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A PROOF OF THEOREM 1

This Appendix states and proves the propositions referred to in the proof of Theorem 1 given in Section 2.

A.1 PART I: MARGINAL CONSISTENCY

We first prove marginal consistency for our VSP prior. Intuitively, relations between actors in a VSP v ∈ V[n] are determined
by the type of their “Most Recent Common Ancestor” (MRCA) in any BDT t ∈ t(v) representing v. For example the
MRCA of actors 2 and 4 in the tree t0 in Fig. 3 is the blue P -node, so 2∥v04 in the VSP v0 in Fig. 1. Adding or removing a
leaf in the BDT doesn’t change relations between other actors because it doesn’t change the types of their MRCA’s. This
property leads to marginal consistency of trees and VSPs.

We begin by giving a stochastic process realising t ∼ πT[n]
(t|q) in which leaves are added to the tree one at a time. This

construction appears in Valdes [1978] but without the random element.

Definition A.1 (Leaf Insertion and deletion) If t′ ∈ T[n−1], t′ = (F (t′), E(t′), L(t′)), is a tree on actors (i1, ..., in−1)
with F ′ ∪ A′ = [2n − 3] then the leaf-insertion operation t = t′ ◁ (e, in) at edge e = ⟨e1, e2⟩, e ∈ E(t′), gives a tree
t = (F (t), E(t), L(t)) with two new nodes j′ = 2n−2 and j = 2n−1, leavesF = F ′∪{j′}, internal nodesA = A′∪{j},
leaf-to-actor map FF (t) = FF (t

′) and Fj′(t
′) = in, edge set

E(t) = E(t′) \ {e} ∪ {⟨j, j′⟩, ⟨e1, j⟩, ⟨j, e2⟩}

and L(t) = L(t′)∪Lj where Lj = (j′, e2), (e2, j
′) or ∅ with probabilities q/2, q/2 and 1−q respectively. The leaf deletion

operation t′ = t ▷ in reverses this operation, pruning the leaf for actor in (and removing its parent node).

Definition A.2 (Generative model for BDTs) Let (i1, . . . , in) ∈ P[n] be the actor list taken in any order. Simulate t ∼
πT[n]

(t|q) as follows:

1. Set F = {0, 1}, A = ∅, F1 = 1, E = {⟨0, 1⟩}, L = ∅ and t(1) = (F,E,L) (a single-edge tree);

2. For k = 2 : n, (add the actors one at a time)

(a) choose an edge e ∼ U{E(t(k−1))} at random;
(b) set t(k) = t(k−1) ◁ (e, ik);

3. E(t(n)) contains an edge e = ⟨0, e2⟩. Return the BDT t = (F (t(n)), E(t(n)) \ {e}, L(t(n))) with leaf labels F ←
F \ {0}.

If we run this generative model we get a random tree distributed according to πT[n]
.
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Proposition 2 (Prior Probability Distribution over T[n]) The probability distribution over BDTs determined by the pro-
cess in Definition A.2 is given by (3).

Proof A.1 (Proposition 2) Each distinct topology is determined by a unique sequence of edge choices at step 2a in
Definition A.2, and at step k an edge is chosen uniformly over the 2k − 3 edges of a tree with k leaves (recall there is a
temporary leaf 0 ∈ F which is removed at step 3). The types of internal nodes are independent so it makes no difference if
we set them as we build the tree or at the end.

We now define sub-trees of BDTs. At the end of step k in the tree-generation process in Definition A.2 the “current tree”
is t(k) ∈ To with o = (i1, ..., ik) and at the end of step k′ > k it is t(k′) ∈ Tõ with õ = (i1, ..., ik, ik+1, ..., ik′). If, for
o, õ ∈ O[n] with o ⊆ õ, we fix τ ∈ To and t ∈ Tõ then the conditional probability

πTõ|To
(t|τ, q) = Pr(t(k′) = t|t(k) = τ, q)

is the probability to realise t(k′) = t when t(k) = τ .

Definition A.3 (Sub-trees and containing trees) Tree τ is a sub-tree of t (and t contains τ ) if πTõ|To
(t|τ, q) > 0. Let

Tõ(τ) = {t ∈ Tõ : πTõ|To
(t|τ, q) > 0}

give the set of trees in Tõ containing a given tree τ ∈ To.

If t contains τ then t can be realised from τ by a sequence of edge insertions ◁ and τ can be recovered from t removing the
actors in õ \ o using the pruning operator ▷.

The family of prior distributions over trees πTo
(τ |q), o ∈ O[n], n ≥ 1 is marginally consistent if, for all n ≥ 1 and all

o, õ ∈ O[n] with o ⊆ õ, distributions in the family satisfy

πTo
(τ |q) =

∑
t∈Tõ(τ)

πTõ(t|q) for all τ ∈ To . (A.1)

Proposition 3 The probability distribution over BDTs given in (3) is marginally consistent.

Proof A.2 (Proposition 3) It is sufficient show marginal consistency holds for õ = [n] and o = [n] \ {i} for any single
actor i ∈ [n] as Eqn. A.1 follows for any pair of subsets of [n] by pruning leaves one at a time using the ▷ operator.

Since πT[n]
(t|q) in Eqn. 3 does not depend on the order i1, . . . , in in which we add actors, we can make node in = i the last

arrival. If t−i is the tree at the end of the penultimate loop then

πTo(t−i|q) =
∑

e∈E(t−i)

πTõ(t−i ◁ (e, i)|q). (A.2)

Now take τ = t−i. Since leaf deletion reverses edge insertion, the set of trees T[n](τ) that contain τ is the set of trees that
are obtained from τ by some edge addition,

T[n](τ) =
⋃

e∈E(τ)

{τ ◁ (e, i)}

and so
πTo

(τ |q) =
∑

t∈T[n](τ)

πTõ
(t|q).

which is marginal consistency for addition of one actor.

Proposition 4 The probability distribution over VSPs given in (4) is marginally consistent.



Proof A.3 (Proposition 4) It is sufficient to show that Eqn. 5 holds for õ = [n] and o = [n] \ {i} and any i ∈ [n] in
Definition 1 since Eqn. 5 follows for any pair of subsets of [n] by removing actors one at a time.

In this case v[o] is the suborder obtained from v ∈ V[n] by removing actor i and we want to verfiy

πVo
(w|q) =

∑
v∈V[n]
v[o]=w

πV[n]
(v|q) for all w ∈ Vo. (A.3)

Picking up the RHS of Eqn. A.3 we have from Eqn. 4∑
v∈V[n]
v[o]=w

πV[n]
(v|q) =

∑
v∈V[n]
v[o]=w

∑
t∈t(v)

πT[n]
(t|q).

Referring to Definition A.3, the sum on the right is a sum over all trees “containing” a tree in t(w), that is, the set of all
trees which can be constructed by taking a tree τ ∈ t(w) and adding actor i to the tree by edge insertion at any edge in τ :⋃

v∈V[n]
v[o]=w

⋃
t∈t(v)

{t} =
⋃

τ∈t(w)

⋃
e∈E(τ)

{τ ◁ (e, i)}.

It follows that ∑
v∈V[n]
v[o]=w

πV[n]
(v|q) =

∑
τ∈t(w)

∑
e∈E(τ)

πT[n]
(τ ◁ (e, i)|q)

=
∑

τ∈t(w)

πTo
(τ |q), (by Eqn. A.2)

= πVo(w|q) (by Eqn. 4),

which is the LHS of Eqn. A.3.

This concludes the first part of Theorem 1. We now prove the second part.

A.2 PART II: CLOSED FORM PRIOR

The following proof makes use of the MDT representation of a VSP introduced in Section 1.1 and detailed in A.3 below.

We next observe that all BDTs representing the same VSP have equal prior probabilities (they collapse to the same MDT
and that fixes S(t)). This makes it easy to do the sum in (4) as the summand is constant.

Proposition 5 (Probability Distribution over VSPs) The prior probability for a VSP with n nodes is

πV[n]
(v|q) = |t(v)|πT[n]

(t|q),

for any tree t ∈ t(v).

Proof A.4 (Proposition 5) For v ∈ V[n], any two trees t, t′ ∈ t(v) are both in T[n]. They also satisfy S(t) = S(t′). This
follows from Lemma 1: if these numbers differ then the S-clusters of t and t′ cannot all have equal sizes; the S-cluster sizes
of a BDT determine of the numbers of children of the S-nodes in its MDT; it follows that m = tM(t) and m′ = tM(t′)
cannot be isomorphic (identifying leaves by actor labels); but m and m′ are then distinct MDT’s for v which contradicts
Lemma 1. Referring to Eqn. 3 we see that πT[n]

(t|q) is constant over t ∈ t(v) so the sum in Eqn. 4 just counts trees in t(v).

Finally, we count trees in t(v) and this gives us the closed form we seek. This seems to be new.

Proposition 6 Let t ∈ t(v) be an arbitrary BDT of a VSP v ∈ V[n] with P - and S-clusters defined as in Theorem 1. The
number of BDTs of v is

|t(v)| =
KP∏
k=1

(|2C(P )
k | − 1)!!

KS∏
k′=1

C|C(S)

k′ | (A.4)

with Cs, s ≥ 0 given in (7).



Proof A.5 (Proposition 6) By Lemma 1 the set of BDT trees t(v) for any v ∈ V[n] is identical to the set tM(m) = {t ∈
T[n] : mT (t) = m} when m = mV(v) so we need to count the number of BDT’s that collapse down to the same MDT. Let
m = (F,E,L) be an MDT with leaves F and internal nodes A.

A P -node i ∈ A in m having c child nodes is generated by collapsing some P -cluster C(P )
k of a BDT t ∈ tM(m) with

|C(P )
k | = c − 1 nodes “internal” to the P -cluster. This P -cluster corresponds to a sub-tree tk = (V (tk), E(tk)) with

vertices V (tk) = C
(P )
k and edges

E(tk) = E(t) ∩ (C
(P )
k × C(P )

k ).

The sub-tree tk has c = |C(P )
k |+ 1 leaves. If we replace tk with any tree with |C(P )

k |+ 1 labelled leaves then it collapses to
a MDT node with in- and out-edges isomorphic to those of node i in m. The number of such trees is (2|C(P )

k | − 1)!!.

An S-node i ∈ A of the MDT with s child nodes and stacking data Li(m) = (i1, ..., is) is generated by collapsing some
S-cluster S(S)

k of a BDT. Again, that cluster covers |S(P )
k | = s− 1 internal nodes in the BDT. This S-cluster corresponds to

a sub-tree of t with s = |S(P )
k |+ 1 leaves. Since all the internal nodes of the sub-tree are of type S and its leaf nodes are

labelled, this sub-tree is a BDT representing the fixed total order i1 ≻ i2... ≻ is on its leaf nodes. If we replace this subtree
with any tree with s labelled leaves representing the same total order then it collapses to a MDT node with in- and out-edges
isomorphic to i and the same stacking data. The number of such trees is given by the Catalan number Cs−1 = C|S(P )

k |. This
can be shown by the following induction.

The number of BDT’s representing a total order on 1 or 2 elements is one and indeed C0 = C1 = 1. Suppose the number
of BDT’s representing a total order 1 ≻ 2 ≻ ... ≻ s is Cs−1 and consider a BDT representing 1 ≻ 2 ≻ ... ≻ s + 1. The
root of such a BDT must partition the leaves into 1, ..., k and k + 1, ..., s+ 1 for some 1 ≤ k ≤ s so that the root stacks
1, ..., k above k + 1, ..., s+ 1. By the induction hypothesis the number of subtrees representing 1 ≻ 2 ≻ ... ≻ k is Ck−1 and
the number representing k + 1 ≻ 2 ≻ ... ≻ s+ 1 is Cs−k−1, so the number of BDT’s splitting the leaves into 1, ..., k and
k + 1, ..., s+ 1 is Ck−1Cs−k−1. The total number of BDT’s representing 1 ≻ 2 ≻ ... ≻ s+ 1 is then

s∑
k=1

Ck−1Cs−k−1 =

s∑
k=0

CkCs−k

= Cs,

where the last step is given in Stanley and Weisstein [2002].

The total number of BDT’s is given by the product over the internal nodes of the MDT of the numbers of BDT sub-trees
which collapse to give those nodes. This gives Eqn. A.4 and completes the proof of Theorem 1.

A.3 MULTI-DECOMPOSITION TREES

A MDT m ∈M[n] is a tree m = (F (m), E(m), L(m)) with n leaves and edges E(m) directed from the root to the leaves.
Let F and A be the index sets for the leaves and internal nodes, such that |F| = n and 1 ≤ |A| ≤ n − 1. An internal
node i ∈ A of a MDT may have any number of child nodes between two and n− 1. For i ∈ F and m ∈M[n], the array
Fi(m) ∈ [n] records the actor represented by leaf node i. The internal nodes i ∈ A are either of type S or type P . The key
defining feature of an MDT is that the internal nodes of an MDT which are adjacent must have unequal types.

Let S(m) be the number of S-nodes in multi-tree m ∈ M[n]. For m ∈ M[n] let v(m) :∈ V[n] map an MDT to its
corresponding VSP and for i ∈ F ∪A let mi(m) denote the sub-tree rooted by node i. If i ∈ A is of type P with k children
j1, . . . , jk, then

v(mi(m)) = v(mj1(m))⊕ · · · ⊕ v(mjk(m)).

If i ∈ A is of type S with k child nodes {j1, . . . , jk} = {j ∈ F ∪ A : ⟨i, j⟩ ∈ E(m)}, an ordered set Li = (j1, . . . , jk)
gives the stacking order (with j1 at the top) for the sub-trees rooted by the children of i. It follows that

v(mi(m)) = v(mj1(m))⊗ · · · ⊗ v(mjk(m)).

Let L(m) = {Li}i∈A with Li = ∅ if i is a P -node. Adjacent internal nodes have unequal type so if ⟨i, j⟩ ∈ E(m) then
exactly one of Li and Lj is empty. In this notation a MDT tree is a BDT if all its internal nodes have two child nodes and a
BDT is an MDT if all adjacent internal nodes have different S/P -types.



An MDT can be formed from a BDT by collapsing edges between internal nodes in the BDT which have the same type
while preserving information about stacking order at S-nodes. This collapses P - and S-clusters to a single node. A set
of BDT’s can be recovered from an MDT by “unpacking” internal nodes of the MDT with more than two child nodes in
different ways. For t ∈ T[n] let mT (t) ∈M[n] map the BDT t to its corresponding MDT. See Figure 4 for an example.

Counting linear extensions in the MDT formulation is similar to the BDT case (Eqns. 1 & 2).

|L(h1 ⊗ · · · ⊗ hn)| =|L(h1)| × · · · × |L(hn)| (A.5)

|L(h1 ⊕ · · · ⊕ hn)| =|L(h1)| × · · · × |L(hn)|
(
|V (h1)|+ · · ·+ |V (hn)|
|V (h1)|, . . . , |V (hn)|

)
(A.6)

where |V (h1)| and |V (h2)| give the number of actors in h1 and h2. This may be evaluated recursively in O(n) steps.

A.4 PROOF OF PROPOSITION 1

Proposition 1 (Posterior Marginals) Sampling the BDT posterior (t, q, ψ) ∼ πT[n]
(·|y) gives samples (v(t), q, ψ) ∼

πV[n]
(·|y) from the VSP posterior.

Proof A.6 (Proposition 1) Eqn. 11 is the marginal over t ∈ t(v) of Eqn. 10: if (t, q, ψ) ∼ πT[n]
(·|y) then the new joint

distribution at v(t) = v is

p(v, q, ψ) ∝
∑

t′∈t(v)

πT[n]
(t′|q)π(q, ψ)Q(y|v(t′), ψ)

= π(q, ψ)Q(y|v, ψ)
∑

t′∈t(v)

πT[n]
(t′|q)

= πV[n]
(v, q, ψ|y)

as Q(y|v(t), ψ) = Q(y|v, ψ) is a constant for t ∈ t(v) and the prior marginalises to πV[n]
(v|q) by Eqn. 4.



B QUEUE-JUMPING MODELS

B.1 QUEUE-JUMPING UP/DOWN OBSERVATION MODEL

Let LT (v) = |L[v]| be the number of linear extensions of VSP v ∈ V
[̃n]

and for i ∈ [n] let Ti(v) = |{l ∈ L[v] : l1 = i}|
give the number of linear extensions with actor i at the top. The observation model for QJ-U for a generic list x ∈ P[n] is

Qup(x|v, p) =
n−1∏
i=1

(
p

n− i+ 1
+ (1− p)Txi(v[xi:n])

LT (v[yi:n])

)
. (B.1)

We can interpret this as the distribution over lists determined by a process in which the list is formed by building it up one
element at a time from the top, choosing the next actor at random from those that remain with probability p and otherwise
choosing the next actor as the first actor in a list drawn from the noise free model (beginning of Section 3) applied to the
remaining actors. Fig. B.1 gives an example list realisation for VSP v0. We give the generative model alg.B.1.
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Figure B.1: One example list simulation process from the VSP v0 (left) via the QJ-U observation model. The simulated list
is displayed on the right.

Algorithm B.1 Simulation algorithm for QJ-U.
Require: v ∈ V[n], p ∈ [0, 1]
Ensure: x ∼ Qup(·|v, p)
i← 1, s← [n], v′ ← v
while |s| > 0 do

q ← (Tj(v
′)/L(v′))j∈s

Sample c ∼ Bern(1− p)
if c = 0 then

Sample xi ∼ U(s)
else if c = 1 then

Sample xi ∼ multinom(q)
end if
s← s\xi
i← i+ 1, v′ ← v[s]

end while
return x = (x1, . . . , xn)

The output x ∼ Qup(·|v, p) is a random list of n elements distributed according toQup. This follows because the probabilities
to choose entries in x at each step are just the factors inQup in Eqn. B.1. We can turn the model around and build the list from
the bottom, allowing “queue jumping-down”. If we set p = 0, we get a telescoping product and Qup(l|v, p = 0) = 1/LT (v)
for l ∈ L[v], so we recover the error-free model. Lists are assumed to be drawn independently, and the actors present
oj , j = 1, ..., N are known, so the likelihood is

Q(y|v, p) =
N∏
j=1

Q(yj |v[oj ], p).

Here Q = Qup (and Q = Qbi in the next section).



B.2 BI-DIRECTIONAL QUEUE-JUMPING MODEL

Similar to QJ-U, QJ-B ranks by repeated selection - but from both ends. We either rank from the top with probability ϕ or
from the bottom with probability 1− ϕ. From the top (bottom) of the list, the next actor is chosen at random from those
that remain with probability p, and otherwise as the first (last) actor in a list drawn from the noise free model. An example
simulation process from VSP v0 is visualised in Fig. 5.

Algorithm B.2 gives the simulation algorithm for the bi-directional queue jumping model. It introduces one extra step in
each loop of algorithm B.1 in which we randomly choose the top/bottom fill-direction to place the next actor in the realised
list with probability ϕ.

Algorithm B.2 Simulation algorithm for QJ-B.
Require: v ∈ V[n], p ∈ [0, 1], ϕ ∈ [0, 1]
Ensure: x ∼ Qbi(x|v, p, ϕ)
s← [n], v′ ← v
x← (∅, . . . , ∅) ∈ {∅}n, k ← 1, U0 ← 0, D0 ← n+ 1
while |s| > 0 do

Sample zk ∼ Bern(1− ϕ)
Uk ← Uk−1 + zk, Dk ← Dk−1 − (1− zk)
ik ← zkUk + (1− zk)Dk

Sample ck ∼ Bern(1− p)
if ck = 0 then

Sample a ∼ U(s)
else

if zk = 0 then
q ← (Ta(v

′)/LT (v
′))a∈s

Sample a ∼ multinom(q)
else if zk = 1 then

q ← (Ba(v
′)/LT (v

′))a∈s

Sample a ∼ multinom(q)
end if

end if
Set xik ← a, k ← k + 1, s← s\a, v′ ← v[s]

end while
return x = (x1, . . . , xn)



B.3 RECURSIVE EVALUATION ALGORITHM FOR QJ-B

This sub-section gives Algorithm B.3, an algorithm for recursive evaluation of the QJ-B likelihood.

Algorithm B.3 Recursion evaluating Qbi in Eqn. 9
procedure f (v, x, p, ϕ)

n = |v|
if n = 1 then

return 1
end if
if ϕ > 0 then

l0 ← p
n + (1− p)Tx1

(v)

LT (v)

x← x2:n, v ← v[x]
P0 = ϕ× l0× f (v, x, p, ϕ)

else L0 = 0
end if
if ϕ < 1 then

l1 ← p
n + (1− p)Bxn (v)

LT (v)

x← x1:n−1, v ← v[x]
P1 = (1− ϕ)× l1× f (v, x, p, ϕ)

else P1 = 0
end if
return P0 + P1

end procedure

We now show this algorithm is correct.

Let X ∼ Qbi be a random list with realisation X = x. For sub-list xa:b, 1 ≤ a < b ≤ n let

Pa|a:b = p(Xa = xa|zk = 0, v[xa:b], p),

Pb|a:b = p(Xb = xb|zk = 1, v[xa:b], p),

Pa:b = p(Xa:b = xa:b|v[xa:b], p, ϕ),

so that P1:n = Qbi(x|v, p, ϕ) and Pa = 1 when a = b.

Proposition 7
Pa:b = ϕPa|a:bPa+1:b + (1− ϕ)Pb|a:bPa:b−1, (B.2)

and f(v, x, p, ϕ) in Algorithm B.3 returns Qbi(x|v, p, ϕ).

Proof B.1 (Proposition 7) First of all, if Eqn. B.2 holds then a call to f(v[xa:b], xa:b, p, ϕ) evaluates l0 = Pa|a:b,
l1 = Pb|a:b and returns the sum of ϕl0f(v[xa:b], xa:b, p, ϕ) and (1 − ϕ)l1f(v[xa:b−1], xa:b−1, p, ϕ). Then since
f(v[xa], xa, p, ϕ) = Pa = 1 we have by induction (and Eqn. B.2) that f(v[xa:b], xa:b, p, ϕ) = Pa:b and

f(v, x, p, ϕ) = Qbi(x|v, p, ϕ).

We now show Eqn. B.2) holds for the distribution of sub-lists Xa:b of X ∼ Qbi. If a : b remain to be realised then
a−1+n− (b−1) entries inX have been realised and this would occur as we enter step k = n+a−b+1 of Algorithm B.2.
Partitioning on the value of zk,

Pa:b = p(Xa:b = xa:b|v[xa:b], p, ϕ)
= p(zk = 0|ϕ)p(Xa:b = xa:b|zk = 0, v[xa:b], p, ϕ)

+ p(zk = 1|ϕ)p(Xa:b = xa:b|zk = 1, v[xa:b], p, ϕ)

= ϕPa|a:bp(xa+1:b|v[xa+1:b], p, ϕ)

+ (1− ϕ)Pb|a:bp(xa:b−1|v[ya:b−1], p, ϕ),

= ϕPa|a:bPa+1:b + (1− ϕ)Pb|a:bPa:b−1.



C MCMC SAMPLER

We use Metropolis-Hasting MCMC to sample posterior distributions. We can target either distribution in Proposition 1.

C.1 MCMC SAMPLER IN THE BDT REPRESENTATION

We start with MCMC targeting BDT. This was the method we implemented as the data structures seem slightly simpler.
However, we would expect MCMC targeting the VSP posterior directly to be a little more efficient, as MCMC targeting the
BDT posterior wastes time exploring latent subspaces t(v) without changing v. Tree sampling requires edge operations
on trees (called “subtree prune and regraft” (OP-PR) in the phylogenetics literature). For this purpose we assume the
0-node with an edge to the root of the BDT is restored, so 0 ∈ F for a regraft above the root. Let F−0 = F \ {0} and
E−0(t) = E(t) \ {⟨e1, e2⟩ ∈ E(t) : e1 = 0}.

Definition C.1 (Subtree Prune and Regraft on a BDT ) For t = (F (t), E(t), L(t)), t ∈ T[n] a BDT with leaf node
labels F and internal node labels A, an edge operation t′ = t ◁e (e, e

′) moves edge e = ⟨e1, e2⟩, e ∈ E−0(t) to edge
e′ = ⟨e′1, e′2⟩, e′ ∈ E(t′). The leaf-to-actor map F (t′) = F (t) is unchanged. Let

fp(j|t) = {i ∈ A|⟨i, j⟩ ∈ E(t)}

give the parent of j ∈ F−0 ∪ A with fp(r|t) = 0 if r is the root. Let

fc(i|t) = {j1, j2 ∈ F ∪ A|{⟨i, j1⟩, ⟨i, j2⟩ ⊂ E(t)}

give the children of i ∈ A.Let ⃗e1 = fp(e1|t) give the parent of e1 and e⃗2 = fc(e1|t)\{e2} give the “sibling” of e2 in t (the
child of e1 which is not e2). Then

E(t′) = E(t)\{e′, ⟨ ⃗e1, e1⟩, ⟨e1, e⃗2⟩}
∪ {⟨e′1, e1⟩, ⟨e1, e′2⟩, ⟨ ⃗e1, e⃗2⟩}.

Set L(t′) = L(t) and make the following replacements as needed. If L ⃗e1(t) ̸= ∅ then L ⃗e1(t) is an ordered set containing
two edges. Set L ⃗e1(t

′) = L ⃗e1(t)\{e1} ∪ {e⃗2} where the replacement enters the vacated position in the ordered set. If
Le′1

(t) ̸= ∅, Le′1
(t′) = Le′1

(t)\{e′2} ∪ {e1}. If Le1(t) ̸= ∅ then take Le1(t
′) ∼ U{(e2, e′2), (e′2, e2)}.

The edge operation t ◁e (e, e′) moves the sub-tree rooted by e2 into edge e′, breaking that edge and inserting node e1. The
S/P -type of e1 travels with e1, and if it is S we must assign a stacking order to the subtrees rooted by e′2 and e2. Figure C.1
illustrates an example edge operation.

S

1+ S−

P+ 5−

2 S

3+ 4−

e′

e

t ◁e (e, e
′)

S

1

S−P+

5−2+S

3+ 4−

Figure C.1: An example OP-PR edge operation on BDT t0.

The tree updates in our MCMC admit both local and global edge operations. In the local edge operation, an edge can only
be moved to a neighboring edge, i.e. if e = ⟨e1, e2⟩, e′ is selected from e’s neighboring edges El(e|t) such that

El(e|t) = {⟨e′1, e′2⟩∈E(t) | e′2= ⃗e1 or e′1= e⃗2 or e′2= e⃗1}.

These “small” changes have a higher acceptance rate. The global edge operation moves an edge e to any e′ ∈ E(t)\e. For
t ∈ T[n], we typically perform 1 global edge operation for every n local edge operations. We present the MCMC algorithm
for BDT with the QJ-B observation model in Algorithm C.1, omitting the standard q, p and ϕ updates. A simple internal
node type update is included. The algorithm for QJ-U observation model is similar but without the ϕ-update.



Algorithm C.1 The MCMC algorithm for the BDT with QJ-B observation model at step k.

Require: y, t(k−1) = t, q(k−1) = q, p(k−1) = p, ϕ(k−1) = ϕ with t = (F (t), E(t), L(t)), t ∈ T[n].
Ensure: t(k) ∼ π(t|y, q, p, ϕ),

q(k) ∼ π(q|y, t(k), p, ϕ),
p(k) ∼ π(p|y, t(k), q(k), ϕ),
ϕ(k) ∼ π(ϕ|y, t(k), q(k), p(k))

function TYPE(i|t)
if Li(t) = ∅ then

return P
else

return S
end if

end function
Update for t (internal node type)

t′ ← t(k) ← t
Sample i ∼ U(A)
if TYPE(i|t)=P then

Sample z ∼ U{0, 1}

Li(t
′)← zfc(i|t)[(1, 2)] + (1− z)fc(i|t)[(2, 1)]

η1 ←
2×Q(y|v(t′), p, ϕ)πT[n]

(t′|q)
Q(y|v(t), p, ϕ)πT[n]

(t|q)
else if TYPE(i|t)=S then

Li(t
′)← ∅

η1 ←
Q(y|v(t′), p, ϕ)πT[n]

(t′|q)
2Q(y|v(t), p, ϕ)πT[n]

(t|q)
end if
if U(0, 1) ≤ η1 then

t← t(k) ← t′

end if
Update for t (global edge operation)

Sample e ∼ U(E−0(t)), e′ ∼ U(E(t)\e)
t′ ← t ◁e (e, e

′)

η2 ←
Q(y|v(t′), p, ϕ)πT[n]

(t′|q)
Q(y|v(t(k)), p, ϕ)πT[n]

(t|q)
if U(0, 1) ≤ η2 then

t← t(k) ← t′

end if
Update for t (local edge operation)

Sample e ∼ U(E−0(t)), e
′ ∼ U(El(e|t))

t′ ← t ◁e (e, e
′)

η3 ←
Q(y|v(t′), p, ϕ)πT[n]

(t′|q)|El(e|t)|
Q(y|v(t), p, ϕ)πT[n]

(t|q)|El(e|t′)|
if U(0, 1) ≤ η3 then

t← t(k) ← t′

end if
Updates for q, p and ϕ omitted



C.2 MCMC SAMPLER IN THE MDT REPRESENTATION

We can target the VSP-posterior directly. Since MDT’s are one-to-one with VSP’s, we can parameterise using MDT’s and
define (in Defn. C.2) a sub-tree prune and regraft operator for MDT’s.

Definition C.2 (Subtree Prune and Regraft on a MDT) For m = (F (m), E(m), L(m)), m ∈ M[n] a MDT with leaf
node labels F and internal nodes labels A, an edge operation m′ = m ◁e (e, i) creates a new MDT with nodes F ′,A′,
moving edge e = ⟨e1, e2⟩, e ∈ E−0(m) onto node i ∈ (F ∪A)\{e1, e2}.

We need at most 2n node labels below. Assume F−0 ∪ A ⊂ [2n] and let pop(F ,A) = min([2n] \ (F ∪A)) be a function
we call when we need a new node label. There are three types of edge operation.

1. i ∈ A: we connect e to node i.
Here F (m′) = F (m) and

E(m′) = E(m)\{e} ∪ ⟨i, e2⟩.

Set L(m′) = L(m) and make the following changes as needed. If Le1(m) ̸= ∅ then set Le1(m
′) = Le1(m)\{e1}. If

Li(m) ̸= ∅ then suppose Li(m) = (j1, . . . , jk). Take Li(m
′) ∼ U{(e1, j1, . . . , jk), . . . , (j1, . . . , jk, e1)} (insert the

subtree below ⟨e1, e2⟩ uniformly in the stack under i).

2. i ∈ F: we connect e into edge ⟨ ⃗i, i⟩ with ⃗i = fp(i|m) and add an additional internal node j = pop(F ,A).
Here F (m′) = F (m) and

E(m′) = E(m)\{e, ⟨ ⃗i, i⟩} ∪ {⟨ ⃗i, j⟩, ⟨j, i⟩, ⟨j, e2⟩}.

Set L(m′) = L(m) and make the following changes as needed. If Le1(m) ̸= ∅ then set Le1(m
′) = Le1(m) \ {e1}.

If L ⃗i(m) ̸= ∅ (parent is S), suppose L ⃗i(m) = (j1, . . . , i, . . . , jk). Set L ⃗j(m
′) = (j1, . . . , j, . . . , jk) and Lj(m

′) = ∅
(new child is P ). Finally, if L ⃗i(m) = ∅ (parent is P ), take Lj(m) ∼ U{(i, e2), (e2, i)} (new child is S).

3. i = 0: connect e into the edge above the root, r = fc(0|m), r ∈ A and add an additional internal node j = pop(F ,A)
which will root m′.
Here F (m′) = F (m) and

E(m′) = E(m)\e ∪ {⟨0, j⟩, ⟨j, r⟩, ⟨j, e2⟩}.

Set L(m′) = L(m) and make the following changes as needed. If Le1(m) ̸= ∅ then set Le1(m
′) = Le1(m)\{e1}.

If Lr(m) ̸= ∅ (child is S), we define Lj(m
′) = ∅ (new node is P ). Otherwise, if Lr(m) = ∅ (child is P ), we take

Lj(m
′) ∼ U{(r, e2), (e2, r)} (new node is S).

Figure C.2 illustrates an example edge operation on a MDT. Moving an edge e = ⟨e1, e2⟩ may increase or decrease the
number of edges and internal nodes. For example, if in case (1) fc(e1|m) = {e2, e⃗2}, moving e replaces ⟨ ⃗e1, e1⟩, ⟨e1, e⃗2⟩
with ⟨ ⃗e1, e⃗2⟩ and e1 is removed. If e is attached in an existing internal node i ∈ A then the number of nodes and edges each
go down by one.

If we take e ∼ U(E−0(m)) and i ∼ U [(F ∪A) \ {e1, e2}] and set m′ = m◁e (e, i) as given in Defn. C.2 then the proposal
probability ρ(m′|m) depends on e and i. A simple generic expression is

ρ(m′|m) =
1

|E(m)|
× 1

|F ∪ A| − 2
× ρm,m′ (C.1)

where ρm,m′ is given as follows: (Case 1) ρm,m′ = 1/(ci + 1) if i is internal and has ci child nodes and type S (e1 must be
placed in the stack below i) and ρm,m′ = 1 if i is internal and type P ; (Case 2) ρm,m′ = 1/2 if i is a leaf and ⃗i is type P (as
i and e2 must be stacked) and ρm,m′ = 1 if i is leaf and ⃗i is type S; (Case 3) ρm,m′ = 1/2 if i = 0 and r = fc(0|m) is type
P (as r and e2 must be stacked) and ρm,m′ = 1 if i = 0 and r is type S.

Not every operation is admissible: if fc(e1|m) = {e2, e⃗2} and e⃗2 is not a leaf, then e⃗2 and ⃗e1 must have the same type.
An edge ⟨ ⃗e1, e⃗2⟩ would then connect two internal nodes of the same type and so m′ ̸∈ M[n]. In Eqn. C.1, ρ(m′|m) has a
simple form because we do not “keep trying till we get m′ ∈M[n]”. We know m′ ̸∈ M[n] is a possible outcome for m′, but
we don’t try to write down ρ(m′|m) in this case as these proposals will be rejected without the need to evaluate ρ(m′|m).
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Figure C.2: Some possible operations on the MDT m1 from Fig. 4. The edge e connected to leaf for actor 2 is reconnected
to leaf node i1 (where it must give a new P node as its neighbor, the parent of i1, is S), to ancestral node i2 (and is randomly
allocated position 3 among the nodes stacked below the S-node i2), and to node 0 (where it is added above the root as a
P -node, as its neighbor the ex-root node is S).

Some operations are inadmissible, so we need to check our proposal defines an irreducible Markov chain on its own, or add
other operations.

Proposition 8 (Posterior Marginals) Consider the MDT Markov chain Mk, k ≥ 0 with M0 ∈M[n] formed by repeated
random updates defined as follows: let Mt = m; let e ∼ U(E−0(m)) and i ∼ U [(F ∪A) \ {e1, e2}]; Let m′ = m ◁e (e, i)
be given by Defn. C.2; if m′ ∈M[n] set Mk+1 = m′ and otherwise Mk+1 = m. This proposal-chain is irreducible.

Proof C.1 (Proposition 8) Consider the two building-block MDT’s ma,mb shown in the top row of Fig. C.3. These have a
single internal node with n leaves. Any MDT m ∈M[n] has a root node which must be of type P or S. We show that every
MDT with a root of type P (or S) intercommunicates with ma (respectively mb) and that ma intercommunicates with mb

and henceM[n] is a closed communicating class.
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Figure C.3: Four building-block MDT’s.

We first show ma → mb. We use the 0 node but there are many paths. Let ra be the label of the root node in ma and
rb in mb. Suppose Lrb(mb) = (i1, ..., in) gives the stacking data for the children of the S node rb. Label nodes of
ma so fc(ra|ma) = {i1, ..., in} and Fik(ma) = Fik(mb), k = 1, ..., n. Now take e = ⟨ra, i1⟩ in ma and i = 0 and
set m = ma ◁e (e, i). This creates a new node j of type S above the root. Let the stacking data of this new node be



Lj(m) = (i1, r). Now apply m← m ◁e (⟨r, ik⟩, j) for each k = 2, ..., n− 1, adding ik into position k in the list Lj(m).
When we do the last node k = n − 1, node r is removed and j connects directly to in with in in the correct position in
Lj(m). This gives m = mb. All these operations are admissible and have non-zero probability. The same scheme can be
reversed, so we can take a MDT of type mb and reorder the entries in Lrb(mb) by going to ma and back, placing the leaves
in any desired order in Lj(m) as we pass back.

Now take a general m∗ ∈ M[n]. Its root r∗ matches ma or mb by type. The root of m∗ partitions the leaves into K sets
{s1, ..., sK} where K is the number of child nodes of r∗ and sk = (sk,1, ..., sk,ck), k = 1, ...,K.

If the root type of m∗ is S then these partitions are ordered. In this case we permute the leaves of mb so that Lrb(mb) =
(s1,1, ..., sK,cK ). Let m = mb with root r. If i ∈ sk′ is a child of r∗ which is a leaf then sk′ = {i} and we are done. All the
other partitions sk correspond to child nodes ik of r∗ which are P nodes. We pull the edges ⟨r, i⟩, i ∈ sk of m down one at
a time to create a P node with child nodes sk matching the leaf-descendants of ik in m∗. This gives a new m matching m∗

down to all nodes of depth less than or equal to two. The passage from mb to the new m = md is illustrated bottom right in
Fig. C.3.

If the root type of m∗ is P then the partitions are {s1, ..., sK} are unordered. The same process is repeated for m = ma,
pulling down the edges ⟨r, i⟩, i ∈ sk one at a time to build an S-node with leaves sk matching the leaf-descendants of ik
and their order in m∗.

The process can now be repeated, as the problem of changing an MDT m so that it matches m∗ to depth three when it
already matches m∗ to depth two is the problem of changing the MDT’s in m rooted by i1, ..., iK to match the corresponding
subtrees of m∗ to depth two. This task is the same as the original task and we have shown we can match to depth two. Since
we can always increase the depth of the match and the depth is finite, we can change ma or mb to match m∗.

It is straightforward to check that these processes can be reversed and so the MDT proposal Markov chain formed by
repeated edge operation defined in Defn. C.2 is irreducible.

Our MCMC algorithm for MDT with the QJ-B observation model is given in Algorithm C.2, omitting the standard q, p and
ϕ updates. The algorithm for QJ-U model omits the ϕ-update.

Algorithm C.2 The MCMC algorithm for the MDT with QJ-B observation model at step k.

Require: y,m(k−1)=m, q(k−1)=q, p(k−1)=p, ϕ(k−1)=ϕ with m=(F (m), E(m), L(m)), m∈M[n]

Ensure: m(k) ∼ π(m|y, q, p, ϕ),
q(k) ∼ π(q|y,m(k), p, ϕ),

p(k) ∼ π(p|y,m(k), q(k), ϕ),

ϕ(k) ∼ π(ϕ|y,m(k), q(k), p(k))

Update for m
m′ ← m(k−1) ← m
Sample e ∼ U(E−0(m)) and i ∼ U [(F ∪A)\{e1, e2}]
m′ ← m ◁e (e, i)
if m′ ∈M[n] then

η1 ←
Q(y|v(m′), p, ϕ)πM[n]

(m′|q)ρ(m|m′)

Q(y|v(m), p, ϕ)πM[n]
(m|q)ρ(m′|m)

if U(0, 1) ≤ η1 then
m← m(k) ← m′

end if
end if

Updates for q, p and ϕ omitted

The queue-jumping probability p > 0 (almost surely) so the Hastings ratio η > 0 in Algorithm C.2 is not zero for all
m,m′ ∈M[n] connected by an update. Since the proposal chain Mk, k ≥ 0 in Proposition 8 is irreducible, it follows that
our MDT-MCMC is irreducible.



D DATA BACKGROUND AND ADDITIONAL RESULTS

D.1 THE ‘ROYAL ACTA’ DATA

The “Royal Acta” data is a database made for “The Charters of William II and Henry I” project by the late Professor Richard
Sharpe and Dr Nicholas Karn [Sharpe et al., 2014]. It collects dated witness lists from legal documents in England and
Wales in the eleventh and twelfth century. Each witness list is dated though the dating is sometimes uncertain (a few years is
typical). Lower and upper bounds on the date of a list are part of the data. Each individual is associated with a profession
(title) such as Queen, Archbishop, etc. We assign witnesses with no title as “other”. Fig. D.1 gives an example of such
witness list. The data records different number of lists with various lengths over time - summarised in Figure D.2.

Figure D.1: An example witness list from 1080, extracted from the “Royal Acta” data. The witnesses names are entered by a
clerk in order from top to bottom.

Figure D.2: The midpoint of list time range v.s. list range. Each red dot is a list of length y created in a time range midpointed
by x. The bars represents the length of the longest list at time x.

In Section 5, we limit the number of lists per actor (LPA) participate in to be at least 5 for ease of presentation. However,
it is possible to fit our model on much larger datasets. We chose time periods with a large number of lists with relatively
long lengths - 1080-1084 and 1136-1138, and extract the lists with 1LPA. Table D.1 summarises the data in the different
experiments. In Section D.1.1, we carry out Bayesian inference on the 1LPA datasets. In Sections D.1.2 and D.1.3, we
present MCMC traceplots and effective sample sizes for MCMC samples of key parameters in the analysis on 5LPA data,
from the VSP/QJ-U and VSP/QJ-B models respectively.

5LPA 1LPA

80-84 26-30 34-38 34-38(b) 80-84 34-38

n 17 13 49 14 181 216
N 20 30 82 37 27 95

max(y) 17 8 35 14 45 55

Table D.1: Data content for time periods of interest including the number of actors (n), number of lists (N ) and the length
of their longest list (max(y)). Data analysed with both VSP/QJ-U and VSP/QJ-B are marked in blue. The 1134-1138
bishop-only data is 34-38(b).



D.1.1 Inference Results on List Data with 1LPA (QJ-U Observation Model)

Using the full-data lists (allowing LPA = 1), we arrive at much larger datasets with 181 actors (1080-1084) and 216 actors
(1134-1138) respectively, as is summarised in table D.1. Though QJ-B observation model has higher flexibility, it is rather
computationally demanding when we move to large datasets. In this section, we fit the VSP/QJ-U model on both data lists
instead.

We perform 50,000 MCMC iterations on 1080-1084 (1LPA) data and 48,000 iterations on 1134-1138 (1LPA) data. For
details of the MCMC algorithm, see Algorithm C.1. Every 10 steps is recorded from the MCMC. The effective sample sizes
and traceplots for the key parameters p and P (S) = q from the MCMC samples are shown in Table D.2 and Figure D.3.
The MCMC on the 1080-1084 (1LPA) data displays fair mixing, however, the MCMC for 1134-1138 (1LPA) is yet to
be fully mixed. We are aware the effective sample sizes are relatively small, here we only present the current results as a
demonstration.

ESS

Parameter 1080-1084 1134-1138

P (S) 41 25
p 32 47

Table D.2: The effective sample sizes for P (S) and error probability p on four datasets with 1LPA.

(a) 1080-1084 with 1 LPA (b) 1134-1138 with 1 LPA

Figure D.3: Traceplots for log-likelihood, P (S) and error probability p for the two data sets of interest here - 1080-1084 (a)
and 1134-1138 (b) with 1 LPA data.

We present the consensus orders V con(ϵ) in Figure D.4 for 1080-1084 (1LPA) and Figure D.5 for 1134-1138 (1LPA). We
choose a threshold of ϵ = 0.6 in order to represent readable consensus orders graphically. Considering the large number of
actors in both time periods, we also extract the non-’other’ actors and reconstruct the consensus orders in Figure D.6 for
1080-1084 (1LPA) and Figure D.7 for 1134-1138 (1LPA).

A clear order relation for king ≻ queen ≻ archbishop ≻ bishop is observed in both time periods. The actors roughly appear
in the “group” of their professions.



Figure D.4: The consensus order for 1080-1084 (1LPA) data in a VSP/QJ-U analysis.

Figure D.6: The consensus order for 1080-1084 (1LPA) data without ‘other’ actors in a VSP/QJ-U analysis.



Figure D.5: The consensus order for 1134-1138 (1LPA) data in a VSP/QJ-U analysis.

Figure D.7: The consensus order for 1134-1138 (1LPA) data without ‘other’ actors in a VSP/QJ-U analysis.



Table D.3 presents the average rankings of different professions for 1080-1084 (1LPA) and 1134-1138 (1LPA). The average
rankings support our observations above. Interestingly, abbots tend to be ranked higher during 1080-1084 than 1134-1138,
and the archdeacon is ranked higher in 1134-1138 than 1080-1084.

Average Rank

Profession 1080-1084 1134-1138

King 1.21 (0.007) 3.73 (0.02)
Queen 4.81 (0.03) 4.97 (0.02)

Archbishop 9.70 (0.05) 8.89 (0.04)
Empress NA 16.0 (0.07)

Duke 15.4 (0.08) NA
Bishop 18.7 (0.10) 20.8 (0.10)

Son of King 18.8 (0.10) 24.0 (0.11)
Seneschal NA 28.0 (0.13)

Abbot 32.8 (0.18) 88.0 (0.41)
Countess 39.0 (0.22) NA

Count 43.1 (0.24) 33 (0.15)
Son of Earl 43.5 (0.24) NA

Earl 44.3 (0.24) 44.3 (0.20)
Dapifer 44.5 (0.25) 81.3 (0.38)

Archdeacon 48.7 (0.27) 35.3 (0.16)
Chancellor NA 43.6 (0.20)

Other 50.1 (0.28) 79.2 (0.37)
Chaplain 50.3 (0.28) 44.7 (0.21)

Baron NA 78.4 (0.36)
Sheriff 60.5 (0.33) 95.7 (0.44)

Chamberlain NA 101 (0.47)
Clerk NA 114 (0.53)

Master of the temple NA 137 (0.63)
Marshal NA 150 (0.70)

Table D.3: The professions and their average rankings for 1080-1084 (1LPA) and 1134-1138 (1LPA). NA means the
profession of interest does not appear in this time period.

Posterior distributions for the key parameters in Figure D.8 show that witness lists in 1080-1084 tend to respect a stronger
social hierarchy than in 1134-1138 with larger P (S). The error probabilities p are relatively smaller for witness lists in
1134-1138. This agrees with the results for 5LPA presented in Fig. 5, Section 5.2. The prior and posterior VSP depth
distributions are shown in Fig. D.9. Despite the roughly uniform prior distribution over the VSP depth, the posterior depths
appear to concentrate around 75 for 1080-1084 and 90 for 1134-1138.

Figure D.8: Prior (grey line) and posterior distributions for q = P (S) (left) and error probability p (right) for the time
periods 1080-1084 (1LPA) (blue) and 1134-1138 (1LPA) (green) in a VSP/QJ-U analysis.



Figure D.9: The prior (grey) and posterior (blue) VSP depth distribution for 1080-1084 (1LPA) (left) and 1134-1138 (1LPA)
(right) in a VSP/QJ-U analysis.

D.1.2 Inference Results on List Data with 5LPA (QJ-U Observation Model)

Fig. 6 and Fig. 7 (top-row) show the consensus orders V con for 1134-1138 (5LPA), 1080-1084 (5LPA), 1126-1130 (5LPA)
and 1134-1138 (bishop) (5LPA) under the VSP/QJ-U model. The MCMC converge well. Here we estimate and report
effective sample sizes (ESS, Table D.4) and inspect MCMC traces (Fig. D.10). Both the high ESSs and the traceplots
indicate good convergence to the posterior distribution.

ESS

Parameter 1080-1084 1126-1130 1134-1138 1134-1138(b)

P (S) 1676 1477 95 648
p 1297 1426 262 586

Table D.4: The effective sample sizes for P (S) and error probability p on the four datasets with 5LPA and QJ-U.

(a) 1080-1084 with 5 LPA (b) 1126-1130 with 5 LPA

(c) 1134-1138 with 5 LPA (d) 1134-1138(b) with 5 LPA

Figure D.10: Traceplots for log-likelihood, P (S) and error probability p for the four list data of interest - 1080-1084 (a) and
1126-1130 (b), 1134-1138 (c) and 1134-1138 (bishops) (d) with 5 LPA data and a VSP/QJ-U analysis.



Figure D.11: The prior (grey) and posterior (blue) VSP depth distribution for 1180-1184 (top-left), 1126-1130 (top-right),
1134-1138 (bottom-left) and 1134-1138(b) (bottom-right) with 5LPA and QJ-U.

The posterior distributions for both p and q = P (S) are shown in Fig. 8. We also present the posterior depth-distributions
for the datasets in Figure D.11. It appears that 1080-1084 (5LPA) admits the most rigid social hierarchy, while 1134-1138
(5LPA) has less hierarchy with respect to n. The average rankings per profession are reported in Table D.5. Similar to the
consensus orders (Fig. 6 and Fig. 7), king ≻ queen ≻ archbishop ≻ bishop. The three time periods show similar hierarchical
structure, although the power gap between count and earl is relatively narrower in 1126-1130.

Average Rank

Profession 1080-1084 1126-1130 1134-1138

King 1.02 (0.06) NA 1.01 (0.02)
Queen 2.15 (0.13) NA 2.01 (0.04)
Duke 2.79 (0.16) NA NA

Son of King 4.63 (0.27) NA 3.11 (0.06)
Archbishop 4.45 (0.26) 1 (0.08) 4.55 (0.09)

Bishop 8.25 (0.49) 4.02 (0.31) 11.10 (0.23)
Chancellor NA NA 21.40 (0.44)

Count 10.90 (0.64) 5.92 (0.45) 24.00 (0.49)
Earl 12.20 (0.72) 5.98 (0.46) 28.10 (0.57)

Other 15.30 (0.90) 8.80 (0.68) 33.10 (0.68)

Table D.5: The professions and their average rankings for all three time periods with 5LPA and QJ-U. NA means the
profession of interest does not appear in this time period.



As discussed, we perform reconstruction accuracy tests on each dataset to assess the reliability of our estimations. This is
done by taking representative parameters (the last sample state of the parameters sampled from the corresponding posterior),
and generating synthetic data with the same list-memberships and lengths as the real data. We carry out or standard analysis
on these synthetic datasets, fitting the same model used to simulate the data, and construct the corresponding consensus
orders V con(ϵ) with ϵ ∈ [0, 1]. The results are summarised using receiver operator characteristic (ROC) curves. The ROC
curve shows the relation between the proportion of inferred false-positive order relations (x-axis) and true-positive relations
(y-axis) for different ϵ. The existence of a ϵ that gives high true-positive and low false-positive reconstructed fraction means
reconstruction accuracy is high.

Fig. D.12 shows ROC curves for such a reconstruction test on the 1080-1084 (5LPA), 1126-1130 (5LPA) and 1134-1138
(5LPA) data in a VSP/QJ-U model. The proportion of inferred false-positive (x-axis) and true-positive (y-axis) relations
increases with decreasing ϵ from (0, 0) at ϵ = 1 (the consensus order is empty) to (1, 1) at ϵ = 0 (complete graph). For all
time periods, we observe ϵ that gives high true-positive and low false-positive reconstructed fraction, indicating our model’s
high reliability to reconstruct relations.

Figure D.12: Receiver operating characteristic (ROC) curves for synthetic data using 1080-1084, 26-30 and 34-38 list
membership structures with 5LPA and QJ-U.

D.1.3 Inference Results on List Data with 5LPA (QJ-B Observation Model)

In this section, we fit the VSP/QJ-B data on the datasets 1080-1084 (5LPA), 1126-1130 (5LPA) and 1134-1138 (bishop)
(5LPA). See algorithm C.1 for the MCMC details. Traceplots for the log-likelihood, P (S), error probability p and bi-
directional top/bottom insertion probability ϕ are all presented in Figure D.13. They all display reasonable convergence. In
table D.6 we estimate effective sample sizes (ESS) for key parameters. Mixing for the key parameters are fair during time
period 1080-1084 and 1134-1138 (bishop), and the agreement (to some extent) to the analyses in Section D.1.2 supports our
conclusion that the samples are representative.

ESS

Parameter 1080-1084 1126-1130 1134-1138(b)

P (S) 47 1875 121
p 61 3401 197
ϕ 69 3428 728

Table D.6: The effective sample sizes for P (S) and error probability p on the three datasets with 5LPA fitting VSP/QJ-B.

Consensus orders V con(ϵ) with ϵ = 0.5 are shown in Fig. 7 (bottom-row). We report the average rankings per profession for
1080-1084 (5LPA) and 1126-1130 (5LPA) in Table D.7. The posterior distributions for the key parameters p, q = P (S) and
ϕ are shown in Fig. 8. Here we display the posterior depth distribution for the three time periods in Fig. D.14. All periods
favour higher VSP depths. By comparing the consensus orders, the bi-directional queue-jumping model seems to fit a more
rigid social hierarchy than the queue-jumping-up model, especially during periods 1126-1130 and 1134-1138. This is also
illustrated by higher posterior means on q = P (S) for both the 1126-1130 (5LPA) and 1134-1138 (bishop) (5LPA) data. It
is surprising that earl ≻ count in 1126-1130 under the QJ-B model, although the opposite is observed under QJ-U. Both
QJ-U and QJ-B models conclude similar posterior distribution on p, the error probability in the data-lists. By inspecting the



(a) 1080-1084 with 5 LPA and QJ-B (b) 1126-1130 with 5 LPA (c) 1134-1138(b) with 5 LPA

Figure D.13: Traceplots for the log-likelihood, P (S) and error probability p for the three list data sets of interest - 1080-1084
(a) and 1126-1130 (b) and 1134-1138 (bishops) (c) with 5LPA data and a VSP/QJ-B analysis.

posterior distributions on ϕ, it appears that QJ-D is slightly preferred for 1080-1084 (5LPA) while QJ-U/QJ-B is preferred
for 1134-1138 (bishop) (5LPA). This is justified by the Bayes Factors in section 5.

Figure D.14: The prior (grey) and posterior (blue) VSP depth distribution for 1180-1184 (left), 1126-1130 (middle) and
1134-1138(b) (right) with 5LPA data in a VSP/QJ-B analysis.

Average Rank

Profession 1080-1084 1126-1130

King 1.03 (0.06) NA
Queen 1.95 (0.11) NA
Duke 4.29 (0.25) NA

Son of King 6.18 (0.36) NA
Archbishop 3.88 (0.23) 1 (0.08)

Bishop 8.38 (0.49) 3.99 (0.31)
Earl 12.40 (0.73) 6.93 (0.53)

Count 13.00(0.77) 8.94 (0.69)
Other 15.90 (0.94) 10.40 (0.80)

Table D.7: The professions and their average rankings for all three time periods with 5LPA data and QJ-B. NA means the
profession of interest does not appear in this time period.

Figure D.15 displays ROC curves from a reconstruction accuracy test using VSP/QJ-B to simulate and fit synthetic data
matching the 1126-1130 and 1134-1138 5LPA data, as described in Section 5. Again, we see the proportion of inferred
false-positive and true-positive relations increasing while decreasing ϵ from (0, 0) at ϵ = 1 to (1, 1) at ϵ = 0. The ϵ’s that
give high true-positive and low false-positive reconstruction fraction can be easily identified in Fig. D.15. This indicates our
model’s high accuracy in reconstruction order relations.



Figure D.15: Receiver operating characteristic (ROC) curves for synthetic data using 1126-1130 and 1134-1138 (bishop) list
membership structures with 5LPA and QJ-B.

D.2 THE FORMULA 1 RACE DATA

The Formula 1 race data (2017 - 2022) F1D records information about every formula 1 race in the past five seasons. The
data gives the top 20 drivers in each Grand Prix race in each season. One typical list, for the British Grand Prix (Silverstone
Circuit) in 2021, is as follows

1 – HAM, 2 – LEC, 3 – BOT, 4 – NOR, 5 – RIC, 6 – SAI, 7 – ALO, 8 – STR, 9 – OCO, 10 – TSU, 11 – GAS, 12 – RUS, 13 –
GIO, 14 – LAT, 15 – RAI, 16 – PER, 17 – MAZ, 18 – MSC, R – VET, R – VER.

Each abbreviation is a unique code for a driver (see table D.8), e.g. ‘HAM’ stands for Lewis Hamilton, who was the winner
of this race. The drivers are ordered based on their finishing position. The label ‘R’ indicates special circumstances, e.g.
collision, accident, retirement, etc.

We are interested in the order relations between these drivers and construct a VSP map of their performance in a specific
season. This is an intersting test of the method as a heuristic model (in the sense that Plackett-Luce and Mallows are in
general heuristic). There is no constraint other than car speed and skill to stop one driver overcoming another so it is not
clear that the order relations we recover correspond to any element of reality. One feature that is characteristic of a PO-style
analysis (such as ours with VSPs) is that the race resembles a queue in which drivers exchange places subject to skill and
car-speed. In a race, a driver can fall down the order with a certain probability due to unexpected circumstances (poor tyre
management, problems in the pits, small collisions, time penalties etc). However, there is no obvious mechanism promoting
a driver up the race order. We therefore believe the QJ-D observation model is natural.

In this analysis, we take a snapshot of 2021, assuming relative car-quality and skill are roughly constant over a year. The
Formula 1 (F1) 2021 data consists of 22 lists corresponding to the 22 Grand Prix races. Each list is has at most 20 elements.
We disregard the ‘R’ positions, so the lists are of unequal length. There are a total of 21 drivers participating in season 2021.
We assign each of them a unique Driver ID, listed in table D.8.

We analyse the data-lists from season 2021 between the 21 actors using the VSP/QJ-D model. The consensus order for the
drivers in this season is shown in Fig. D.16. Both Lewis Hamilton and Max Verstappen are ranked at top of the consensus
VSP for the 2021 season, with high posterior probability (more than 0.9).

The posterior distributions for individual parameters and the depth are shown in Fig. D.17. The effective sample sizes are
567 for q = P (S) and 130 for p. The posterior for P (S) concentrates at around 0.5, showing a relatively relaxed ranking
relation. The posterior distribution for p concentrates at a lower value at 0.15. This suggests the VSP model relatively
accurately represents the strength of each driver-car pairing. The VSP depths are relatively low for this data. We are not
observing a ranking as deep as the social hierarchy for witnesses in “Royal Acta”.



Driver ID Code Name DOB Nationality

1 HAM Lewis Hamilton 07/01/85 British
2 ALO Fernando Alonso 29/07/81 Spanish
3 RAI Kimi Raikonnen 17/10/79 Finnish
4 KUB Robert Kubica 07/12/84 Polish
5 VET Sebastian Vettel 03/07/87 German
6 GAS Pierre Gasly 07/02/96 French
7 PER Sergio Perez 26/01/90 Mexican
8 RIC Daniel Ricciardo 01/07/89 Australian
9 BOT Valtteri Bottas 28/08/89 Finnish

10 VER Max Verstappen 30/09/97 Dutch
11 SAI Carlos Sainz 01/09/94 Spanish
12 OCO Esteban Ocon 17/9/96 French
13 STR Lance Stroll 29/10/98 Canadian
14 GIO Antonio Giovinazzi 14/12/93 Italian
15 LEC Charles Leclerc 16/10/97 Monegasque
16 NOR Lando Norris 13/11/99 British
17 RUS George Russell 15/02/98 British
18 LAT Nicholas Latifi 29/06/95 Canadian
19 TSU Yuki Tsunoda 11/05/00 Japanese
20 MAZ Nikita Mazepin 02/03/99 Russian
21 MSC Mick Schumacher 22/03/99 German

Table D.8: The list of drivers in Formula 1 season 2021. Each driver is assigned a unique ‘Code’ and ‘Driver ID’ in our
analysis. We also include further information of the drivers, including their date of birth (‘DOB’) and ‘Nationality’.
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Figure D.16: VSP/QJ-D model. Consensus order for Formula 1 (season 2021) data. Significant/strong order relations are
indicated by black/red edges respectively.



Figure D.17: The prior (grey) and posterior (blue) distributions for P (S) (left), p (middle) and depth (right) for the Formula
1 (season 2021) data.

E MODEL COMPARISON

E.1 MODEL COMPARISON WITH PLACKETT-LUCE AND MALLOWS

The Plackett-Luce model, the Mallows model, and their mixture-models are two categories of model widely used for ranking
and partial ranking. In this section, we compare the VSP/QJ-U and VSP/QJ-B models with the two PL-models1 and the
two Mallows models2 using the WAIC. This estimates the expected log pointwise predictive density (ELPD, Vehtari et al.
[2017]). It is a principled criterion for model comparison which is relatively easily estimated.

The Plackett-Luce model defines a distribution over ranked lists yi ∈ P[n], i ∈ [N ] with actor attributes λ = (λ1, . . . , λn) ∈
Rn. Taking into account the list membership sets oi, i ∈ [N ], the likelihood is

PL(y|λ) =
N∏
i=1

ni∏
j=1

e
λyi,oj∑ni

k=j e
λyi,ok

. (E.1)

The Plackett-Luce mixture assumes the lists are sampled from a heterogeneous population composed of D sub-populations.
Each mixture component has a Plackett-Luce distribution over lists with actor attributes λ(d) ∈ Rn, d ∈ [D]. A finite
mixture of Plackett-Luce models was proposed as a robust model for ranked data with incomplete lists in Mollica and
Tardella [2017, 2020]. Let Λ = (λ(d))d∈[D] ∈ Rn×D give the matrix of actor attributes and ω = (ω1, . . . , ωD) give the
weights of mixture components with

∑D
d=1 ωd = 1. The D-component mixture Plackett-Luce model likelihood is

PLmix(y|Λ, ω) =
N∏
i=1

D∑
d=1

ωdPL(yi|λ(d)). (E.2)

Non-informative priors suggested by Mollica and Tardella [2020] are assigned with eλ
(d)
j ∼ Gamma(1, 0.001) for j ∈ [n]

and d ∈ [D] and ω1, . . . , ωD ∼ Dir(1, . . . , 1).

The Mallows model Mallows [1957] is typically controlled by a location parameter (consensus ranking) ρ ∈ Pn and a
scaling parameter α ∈ (0,∞). Letting d(·, ·) : Pn ×Pn → R+ be a discrepancy function between two permutations, the
Mallows model is

Pd(y|ρ, α) =
N∏
i=1

1

Zn(α)
e−

α
n d(ρ,yi), (E.3)

where Zn(α) :=
∑

y∈Pn
e−

α
n d(ρ,y) is the normalising constant. A typical distance choice is the Kendall’s tau distance.

Let σ(l, a) = {k ∈ [n] : lk = a}. The Kendall’s tau distance counts the number of pairwise disagreements between two
permutations, d(y, l) =

∑
i<j 1σ(l,yi)>σ(l,yj), and this gives a tractable normalising constant Zn(α). We use the Mallows

ϕ model in our model comparison. A truncated exponential prior is specified for α and a uniform prior π(ρ) on Pn is

1We use the MCMC sampler available in the R-package PLmix Mollica and Tardella [2017]. This uses a data augmentation scheme
due to Caron and Doucet [2012].

2We use the MCMC sampler available in the R-package BayesMallows Sørensen et al. [2020].



taken for ρ, as is suggested in Sørensen et al. [2020] which implements the MCMC proposed in Vitelli et al. [2018]. The
BayesMallows R-package deals with partial ranking by applying data augmentation techniques before fitting the full
Mallows model.

Similar to the Plackett-Luce Mixture, the finite Mallows mixture allows for heterogeneity. Let {ρd, αd}d=1,...,D be the set
of parameters for cluster d and let z1, . . . , zN ∈ {1, . . . , D} be the cluster labels that assign each list to one cluster. The
D-component mixture Mallows likelihood is

P (y|{ρd, αd}d=1,...,D, {zi}i=1,...,N ) =

N∏
i=1

1

Zn(αzi)
e−

αzi
n d(yi,ρzi

). (E.4)

Independent truncated exponential priors and independent uniform priors are specified for α and ρ respectively. Following
Sørensen et al. [2020], z1, . . . , zN follow a uniform multinomial distribution and are assumed conditionally independent
given the cluster parameters.

The ELPD measures the posterior predictive accuracy of a model. It is a natural choice for goodness-of-fit and model
comparison. We use the WAIC to estimate the ELPD for a generic model (“A” say). The estimator resembles the AIC and
BIC,

êlpdwaic(A|y) =
N∑
i=1

log pA(yi|y)− pwaic, (E.5)

where

pA(yi|y) =
∫
pA(yi|θ)pA(θ|y)dθ (E.6)

with θ representing all parameter in model A. The predictive probability in Eqn. E.6 is estimated using MCMC samples. For
a MCMC sample (after burn-in) of length K targeting pA(θ|y),

p̂A(yi|y) =
1

k

∑
k∈[K]

pA(yi|θ(k)).

The term pwaic is the effective number of parameters. If V K
k=1ak = 1

K−1

∑K
k=1(ak − ā)2, then pwaic is estimated using

p̂waic =
∑N

i=1 V
K
k=1(log(p(yi|θ(k)))). The waic function from R package loo [Vehtari et al., 2017] is used for elpdwaic

estimation.

The PLmix package in R provides a range of model selection criterion to select the optimal number of mixture components
D. We use the Deviation Information Criterion to select the optimal model on a given data. Similar model selection
procedures are implemented for the Mallows model.

E.1.1 Model comparison on the ‘Royal Acta’ Data

Table E.1 summarises the estimated elpdwaic for the six models, on three signature dataset - 1080-1084, 1126-1130 and
1134-1138(b) (5PLA). The VSP/QJ models outperforms the PL, PL-mixture, Mallows and Mallows moxture models
significantly in all time periods. The VSP/QJ-B model is relatively favourable compared to VSP/QJ-U. We note that we
made no careful choice of priors on the PL models and the Mallows models. Non-informative priors are adapted in both
cases so it is possible the performance of these models could be improved. However, they have a long way to go to catch up.

We estimate consensus orders for both the PL and PL-Mixture models. This is done by first sampling from the posterior
distribution of ranking(s). We turn the rankings into partial order representations. For a PL-mixture, we calculate the
intersection order that records the order relation appearing in all rankings. The consensus order is then constructed from this
‘posterior distribution of partial orders’. The estimated consensus orders for the PL and PL-Mixture (D=2) models are shown
in Figure E.1.



elpdwaic (se)

Model 1080-1084 1126-1130 1134-1138(b)

VSP/QJ-B -103.5 (26.0) -28.6 (9.6) -72.2 (21.9)
VSP/QJ-U -197.2 (77.8) -37.8 (10.8) -86.3 (27.6)

PL -316.5 (38.5) -270.4 (25.8) -336.2 (35.6)
PL-Mix2 -291.1 (37.2) -267.6 (24.7) -318.6 (36.3)
Mallows -601.9 (6.8) -624.5 (3.0) -770.2 (7.6)

Mallows-Mix -613.9 (4.1) (D=4) -604.7 (1.9) (D=6) -820.7 (4.8) (D=4)

Table E.1: The estimated elpdwaic (se) under six different models - VSP/QJ-U, VSP/QJ-B, Plackett-Luce (PL) and 2-mixture
Plackett-Luce (PL-Mix2) model.

Archbishop

Bishop

Earl
Count
Other

Figure E.1: The estimated consensus orders from the Plackett-Luce (left) and PL-Mixture (D=2) (right) models on the
1126-1130 data. Red edges indicate order relations that posterior probabilities are higher than 0.9.

Both the PL and PL-Mixture (D=2) model are not designed to reconstruct partial orders in the way we use it here. It was
of interest to see if they did capture the same or similar relations to those we find with VSP models. This is not the case.
Although we don’t know the true partial order, we do expect a fairly deep social hierarchy in the 12th century. Neither model
reflects such a feature.

E.1.2 Model comparison on the Formula 1 Race Data

We compare the VSP/QJ-D model with the Placket-Luce and Mallows model, and their mixtures on the Formula 1 dataset.
The comparison result using elpdwaic is shown in table E.2. The VSP/QJ-D model outperforms both the Plackett-Luce, the
Mallows and their mixtures significantly.

Model elpdwaic (se)

VSP/QJ-D -597.1 (25.2)
PL -847.4 (18.6)

PL-Mix2 -821.6 (17.4)
Mallows -973.7 (3.4)

Mallows-Mix3 -963.5 (3.9)

Table E.2: The estimated elpdwaic (se) under five different models for the Formula 1 Racing Data - VSP/QJ-D, Plackett-Luce
(PL) and 2-mixture Plackett-Luce (PL-Mix2), Mallows and 3-Mixture Mallows (Mallows-Mix3) model.

E.2 MODEL COMPARISON VSP V. BUCKET ORDER

Bayes factors B01 for bucket orders (see Section 1 over VSPs can be estimated using the Savage-Dickey Ratio. Results
are summarized in Table E.3 for both models QJ-U and QJ-B and both 1LPA and 5LPA datasets. Numbers above one
support bucket orders. Numbers below one support VSPs. For 1PLA dataset, we observe strong support for VSPs. For
5LPA data there is a very slight preference for bucket orders “barely worth mentioning” over QJ-B. Presumably the extra
model complexity of QJ-B is costing something here. For QJ-U and the period 1180-84 there is no strong preference - the



consensus order in Fig. 7 is “nearly” a bucket order. However, for QJ-U, 1126-30 and 1134-38 and 1134-38(b) the consensus
orders are more complex and VSP’s are strongly preferred over Bucket orders.

Bayes Factor B01

Dataset VSP/QJ-U VSP/QJ-B

1080-1084 1.73 2.83
1126-1130 0.18 2.83
1134-1138 0.00 NA

1134-1138(b) 0.33 2.59

Bayes Factor B01

Dataset VSP/QJ-U

1080-1084 0.00

1134-1138 0.00

Table E.3: The Bayes factors B01 for ‘bucket’ order over VSP on all datasets 5LPA (Left) and 1LPA (Right).

E.3 MODEL COMPARISON WITH THE LATENT PARTIAL ORDER MODEL

Nicholls and Muir Watt [2011] proposes a latent partial order model, which can be applied to fit general partial orders to
rank-order list-data. Though their method is not scalable to datasets of more than around 20 actors, we are interested in
comparing the performance between their partial order (PO) model and the VSP class of models proposed in this paper. We
choose the same observation model, QJ-U, to make the test. We choose a relatively small dataset, 1126-1130 with 5LPA, for
this comparison, so the full PO model is tractable. We chose priors ρ ∼ Beta(1, 16 ) as suggested in Nicholls and Muir Watt
[2011] and a non-informative prior for the error probability p = er

1+er where r ∼ N (0, 1.5) in order to get a reasonably flat
depth distribution for the PO-prior.

The consensus order from the PO/QJ-U model is shown in Fig. E.2 (left). We also copy the result from the VSP/QJ-U model
here for comparison. The two models indicates similar social hierarchy. However, the PO/QJ-U model presents a less strict
hierarchy among bishops.

Archbishop

Bishop

Earl
Count
Other

Figure E.2: PO/QJ-U model(left) and VSP/QJ-U model (right; same as Fig. 7). Consensus order for 1126-1130 5LPA data.
Significant/strong order relations are indicated by black/red edges respectively.

The consensus order from the PO/QJ-U model is actually a VSP. Fig. E.3 shows the prior and posterior depth distributions
for both the PO/QJ-U and VSP/QJ-U models. Although the prior distributions over depth are all relatively flat for the two
models, the PO/QJ-U model favour partial orders with relatively lower depth.

Figure E.3: The prior (dashed) and posterior (solid) distribution over depth for the PO/QJ-U (green) and VSP/QJ-U model
(red).

The posterior probability to get a VSP given the PO/QJ-U model is pPO/QJ−U (h ∈ V[n]|y) = 0.31 so there is a reasonable
chance in the more general model that the unknown true social hierarchy is a VSP. The model comparison performed in



Table E.4 indicates similar elpdwaic for both models. Considering the uncertainty in our estimation, we conclude both
models fitting the data equally well.

Model elpdwaic (se)

VSP/QJ-U -37.8 (10.8)
PO/QJ-U -36.7 (10.1)

Table E.4: The estimated elpdwaic (se) for the VSP/QJ-U and PO/QJ-U models.

We compare the average ranking for different professions in table E.5 and observe the same ranking order in professions
although ranking scales are slight different.

Average Rank

Profession PO/QJ-U VSP/QJ-U

Archbishop 1 (0.08) 1 (0.08)
Bishop 3.76 (0.29) 3.99 (0.31)

Earl 5.75 (0.44) 6.93 (0.53)
Count 6.04 (0.46) 8.94 (0.69)
Other 9.28 (0.71) 10.40 (0.80)

Table E.5: The professions and their average rankings under the PO/QJ-U and VSP/QJ-U models for time period 1126-1130.

We summarise the posterior distributions over POs/VSPs using the consensus adjacency matrix m, such that

mi,j = p(i ≻ j|y), i, j ∈ [n].

The consensus orders are inferred from the consensus adjacency matrix by setting a certain threshold. This paper chooses a
threshold of 0.5. Fig. E.4 plots the entries of the two consensus adjacency matrices against each other. The points roughly
scatter along the reference line y = x, and show a positive monotone trend. Based on Fig. E.4, the two consensus adjacency
matrices roughly agree with each other, highlighting the fact that although the VSP is a more restricted model, it works as
well as a flexible and scalable partial order model in social hierarchy scenarios.

Figure E.4: The comparison plot between the consensus adjacency matrices from the VSP/QJ-U (x-axis) and PO/QJ-U
(y-axis) models. The gray dashed line is the y = x reference line.



F SCALING ANALYSIS

Counting the number of linear extensions of a general partial order is known to be #P-complete (Brightwell and Winkler
[1991]). LEcount by Kangas et al. [2016] seems to be the most computationally efficient counting tool available. LEcount
chooses between two algorithms, one counts by recursion in O(2nn) operations and the other by variable elimination in
O(nt+4) where t is the treewidth of the cover graph. The linear-extension counting algorithm we use exploits the tree
representation (1, 2) so it only works for VSPs, but it is more reliable and faster than LEcount especially for the complicated
and large VSPs at the right end of Fig. F.1.

The likelihood evaluation involves substantial computation of the number of linear extensions, and is an essential part of our
MCMC analysis. We compare the computational cost to the likelihood evaluations under either the VSP tree representation
or LEcount. This is done by simulating N = 20 full length lists on VSPs of increasing size n = 3, 6, ..., 39 from our VSP
prior. For each group of N lists we evaluate the likelihood for the VSP used in simulation. We repeat this 50 times for
each VSP size n for each method to derive an estimated distribution over run-times. The log-scaled maximum run-time
(in seconds) for each sample size is shown in Fig. F.1. The log-scaled maximum run-time appears to be linear for the
tree representation and exponential for LEcount. The optimised LEcount approach outperforms the tree representation LE
evaluation when we have VSPs less than 25 actors. However, VSP-based counting significantly outperforms LEcount when
we move to much larger datasets (completely as expected, all that matters is that we are comparing a simple implementation
of a fast VSP algorithm with a well optimised implementation of a PO algorithm and the simple VSP implementation still
beats the optimised PO implementation at large enough VSP sizes because the VSP algorithm only works for a subset of
POs, so there is no criticism of LEcount here).

Figure F.1: Run-time analysis between the count approach from tree representation and LEcount (Kangas et al. [2016]) on
VSPs. The plot compares likelihood (QJ-U) evaluation exploiting the VSP structure (in green) and for a general PO (in red).
The log-scaled maximum run-time (in seconds) from the tree representation (green) and the LEcount is shown in y-axis, and
the number of actors in VSP is shown in the x-axis.

The scaling analysis demonstrates the high scalability of the VSP counting method via the tree representation. This enables
our model to work on datasets with more than 200 actors, see Section D.1.1.

G DETECTING VSP’S

Valdes et al. [1979] proposes an efficient way to recognise VSP’s by detecting the so-called forbidden sub-graph (Fig. G.1).

1 2

3 4

Figure G.1: The ‘forbidden sub-graph’ to the VSP class of partial orders.

A partial order h ∈ H[n] is a VSP if it does not contain a set of vertices o = {j1, . . . , j4} ⊂ [n] with sub-graph h = h[o]
that is isomorphic to the ‘forbidden sub-graph’ F = ([4], {⟨1, 3⟩, ⟨1, 4⟩, ⟨2, 4⟩}). If two graphs are isomorphic, F and h′ in



our case, they must be identical after vertex relabelling. This means edges absent in F must also be absent in h′. This makes
it straightforward to test if a partial order is a VSP.

H PRIOR DISTRIBUTION ON DEPTH

Our VSP-prior gives good control over partial order depth. We can choose the prior distribution over q so that the marginal
distribution πV[n]

(v) has a reasonably flat distribution over the depth D(v) of the VSP-partial order v. This ensures the prior
is non-informative with respect to partial-order depth, a property of a social hierarchy on actors which is of particular interest.
After some experimentation we found that taking η ∼ N (1, 1.5) and setting q = 1

1+e−η gave a reasonably non-informative
depth distribution. Fig. H.1 shows an example prior depth distribution for partial orders with 50 actors under this prior.

Figure H.1: The prior distribution over depth for partial orders with 50 actors, when q = 1
1+e−η , η ∼ N (1, 1.5).

References

Formula 1 template. https://www.spreadsheet.com/template/formula-1. Accessed: 2023-04-23.

Graham Brightwell and Peter Winkler. Counting linear extensions. Order, 8(3):225–242, 1991.

Francois Caron and Arnaud Doucet. Efficient Bayesian inference for generalized Bradley–Terry models. Journal of
Computational and Graphical Statistics, 21(1):174–196, 2012.

Kustaa Kangas, Teemu Hankala, Teppo Mikael Niinimäki, and Mikko Koivisto. Counting linear extensions of sparse posets.
In IJCAI, pages 603–609, 2016.

Colin L Mallows. Non-null ranking models. i. Biometrika, 44(1/2):114–130, 1957.

Cristina Mollica and Luca Tardella. Bayesian Plackett-Luce mixture models for partially ranked data. Psychometrika, 82(2):
442–458, 2017. ISSN 0033-3123. doi: 10.1007/s11336-016-9530-0.

Cristina Mollica and Luca Tardella. PLMIX: An R package for modelling and clustering partially ranked data. Journal of
Statistical Computation and Simulation, 90(5):925–959, 2020.

Geoff K Nicholls and Alexis Muir Watt. Partial order models for episcopal social status in 12th century England. IWSM
2011, page 437, 2011.

R. Sharpe, D. Carpenter, H. Doherty, M. Hagger, and N. Karn. The Charters of William II and Henry I. Online: Last
accessed 27 October 2022, 2014.

Øystein Sørensen, Marta Crispino, Qinghua Liu, and Valeria Vitelli. BayesMallows: An R package for the Bayesian Mallows
model. The R Journal, 12(1):324–342, 2020. doi: 10.32614/RJ-2020-026.

Richard Stanley and Eric W. Weisstein. Catalan Number. https://mathworld.wolfram.com/CatalanNumber.html, 2002.
MathWorld–A Wolfram Web Resource.

Jacobo Valdes. Parsing Flowcharts and Series-Parallel Graphs. PhD thesis, Stanford, CA, USA, 1978. AAI7905944.

Jacobo Valdes, Robert E Tarjan, and Eugene L Lawler. The recognition of series parallel digraphs. In Proceedings of the
eleventh annual ACM symposium on Theory of computing, pages 1–12, 1979.

https://www.spreadsheet.com/template/formula-1


Aki Vehtari, Andrew Gelman, and Jonah Gabry. Practical Bayesian model evaluation using leave-one-out cross-validation
and waic. Statistics and computing, 27:1413–1432, 2017.

Valeria Vitelli, Øystein Sørensen, Marta Crispino, Arnoldo Frigessi Di Rattalma, and Elja Arjas. Probabilistic preference
learning with the mallows rank model. Journal of Machine Learning Research, 18(158):1–49, 2018.


	Proof of Theorem 1
	Part I: MARGINAL CONSISTENCY
	PART II: CLOSED FORM PRIOR
	Multi-Decomposition Trees
	Proof of Proposition 1 

	Queue-Jumping Models
	Queue-Jumping Up/Down Observation Model
	Bi-Directional Queue-Jumping model
	Recursive Evaluation Algorithm for QJ-B

	MCMC Sampler
	MCMC sampler in the BDT representation
	MCMC sampler in the MDT representation

	Data background and Additional Results
	The `Royal Acta' Data
	Inference Results on List Data with 1LPA (QJ-U Observation Model)
	Inference Results on List Data with 5LPA (QJ-U Observation Model)
	Inference Results on List Data with 5LPA (QJ-B Observation Model)

	The Formula 1 Race Data

	Model Comparison
	Model Comparison with Plackett-Luce and Mallows
	Model comparison on the `Royal Acta' Data
	Model comparison on the Formula 1 Race Data

	Model comparison VSP v. Bucket order
	Model comparison with the latent Partial Order Model

	Scaling analysis
	Detecting VSP's
	PRIOR DISTRIBUTION ON DEPTH

