL, where we take
TSP100 as an exemplary case. In Table 4, we ablate three
components and report the average results over all 10000
instances of the five distributions. The comparison between
M1 and M2 shows that the node embedding from our node-
level GCL is helpful for generalization, which reduces the
gap (2.41%) of the original POMO (M1) by 0.43%. The
comparison between M2 and M3 shows that the active
search with additional neural layers (referred to as EAS)
[Hottung et al., 2022] can further reduce the gap by 0.15%.
To verify the effectiveness of the distribution-preserved aug-
mentation in our graph-level GCL, we use the pooling result
of all node embeddings produced by the node-level GCL
as the graph embedding xg (M6′). We can only see a slight
difference compared to M3, which implies that solely pro-
viding local information (M6′) cannot capture the overall
distribution for more effective active search. In contrast, we
can observe from M3 v.s. M6 and M4 v.s. M5 that guid-
ing the active search by graph embedding produced by our
graph-level GCL (M5 and M6) can significantly improve
the generalization performance. Finally, our MVGCL with
all components (M6) achieves the highest gap reduction
(0.65%) compared to M1, which empirically verifies the
importance of learning universal local patterns and the ef-
fectiveness of global graph embedding for active search.

5 CONCLUSIONS AND FUTURE WORKS

In this paper, we propose a multi-view graph contrastive
learning approach to leverage node-level local patterns
and graph-level global representation for neural heuristics
equipped with active search to solve VRPs. Extensive ex-
periments on synthetic instances and benchmark instances
(TSPLib and CVRPLib) of various distributions show that
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our MVGCL significantly improves the cross-distribution
generalization performance. In future, we plan to further
improve the inference efficiency of our MVGCL.
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