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A APPENDIX

A.1 PROOFS

Proof of Proposition 1. For any two i, j ∈ S we know that, since they are direct descendants of Z, Xi ̸⊥⊥ Xj | U for any
U ⊂ {X1, . . . , Xm} \ {Xi, Xj}. Hence all edges {Xi, Xj} are in G so that S is a clique in G.

Proof of Theorem 2. fix We prove this statement in two steps. First, we show that all bij are identifiable. Let i ∈ {1, . . . ,m}
and j ∈ {1, . . . , l}. Then, by assumption (A2) there exists a distinct quadruple (Xi, Xu, Xv, Xw) of nodes that are
conditionally independent given Zj . In order to make every quadruple (Xi, Xu, Xv, Xw) be dependent conditional on Zj , it
would have to have either an edge between them or a common predecessor, which would require at least |Sj | − 3 incoming
edges to Sj from sources that are not Zj .

Therefore, for any two variables (Xλ, Xµ) in our quadruple we know that σλµ = cov(Xλ, Xµ) = bλbµ and in particular

σiuσvw = bibubvbw = σivσuw

We can therefore write

b2i = σiuσiv/σuv.

Furthermore, no quadruple (Xi, Xu′ , Xv′ , Xw′) this is not conditionally independent given Z can satisfy the constraint
σiuσvw = σivσuw by assumption (A3). Hence, all b2ij are identifiable, and since we know the sign of at least one bij for the
given j, we therefore know the sign of each bij for fixed j. However, since j was arbitrary, B is identifiable in its entirety.

Now, knowing the values of B we can determine the distribution P (X | Z), which depends only on A and σ2
ϵ . Since X | Z

is now a linear Gaussian SEM with equal variances, the identifiability of A and σ2
ϵ follows from the work of Peters and

Bühlmann [2012] on the identifiability of the equal variance model.

Proof of Theorem 3. To prove the first statement, let Z be jointly independent and let there be no edges X → Z. Pick P
such that P (Z = 0) = 1. Then Z contains no information about X so that K(P (X,Z)) ≤ K(P (X)) + K(P (Z)) =
K(X) +O(1), with constant K(P (Z)) = O(1) independent of P (X).

For the second statement, consider the case where the true generating mechanism for X does not include any latent
variables for any subset XS . Then as noted in the AMC and the discussion preceding it, all information needed to
compress P (X) is already present in the graph G∗

X giving the optimal factorization of P (X). Hence K(P (X,Z)) ≥
K(P (X)) +K(P (Z|X)) > K(P (X)).

Proof of Theorem 4. Assume that Eq. (4) holds in the limit n → ∞. Then there is a model class M ∈ M such that
L(x | M) < L(x | M0). Further, as we use a refined MDL score that means there is an optimal P ∗ ∈ M such that
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L(x | M) = L(x | P ∗) +O(n−1). Due to the consistency [Grünwald, 2007] of refined MDL scores this means that almost
surely X has generating distribution P ∗(X). As P ∗ is a joint distribution over (X,Z) this means that x is the observed part
of a joint sample (x, z) from P ∗(X,Z).

Proof of Theorem 5. As we’ve seen in the proof of Theorem 2, for each Xi there exists a distinct quadruple
(Xi, Xu, Xv, Xw) conditionally independent given Zj by (A2). Hence, all correlations between these four variables
can be explained by the parameters in B. Furthermore, by Proposition 1, no pair of variables Xµ, Xλ can be d-separated in
any DAG over X , so that by setting bij = 0 we would require at least four additional entries of A to be non-zero, instead of
only one in B.

Hence, since in the limit we have b̂ij b̂vj − σiv → 0, the matrix B̂ converges towards B. Furthermore, given a good
approximation of P (X) and of B, we obtain a good approximation of A by the results of Van de Geer and Bühlmann
[2013].

Proof of Theorem 6. This follows directly from Theorem 5 and the fact that for n → ∞, our MDL score is equivalent to
BIC [Grünwald, 2007].

Proof of Proposition 7. By Proposition 1, we know that S∗
j forms a clique in the graph G∗ inferred by a consistent A. This

clique is maximal due to no node being in the Markov Blanket of all s ∈ S∗
j . Further, since xn is a sample from Eq. (6) we

know from the MDL principle for selecting nested model classes [Grünwald, 2007] that in the limit no other set can be
compressed better by introducing a confounder than S∗

j itself.

A.2 IMPLEMENTATION DETAILS

We implemented CDHC in Python using PyMC3 for posterior inference using ADVI with default parameters. All code is
available for research purposes. Experiments were run single-threaded on a standard commodity laptop and each experiment
finished within minutes.

A.3 COMPUTING CONFIDENCES

For CDHC we measure its confidence as the relative gain in compression due to addition of confounders, CA = (LA −
LCDHC-A)/LA ≥ 0 and for NOTEARS we use the normalized difference between the initial (empty network) and final
(discovered network) score obtained from optimization. None of GFCI, 3OFF2 or DCD come with readily computable
confidence scores so we treat them in the way most favorable to them by assuming that their best performances are also their
most confident.

A.4 ADDITIONAL RESULTS FOR GGSL AND GES

We now provide additional details on the results of GGSL and GES in Table 1. We compute all confidences as described in
the previous section. For comparison we also include the results of CDHC. Since they are most interpretable, we include
only the F net

1 score here. For other metrics too, however, both GGSL and GES perform similarly to NOTEARS so that CDHC
significantly outperforms them. In particular, neither of them can find any confounders.

Data evaluated
Method 1% 50% 100%

CDHC 0.92 0.85 0.53
GGSL 0.68 0.42 0.24

GES 0.64 0.35 0.21

Table 1: Comparison of CDHC, GGSL and GES in terms of F net
1 scores. The performance of each method is shown for each of

1%, 50% and 100% of the data evaluated (corresponding to leftmost, median and right-most points in a decision-rate plot).
We see that CDHC clearly outperforms both competitors by a large margin and further that both GGSL and GES perform
similarly to NOTEARS.
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Figure 1: [Higher is better] Decision rate for CDHC and its competitors on the REGED dataset. Overall, CDHC outperforms
all other methods both for points where they are confident as well as those where they are not.

A.5 ADDITIONAL DETAILS ON SIGNIFICANCE TESTING

To verify that CDHC significantly outperforms its competitors we use the Bayesian signed rank test [Benavoli et al., 2014]. It
explicitly models the probability that one model is significantly better than the other in practice by introducing a region of
practical equivalence (rope) specified by parameter r. Two methods are considered to perform equally well if the difference
of scores for the methods lies in [−r, r]. We pick r = 0.05 [Benavoli et al., 2014] but the conclusion remains the same for
values r ∈ (0, 0.15]. Since the test was designed for two competing methods, for each dataset we compare CDHC with the
best-performing of its competitors, which we refer to as OPT.

To compare the two methods over all samples, we aggregate the F1 scores for both CDHC and OPT and take their differences
zi = F OPT

1,i − F CDHC
1,i , i ∈ {1, . . . , q}. To include the prior assumption that both methods are equally good, we include a

pseudo-observation z0 = 0, i.e. that both methods are precisely equally good. We take weights w = (w0, . . . , wq) ∼
Dirichlet(s, 1, . . . , 1) where s corresponds to the number of times we obtained z0. This is commonly set to be s = 0.5, but
due to our large number of experiments its influence on the posterior is minor. The posterior probabilities are computed as

θOPT =

q∑
i,j=0

wiwjI(2r,∞)(zi + zj)

θrope =

q∑
i,j=0

wiwjI[−2r,2r](zi + zj)

θCDHC =

q∑
i,j=0

wiwjI(−∞,−2r)(zi + zj)

where θOPT, θCDHC are the posterior probabilities that OPT, respectively CDHC are better by at least a margin r, while θrope is
the posterior probability that they perform equally well up to said margin. The distribution of θ is not analytically tractable,
but we can evaluate it empirically by sampling values for w. Such a sample is precisely what is depicted in Fig. 5 in
barycentric coordinates.

A.6 REALISTIC DATA: REGED

Next, we consider realistic synthetic data from REGED [Guyon et al., 2008], which is based on human lung-cancer
microarray gene expression data. Since the available samples are non-i.i.d., the causal relationships are nonlinear, and the
ground truth is known from gene intervention studies, it provides a good benchmark for CDHC.

To make CDHC applicable to the REGED dataset we consider the following setup. For each node Xi in the ground truth
graph G∗ with k ≥ 5 children, the set of which we denote by C = Ci, we select a random subset R = Ri also consisting of
k nodes of G∗ which are not contained in the Markov boundary of any Xi in G∗ and do not have a common parent. We then
consider the induced subgraph Gi over the nodes Ci ∪Ri ∪ {i}. However, the data given to each method is only over the
variables XC∪R from which we compute the results in Fig. 1.

We show the results for F net
1 for different methods in a DR plot in Fig. 1. Even though the data violates our assumptions,

CDHC outperforms its competitors by a large margin. Moreover, even for those sets of variables where CDHC is only
moderately confident, it still performs better than its competitors at their most confident. This suggests that CDHC works
reliably even when the true model deviates from our assumptions.
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(c) NOTEARS

Figure 2: 3OFF2 and NOTEARS on the SOS dataset. As before, only (potentially) confounded pairs are drawn in the figures.
We see that 3OFF2, like GFCI and DCD cannot determine all nodes to be jointly confounded. Meanwhile NOTEARS assumes
causal sufficiency and therefore finds no indication of confounding.

A.7 OTHER METHODS ON THE SOS NETWORK

In Fig. 2 we show the results of 3OFF2 and NOTEARS on the SOS dataset. Like GFCI, 3OFF2 can only give indications about
which pairs might be confounded, and for the majority of pairs it is not confident. Meanwhile, by its very design NOTEARS
has no notion that confounders might be involved.
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