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Abstract

Causal sufficiency is a cornerstone assumption in
causal discovery. It is, however, both unlikely to
hold in practice as well as unverifiable. When it
does not hold, existing methods struggle to return
meaningful results. In this paper, we show how to
discover the causal network over both observed
and unobserved variables. Moreover, we show that
the causal model is identifiable in the sparse lin-
ear Gaussian case. More generally, we extend the
algorithmic Markov condition to include latent con-
founders. We propose a consistent score based on
the Minimum Description Length principle to dis-
cover the full causal network, including latent con-
founders. Based on this score, we develop an ef-
fective algorithm that finds those sets of nodes for
which the addition of a confounding factor Z is
most beneficial, then fits a new causal network over
both observed as well as inferred latent variables.

1 INTRODUCTION

Discovering causal relationships from observational data is
one of the most important open problems in science [Pearl,
2009]. Causal discovery methods aim to identify causal net-
works from data by reporting only edges that cannot be ex-
plained away by any other variables. Most typical causal dis-
covery methods have in common that unless all relevant vari-
ables have been measured, they return models that include
(many) spurious edges and thus lack a causal interpretation.
The most commonly used approach is to wish the problem
away by assuming causal sufficiency, i.e., that all common
causes of all observed variables are observed. However,
doing this does not make the issue disappear in practice;
in many applications, including epidemiology [Kesteloot
et al., 2006], economics [Angrist and Pischke, 2009], and
bio-medicine Imbens and Rubin [2015], we do not know

all the relevant variables, nor would we be able to measure
them even if we knew.

In this paper, we present an approach to causal discovery
that does not require causal sufficiency over the observed
variables. We give conditions under which it is possible
to identify joint confounders, and show how to infer these
using factor analysis, as well as how to construct a causal
network without spurious edges over both the observed X
and the discovered confounders Z.

This may seem impossible. After all, given only a sample
from P (X), there exist infinitely many joint distributions
P (X,Z) consistent with the marginal P (X), and picking
out the P (X,Z) that corresponds to the true causal mecha-
nism sounds far-fetched. It is not. First, we can exploit the
fact that a causal graph discovered over the observed vari-
ables X will contain many spurious edges Xi → Xj when
both are affected by the hidden latent variable Z [Elidan
et al., 2000]. That is, by focusing on those subsets of X that
are densely connected in the graph, we can determine which
variables are likely to share a hidden confounder.

While not every densely connected set of variables necessar-
ily shares a hidden confounder, we can use the algorithmic
Markov condition (AMC) to find the simplest causal model
describing the data [Janzing and Schölkopf, 2010]. In partic-
ular, such a model may include latent variables Z affecting
the observed X so as to respect the independence of causal
mechanisms [Parascandolo et al., 2018].

Putting these two ideas together, we have the following
natural approach: run a causal discovery algorithm on the
observed data, find sets of densely connected variables in the
learned graph, learn a latent factor model for each set, and
then use the AMC to determine which so-found P (X,Z)
are simpler than P (X). If so, add the best newly discovered
confounder Z to X and iterate until convergence.

We show that our approach is both theoretically and empiri-
cally sound. It provably recovers the true set of confounded
nodes under general conditions, while for the sparse linear
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Gaussian setting, it is consistent for recovering the entire
model. Empirical evaluation shows it to be highly accurate.
It improves both over methods that do assume causal suffi-
ciency as well as those which do not. All code, data, results,
and proofs can be found online on the authors’ website.1

2 THEORY

We first describe our problem setting. We then prove identifi-
ability for sparse linear Gaussian (SLG) models and provide
a framework for causal discovery under latent confounding.
With this, we derive a consistent score for the SLG.

2.1 PROBLEM SETTING

Let X = (X1, . . . , Xm) and Z = (Z1, . . . , Zl) be two
sets of variables with joint distribution P (X,Z), where X
are observed and Z unobserved variables. Our goal is to
discover a network over X,Z, that is, a directed acyclic
graph (DAG) GX,Z = (V,E) with vertices X ∪ Z and
edges capturing the causal relationships in P (X,Z). By
marginalizing over Z, we obtain a distribution P (X) with
a corresponding network GX . When the variables are clear
from the context, we write G for GX,Z , respectively GX .

To permit identifiability of the network GX,Z , we have to
make some common assumptions [Koller and Friedman,
2009]. First, Causal Faithfulness: if U and V are indepen-
dent given W in P (X,Z), then U and V are d-separated
by W in G. Second, the Causal Markov Condition: each
Y ∈ X ∪ Z is independent of its non-descendants given
its parents PaG(Y ). Third, we do not assume Causal Suf-
ficiency over X , but we do assume it over X ∪ Z. That is,
we assume that all common parents of at least two variables
U, V ∈ (X,Z) are included in X ∪ Z. In other words, all
non-causal correlations can be explained away by condition-
ing on the right variables. Last, we assume that all Zj are
jointly independent and that no reverse causation exists, i.e.,
Pa(Zj) = ∅. Under these assumptions, we have

P (X,Z) =

m∏
i=1

P (Xi | Pai)

l∏
j=1

P (Zj) ,

where Pai = PaG(Xi). Such factorizations are a corner-
stone of causal learning [Pearl, 2009], allowing for the iden-
tification of many causal effects. Our goal is the following.

Problem Statement. Given a sample xn only from the
observed distribution P (X), discover

• a (small) set of latent variables Z

• a (sparse) network G over X and Z

1https://eda.rg.cispa.io/prj/pepsi/
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Figure 1: Structural assumptions 1 and 2 of our model. Each
Zi has an edge towards all nodes in Si (solid), but only few
other edges (dotted) are incoming to each Si.

• and a (simple) joint distribution P (X,Z) such that

P (X,Z) =

m∏
i=1

P (Xi | Pai)

l∏
j=1

P (Zj) ,

factorizes according to the discovered G.

In the following, we note a simple property laying the foun-
dations for discovering all three of these components.

2.2 STRUCTURE OF LATENT CONFOUNDING

To solve our problem, we start with the following ob-
servation. Whenever a set of variables XS = (Xi)i∈S ,
S ⊆ {1, . . . ,m}, are co-caused by an unmeasured Z, no
pair Xi, Xj ∈ XS can be made independent by condition-
ing on any other subset W ⊂ X . Thus, when G captures
the independences of P , all pairs in XS are connected. That
is, G contains a clique over XS [Elidan et al., 2000].

Proposition 1 (Confounders and Cliques). Let P (X,Z) be
the joint distribution of X,Z where Z is one-dimensional
and let S = {i : Z → Xi}. Then any graph GX capturing
the correlations in P (X) contains a clique over XS .

When Z is multivariate, each Zj induces its own clique in
G, all of which may overlap. Next, we show that this graph-
ical characterization of confounding is already sufficient to
identify the true model in the sparse linear Gaussian case.

2.3 IDENTIFIABILITY FOR THE SPARSE LINEAR
GAUSSIAN MODEL

To prove identifiability of the causal model, we assume
that P (X,Z) is given by a linear Gaussian structural causal
model (SCM, Pearl [2009])

X = A>X +B>Z + ε (1)
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where A encodes the DAG G, Z ∼ N(0, I) and ε ∼
N(0,diag(σ2

ε )). We further make the following assump-
tions on the causal model generating our data X,Z.

Assumption 1. There exists a partition of the variables X
into l disjoint sets S1, . . . , Sl of sizes |Sj | ≥ 4 such that
for each variable Xi ∈ Sj the direct causal effect bij of
Zj → Xi is non-zero, bij 6= 0.

This assumption guarantees that each Zj has an influence
on a subset Sj of the variables X that is sufficiently large to
recover its parameters bij . Of course, this would not avail us
much if the overlaps between sets are too large, e.g., when
two variables Zj 6= Zk have exactly the same sets Sj = Sk
of downstream effects. To prevent such cases, we introduce
our next assumption.

Assumption 2. There are at most |Sj | − 4 edges incoming
to vertices in Sj , aside from the edges Zj → Sj .

This assumption ensures that the different Zj , Zk cannot
have too much overlap in their Sj , either through direct
connections of Zj → Sk, or through indirect paths Zj →
Sj → Sk. That is, the sets Sj are only weakly connected to
each other to ensure distinguishability between the effects
of different Zj . Note in particular that since models with
Zj → Zk are indistinguishable from models where each
node inXi ∈ Sk also has an edgeZj → Xi, this assumption
requires Z to be jointly independent. Likewise, as we saw in
the first example, there also cannot be too many connections
between variables within Sj , as this makes it impossible
to tell which correlations are due to Zj , and which due to
causal effects of variables within Sj .

When all assumptions hold, the causal model is identifiable.

Theorem 2. Let our distribution P (X,Z) be described by
the linear Gaussian SEM given in Eq. (1)

X = A>X +B>Z + ε ,

for some Z of dimension l ≤ m/4. Further, let assump-
tions 1-3 hold. Then the number l of confounders and its
parameters B are identifiable up to column permutations
and rescaling. Furthermore, if all noise variables ε have
equal variances, then A is also identifiable.

Unlike this sparse linear Gaussian (SLG) case, causal mod-
els with latent variables are generally overparametrized and
thus unidentifiable. As we show next, however, it is possible
to identify whether or not latent confounders are involved.

2.4 ALGORITHMIC MODEL OF CAUSALITY

To determine whether variables X are influenced by la-
tent confounders, we introduce the algorithmic model of
causality. We begin by studying P (X) under the assumption

that no latent variables Z are involved. In the algorithmic
model of causality, the distribution P (X) with graph G cor-
responds to a set of programs fi describing how each Xi is
generated from Pai and mutually independent noise ε

Xi = fi(Pai, εi) , εi ⊥⊥ Pai .

We can measure the complexity of such a description of
P (X) using Kolmogorov complexity [Li and Vitányi, 2009].
Given a universal Turing machine U , it measures the length
of the shortest program p approximating a given function f ,

K(f) := min
p
{|p| | ∀u∀q : |U(u, p, q)− f(u)| ≤ 1/q} .

Kolmogorov complexity optimally utilizes all available in-
formation and therefore measures the length of the best
compression of f . If P (X) is the distribution generated by
a causal process, the true causal model should also com-
press P (X) best. This notion is captured by the algorithmic
Markov condition (AMC) [Janzing and Schölkopf, 2010].

Postulate (Algorithmic Markov Condition). Let G∗ be the
true causal network for P (X). Then

K(P (X))
+
=

m∑
i=1

K(P (Xi|PaG∗(Xi))) ,

where +
= denotes equality up to an additive constant that

depends on the Turing machine U but is independent of P .

In the bivariate case, if X causes Y , it says

K(P (X)) +K(P (Y | X))
+
≤ K(P (Y )) +K(P (X | Y )).

The AMC states that the true network G∗ not only provides
the best factorization of P but the best compression of P
in general. In particular, P (Xi | Pai) and P (Xj | Paj)
cannot be better compressed jointly so that they do not
share any structure. In other words, the causal mechanisms
generating Xi and Xj are algorithmically independent of
each other [Janzing and Schölkopf, 2010].

This independence breaks under latent confounding. Con-
sider the case where (X1, . . . , X4) are given by X =
BtZ + ε with unobserved univariate Z ∼ N(0, 1). Then
P (X) is fully described by its covariances σij = bibj . How-
ever, for 4 variables, there are 6 covariances described by
the four parameters b1, . . . , b4, rendering them dependent.

Finding models with independent causal mechanisms, there-
fore, requires us to consider models with latent factors, i.e.,
distributions P (X,Z) with marginals P (X) and P (Z) =∏
j P (Zj), the class of which we refer to asP . The question

is whether it is meaningful to compare P (X,Z) with P (X)
in terms of Kolmogorov complexity. The following theorem
provides a positive answer to this question.
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Figure 2: Example graphs illustrating our structural assumptions. (a) All observed variables are confounded by the same
factor Z1, and 6 edges exist between its children S1. (b) Two different confounders affecting five nodes each, and one
additional edge incoming to each of the sets. (c) Z2 affects one of the nodes in S1. Furthermore, if we added either of the
dashed red edges, too many edges incoming into S1, respectively, S2 would render the model unidentifiable.

Theorem 3 (Kolmogorov Does Not Incorrectly Detect Con-
founders). For any distribution P (X), we have

inf
P (X,Z)∈P

K(P (X,Z))
+
≤ K(P (X)) ,

where the infimum is over all joint distributions P (X,Z)
with fixed marginal P (X) and independent Z. Conversely,
if a joint distribution P (X,Z) ∈ P exists such that

K(P (X,Z)) < K(P (X)) , (2)

then the true generating mechanism of X includes latent
variables influencing some subset XS .

First, this result shows that there is no intrinsic bias towards
one type of distribution being more complex than the other.
Second a confounded model can only offer the best descrip-
tion of the data if the true generating mechanism involves
unobserved variables. In this case, we can write

K(P (X,Z)) =

m∑
i=1

K(P (Xi | Pa(Xi))) +

l∑
j=1

K(P (Zi))

where the parents of Xi are among both X and Z. Note that
while we cannot incorrectly infer latent confounders where
there are none, we may miss latent variables that do exist.

2.5 INSTANTIATING THE AMC

Using Kolmogorov complexity, we have developed a frame-
work for discovering latent confounders affecting P (X). To
use it in practice, however, we need to address two chal-
lenges: access only to a sample x and incomputability of
Kolmogorov complexity [Li and Vitányi, 2009].

The first issue is resolved in the large sample limit, where
measuring the suitability of a causal model using K(x)

instead of K(P (X)) leads to the same decisions [Marx
and Vreeken, 2021]. To solve the second issue, we use the
Minimum Description Length (MDL) principle [Grünwald,
2007]. In its simplest form, to encode data x, we choose a
model M and encode both M and x given M as

L(x,M) = L(x |M) + L(M) .

We then want to find the best model M∗ in some model
classM. For anyM, we have K(x) ≤ infM∈M L(x,M),
so that MDL provides a well-founded upper bound on K.

In this work, our focus is not on identifying a single best
model but on determining whether a subset XS of the ob-
served variables is confounded or not. To distinguish be-
tween model classes, we use refined MDL Grünwald [2007]

L(x,M) := − log

∫
M∈M

P (x|M)Q(M)dM , (3)

where Q is a prior on the models M ∈M.

For this score to be sound, we next establish a result sim-
ilar to Eq (2). More precisely, we show that confounded
models obtain a better score only if causal sufficiency is
violated. To do this formally, we require two things. First,
a classM0 of models without latent factors. Second, a set
M of model classesM describing the observed distribution
P (X) as marginal of a joint distribution P (X,Z) in some
distinct way. For data x sampled from P (X), Eq. (2) then
corresponds to asking whether or not

inf
M∈M

L(x,M) < L(x,M0) . (4)

The following theorem tells us that, indeed, Eq. (4) holds
only if latent variables were involved in generating x.

Theorem 4 (MDL Does Not Incorrectly Detect Con-
founders). Let xn be the observed part of an i.i.d. sample
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from P ∈M ∪ {M0}. Further, assume that Eq. (4) holds
P -almost surely as n→∞. Then P ∈M.

Just as in the case of algorithmic causality, i.e., Thm. 3, it
is generally impossible to guarantee recovery of the exact
true model. However, for the SLG, it is possible to define
a consistent score, requiring no further assumptions than
those we already made for identifiability. in Sec. 2.3.

Theorem 5 (Consistency of BIC for SLGs). Let x = xn

be a sample from the SLG of Eq. (1) and let assumptions
(A1)-(A3) hold. LetM be the corresponding model class
andM0 the restriction ofM to models with B = 0. Let

L(xn,M) = − logP (xn | A,B, σ2
ε ) + λ‖A‖0 + λ‖B‖0

(5)
and Â, B̂ its minimizers. Then for λ = log(n)/2, the score
L is consistent for detecting confounders. That is,

lim
n→∞

P

(
min
M∈M

L(xn,M) < min
M∈M0

L(xn,M)

)
= 1 .

Further, Â and B̂ converge to the true A,B in probability,

lim
n→∞

P (Â = A, B̂ = B) = 1 .

While it is remarkable that in the linear Gaussian case, the
full causal model can be recovered from a sample x from
P (X) only, we have to solve two problems before we can
put this into practice. First, we do not know B, nor even
which of the exponentially many subsets XS ⊆ X are
affected by any one Zj . Second, even knowing B and Z,
optimizing Eq. (5) is NP-hard [Peters and Bühlmann, 2012].
We, therefore, next develop a good heuristic as to which
subsets XS are likely affected by Z and show how standard
causal discovery algorithms can be leveraged to find a causal
network over both the observed X and the latent Z.

3 THE CDHC ALGORITHM

With the theory we developed, we can now introduce CDHC,
our method for Causal Discovery with Hidden Confounders.

3.1 FINDING CONFOUNDED VARIABLES

To find a causal network over both X and its confounders Z,
we first need to determine which subsets of X are likely to
be confounded. A structure learning algorithm A can help
us determine these sets by discovering connected subsets
of variables (Prop. 1). If XS are densely connected in the
discovered graph G, then the Markov boundaries satisfy
Xi ∈ XS is MB(Xi) ≈ XS . Therefore, we consider the
Markov boundary of each node as the seed sets S over which
we may infer latent confounders.

3.2 LEARNING LATENT CONFOUNDERS

To evaluate a proposed set of confounded nodes and its
associated graph G, we introduce a causal model including
latent factors as follows. Based on Theorem 2, given a graph
G over (X,Z), we assume that the data is generated from a
model in a classM =M(G) similar to Probabilistic PCA
(PPCA) [Tipping and Bishop, 1999]

Zi ∼ N(0, 1) , ε ∼ N(0, σ2
ε )

Aij ∼ N(0, σ2
a) , Bij ∼ N(0, σ2

b )

X = A>X +B>Z + ε ,

(6)

where entries of A,B are nonzero only when their corre-
sponding edges are in G. By marginalizing out Z, we obtain

X | A,B ∼ N(0, C(B>B + σ2
ε )C>) ,

where C = (I − At)−1. Since the Aij are sampled from
a continuous distribution, assumption (A3) holds almost
surely so that, unlike PPCA, we do not require A = 0.

To evaluate the fit of our model classM to our data x, we
use the score L(x,M) defined in Eq. (3)

L(x,M) = − log

∫
P (x | A,B)P (A,B)dAdB ,

which we can estimate using standard variational meth-
ods [Kucukelbir et al., 2017]. This score is suitable in that it
is consistent for causal discovery with latent confounders.

Theorem 6 (Consistency of MDL for SLGs). Let the as-
sumptions of Thm. 5 hold. Then the minimizer Ĝ,

Ĝ = arg minGL(xn,M(G)) ,

converges to the ground truth G∗ with probability one,

lim
n→∞

P (Ĝ = G∗) = 1 .

With this guarantee that our score is sound, we now intro-
duce our method for discovering the entire causal network.

3.3 DISCOVERING THE CAUSAL NETWORK

We can now put all of the above together and present CDHC.
We give the pseudo-code as Algorithm 1. We first (line 1)
discover a graph G over the observed data x using a score-
based structure discovery algorithm A, such as GES [Chick-
ering, 2002], GGSL [Gao et al., 2017] or NOTEARS [Zheng
et al., 2018]. We then consider every node Xi and initialize
the confounded set XS with the Markov boundary MB(Xi)
and add a node Z and edges Z → XS to G. (l. 4-5). We
refine S by greedily adding nodes (l. 6-9), then removing
nodes (l. 10-13). After finding the locally optimal set S, we
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Algorithm 1: CDHC

input :data x sampled from P (X), algorithm A
output :graph G and distribution P (X,Z)

1 G = (V,E)← Graph inferred over x using A;
2 do
3 foreach i ∈ {1, . . . ,m} do
4 XS ←Markov boundary of Xi in G;
5 G′ ← (V ∪ {Z} , E ∪ {Z → XS});

// Forward phase

6 do
7 j ← arg minj /∈SL(x,G′ ∪ {Z → Xj});
8 (S,G′)← (S ∪ {j} , G′ ∪ {Z → Xj});
9 while L(x,G′) decreases;

// Backward phase

10 do
11 j ← arg minj∈SL(x,G′ \ {Z → Xj});
12 (S,G′)← (S \ {j} , G′ \ {Z → Xj});
13 while L(x,G′) decreases;
14 z ← sample from P (Z | X);
15 G[i]← Graph inferred over (x, z) using A;

// Use the model with best confounder

16 G← arg minG[i]L((x, z), G[i]);
17 while G changes;
18 return G and the P (X,Z) associated with G

sample z from P (Z | X) and fit a network over (x, z) using
A (l. 14-15). Out of all these networks, we update G to be
the best of them (l. 16) and iterate until convergence (l. 17).
Finally, we return the discovered networkG and distribution
P (X,Z) over X and its inferred confounders Z (l. 18).

Note that since our score strictly decreases at every step, our
method necessarily converges. Furthermore, we can show
that in the large sample limit we are guaranteed to recover
the true set of confounded nodes.

Proposition 7 (Consistency of CDHC for Discovering Con-
founded Nodes). Let xn be the an i.i.d. sample from
P ∈M(G∗) defined in Eq. (6), let assumptions (A1-3) hold
and let S∗i be the set of nodes affected by Zi. Assume that⋂
s∈S∗

i
MBG∗(Xs) \ {Zi} ( S∗i . Let A be a consistent for

recovering the Markov equivalence class of the graph GX
for distribution P (X). Let Ŝi be the set nodes confounded
by Zi discovered by CDHC. Then

lim
n→∞

P (Ŝi = S∗i ) = 1.

While we can recover the correct sets of confounded nodes,
to recover the entire graph G∗, we need additional assump-
tions such as those outlined in Theorem 5.

3.4 COMPLEXITY

Last, we analyze the runtime complexity of CDHC. CDHC
employs a loop (l. 2-17) whose inside has complex-
ity O(C(m,n) + m2n) = O(C(m,n)) – the former,
C(m,n) = Ω(m2n), is the runtime for running A and the
latter m2n for finding S. Since we can find at most O(m)
non-overlapping confounded sets, our worst case runtime
is therefore on the order of O(mC(m,n)). In general, only
few variables are confounded so that in practice, our runtime
is roughly O(C(m,n)) — the same as that of A itself.

4 RELATED WORK

Causal inference is one of the most important problems
in statistical inference and has attracted a lot of research
attention [Pearl, 2009, Spirtes et al., 2000]. Unfortunately,
latent confounding makes it impossible to infer causality
from observational data without making additional assump-
tions [Pearl, 2009]. Traditional constraint-based [Spirtes
et al., 2000, Zhang, 2008] and score-based [Chickering,
2002, Gao et al., 2017, Zheng et al., 2018] causal discov-
ery methods can reconstruct the true causal network up to
Markov equivalence when causal sufficiency holds.

When causal sufficiency does not hold, a number of algo-
rithms such as the FCI family [Spirtes et al., 2000, Colombo
et al., 2012, Ogarrio et al., 2016], 3OFF2 [Affeldt et al.,
2016] and DCD [Bhattacharya et al., 2021] can find com-
plete partially directed acyclic graphs which can capture
correlations due to confounders. However, these networks
are generally difficult to interpret and cannot determine
which sets of variables share the same latent confounder.

To make the resulting causal networks more interpretable,
observational and experimental data can be combined to
improve results [Kallus et al., 2018, Kocaoglu et al., 2019].
However, these methods are generally restricted in their
ability to rule out or corroborate the existence of latent
variables by the scarcity of available experimental data.

Other research controls causal estimates for latent con-
founders. To do so, Hoyer et al. [2008] solve the overcom-
plete ICA problem to correct the estimated causal effect of
X on Y for confounders, whereas Wang and Blei [2018]
and Ranganath and Perotte [2018] use factor models.

Until recent years, only little prior research has tackled the
topic of determining which variables share the same latent
confounders. Janzing and Schölkopf [2018] considered the
case of determining whether the variablesX are confounded
by finding deviations of the regression vector from theoreti-
cal properties in high-dimensional regression. Kaltenpoth
and Vreeken [2019] use the AMC [Janzing and Schölkopf,
2010] to infer whether two sets of variables X and Y are
causally related or jointly confounded. Silva et al. [2006]
proposed a model based on low-rank correlation structures
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Figure 3: Application of CDHC to synthetic data generated from the network shown in (a). When X0 is withheld, all base
algorithms A (b,d,f) find a clique of spurious edges on X1, X2, X3 (red). GFCI (h) and DCD (i) indicate that some pairs from
X1, X2 and X3 are confounded (blue) but cannot tell that they share the same confounder. In contrast, by applying CDHC (c,
e, g), we discover a confounder capturing the effect of X0 (green) and obtain higher quality networks in all cases.

between observed variables. Elidan et al. [2000] proposed an
algorithm for replacing semi-cliques in a discovered causal
graph with single nodes based on the idea that such cliques
are likely due to latent confounding.

More recently, work based on trek-separation [Kummerfeld
and Ramsey, 2016], rank-constraints [Huang et al., 2022],
heterogeneous data sources [Zhou et al., 2022], and over-
complete ICA-based approaches [Xie et al., 2020, Adams
et al., 2021] have been used to obtain the (hierarchical)
latent structure of the observed variables. They do not, how-
ever, permit edges between the observed variables. This is
in line with the recent field of causal representation learn-
ing [Schölkopf et al., 2021], where it is assumed that all
observed correlations are due to causal relations between
the unobserved variables. While such assumptions are real-
istic for data such as images (pixels don’t cause each other),
they are not reasonable for data gathered from physical,
biological, or social systems.

5 EXPERIMENTS

In this section, we evaluate CDHC empirically. We are inter-
ested in two things; first, how well it recovers the set of con-
founded nodes S∗, and second, how well it recovers the en-
tire network. We compare CDHC against NOTEARS [Zheng
et al., 2018], 3OFF2 [Affeldt et al., 2016], DCD [Bhat-
tacharya et al., 2021] and GFCI [Ogarrio et al., 2016].2 We
instantiate CDHC with different causal discovery algorithms
A and refer to CDHC using A as CDHC-A. Specifically, we
use GES [Chickering, 2002], GGSL [Gao et al., 2017], and
NOTEARS [Zheng et al., 2018]. When clear from the con-
text, we write CDHC for CDHC-GES. We implement CDHC

2GFCI is part of a group of methods, including FCI and RFCI.
Preliminary experiments corroborated previous research [Ogarrio
et al., 2016] that GFCI performs better than its relatives.

in Python. For comparison with all other methods, we use
the implementations provided by the respective authors. All
experiments finished within minutes on a commodity laptop.
All code and data can be found online, along with additional
experiments postponed in the interest of space.3

5.1 SYNTHETIC DATA

We evaluate CDHC on synthetic data by generating a random
acyclic graph G of size m from the Erdős-Rényi model with
parameter p = 0.3. We model the causal relationships via
a linear SEM, X = AX + αBZ + ε where Aij 6= 0 if
and only if (i, j) ∈ E(G). Nonzero values of A,B,Z, ε
are all ∼ N(0, 3). The parameter α ∼ U [1, 8] determines
the relative strength of confounding. Using this model, we
generate 1000 data sets over m = 50 variables, of which
ten nodes are confounded. Before moving to the general
case, we begin by studying how CDHC improves over base
algorithms A on an illustrative example with dim(Z) = 1.

Comparison with Base Algorithms We begin by showing that
CDHC produces better results than standard discovery algo-
rithms when not all variables are observed. We consider the
network shown in Fig. 3a containing nodes X0, ..., X6, of
which X1, X2, X3 are confounded by X0. When withhold-
ing X0, none of the base methods find the correct structure
over X1, X2, X3. Furthermore, while GFCI and DCD find
the variables to be confounded, they cannot tell that all vari-
ables share the same confounder. In contrast, by applying
CDHC, we consistently find thatX1, X2, X3 are confounded
while maintaining the quality of the remaining edges.

Confidence and Performance Since we generally do not have
access to the ground truth network in practice, we next test
how well we can predict the performance of each method
from an easily observable quantity. That is, we compare the

3https://eda.rg.cispa.io/prj/pepsi/
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Number of confounders
Method 1 2 3 4 5

CDHC 0.43 0.38 0.35 0.23 0.15
DCD 0.35 0.18 0.11 0.07 0.03

3OFF2 0.36 0.2 0.14 0.11 0.04
GFCI 0.22 0.11 0.05 0.02 0.01

Table 1: Comparison of CDHC, DCD, 3OFF2 and GFCI for
graphs with varying numbers of latent confounders. While
all methods perform well, only CDHC maintains its perfor-
mance as the number of latent factors increases.

confidence—the improvement of the discovered network
compared to a baseline—of each method to a range of met-
rics measuring the quality of our results. We provide details
on the computation of the confidences in Appendix A.3.

We evaluate each method based on four criteria: (1) the F1

score for network recovery including the confounder (F net
1 ),

(2) the F1 score for the recovery of the set of confounded
nodes (F conf

1 ), (3) the Structural Hamming Distance (SHD)
between the discovered and true network, and (4) the Struc-
tural Intervention Distance (SID) to measure differences in
causal interpretations [Peters and Bühlmann, 2013].

We show the results in the form of decision rate (DR) plots
in Fig. 4. First, we sort the result of each method by their
confidence. Then we plot the confidence against each metric.
On the left of each plot, we include data sets where each
method is most confident and increase this number of sets
until all are included on the right. We see that CDHC outper-
forms its competitors by a large margin. Interestingly, the
choice ofA has little influence on the performance of CDHC,
and the gap between each A with CDHC-A is comparable.
We include further results for GGSL and GES in Appendix
A.4.

Higher-dimensional Z We next consider the effect of in-
cluding multiple confounders Zi in our causal model, each
influencing non-overlapping sets of 5 variables in a network
of m = 50 variables. We show the F conf

1 scores for one to
five confounders in Table 1. We omit NOTEARS, GGSL, and

−0.5 0 0.5
0

0.2

0.4

0.6

0.8

1
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better

CDHC

better

Both
equally
good

Figure 5: Significance assessment of the improvement of
CDHC against its competitors.

GES since none of them are designed for this task.

We see that for one to three confounders, CDHC performs at
a consistent level, but for four and five confounders, its per-
formance decreases due to the difficulty of finding additional
sets of confounded nodes. In contrast, while DCD, 3OFF2,
and GFCI perform well for single-dimensional confounders,
their performance drops immediately upon addition of a
second latent confounder. The reason for this is instructive:
since they do not model the confounder but instead indi-
cate whether pairs of variables are confounded, they cannot
distinguish between different confounders.

Significance To verify that CDHC significantly outperforms
its competitors, we use the Bayesian signed rank test [Be-
navoli et al., 2014]. It explicitly models the probability that
one model is significantly better than the other in practice
by introducing a region of practical equivalence (rope) spec-
ified by parameter r [Benavoli et al., 2014]. Two methods
are considered to perform equally well if the difference in
scores for the methods lies in [−r, r]. We pick r = 0.05 [Be-
navoli et al., 2014] but the conclusion remains the same for
values r ∈ (0, 0.15]. Since the test was designed for two
competing methods, for each dataset, we compare CDHC
with the best-performing competitor, which we refer to as
OPT. For each dataset k, we compute the F net

1 scores for both
CDHC and OPT and compute their differences. We include
more detail in Appendix A.5. We show the estimated pos-

CDHC-GES CDHC-NT CDHC-GGSL NOTEARS 3OFF2 GFCI DCD
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Figure 4: Evaluation on synthetic data. F1 scores for (a) network recovery and (b) confounded set recovery (higher is better),
and (c) Structural Hamming Distance and (d) Structural Intervention Distance (lower is better). Each figure shows the
average score over increasing fractions of all datasets, sorted in descending order by the confidence of each method.
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Figure 6: Results on SOS DNA repair network in E. coli. CDHC (b) discovers a confounder Z capturing five out of the
seven edges (green) in the ground truth network (a). In contrast, GFCI (c) and DCD (d) find many pairs of nodes that are
confounded (solid blue), and in the case of GFCI, more pairs yet which might be confounded (dotted). However, they do not
discover that all nodes share the same confounder, making the resulting networks challenging to interpret.

terior distribution resulting from this comparison in Fig. 5.
Here, the top region contains points where both methods
are practically equally good, while the bottom left and right
corners contain points where OPT, respectively CDHC, per-
form better. We see that all points lie squarely in the region,
indicating CDHC to outperform OPT, suggesting that CDHC
performs significantly better than its competitors.

5.2 CASE STUDY: CELLULAR SIGNALING

Finally, we consider real-world data to investigate the in-
terpretability of the results returned by CDHC. In particular,
we consider the SOS DNA repair network in E. coli [Ronen
et al., 2002]. This data consists of protein levels of eight
genes measured every five minutes for five hours, resulting
in only 60 samples. Since the governing relationships in
gene regulation are highly nonlinear, this tests the applica-
bility of CDHC even when our assumptions do not hold.

Since the ground truth network has been established [Per-
rin et al., 2003], we can test CDHC by excluding a gene
known to have a downstream causal effect on other genes.
An excellent candidate is lexA as it has a causal influence
on all of the other genes: it is upstream of six genes and has
a bidirectional relationship with the seventh (Fig. 6a). We
also applied the other methods on the same data, including
here the results of both GFCI and DCD, and postpone the
networks discovered by the other methods to Appendix A.7.

We show the results in Fig. 6. For clarity, we focus only on
discovering which confounded nodes. In Fig. 6b, we find
a striking similarity between the Z discovered by CDHC
and the true common parent lexA. CDHC correctly identifies
five out of seven relationships: four out of six downstream
effects, as well as one of the two edges between recA and
lexA—which is the most a DAG can do, given that the
two edges are mutually exclusive. Next, for GFCI (Fig. 6c)
and DCD (Fig. 6d), we indicate definite confounding by
solid edges and correlations which could be due to either
confounding or causation by dotted edges. GFCI indicates
definite confounding for only three out of 16 pairs, while

we cannot be certain for the other pairs. The resulting net-
work of DCD indicates definite confounding for many pairs
of variables. However, neither method can determine that
all variables share the same latent confounder. The results
of both GFCI and DCD are consistent with many different
structures and provide no well-founded way of choosing one
over the other. That is, since GFCI and DCD indicate only
pairwise confounding without any way to evaluate whether
nodes are jointly confounded, interpretation of the resulting
networks is difficult. Overall, despite low sample size and
violations of our model assumptions, CDHC finds a readily
interpretable network close to the ground truth.

6 DISCUSSION AND CONCLUSION

We studied the problem of discovering a causal network
over both X and its latent confounders Z. In particular, by
exploiting the structure among confounded nodes XS we
proved identifiability in the sparse linear Gaussian model.

We derived a general approach for discovering sets of con-
founded nodes from the algorithmic model of causality by
explicitly modeling latent variables. We showed that includ-
ing latent variables is only beneficial when the observed X
are indeed confounded. We used MDL to determine which
sets of variables are confounded and showed that CDHC is
consistent for recovering the set of confounded nodes when
combined with a consistent causal discovery method.

Evaluation of CDHC on synthetic data showed that it out-
performed the state of the art on all considered metrics.
Furthermore, on real data it generated results close to the
ground truth despite small sample size and large deviations
from its model assumptions. We further obtained more read-
ily interpretable results than our competitors.

For the future, we are interested in more general identifiabil-
ity results as well as developing better algorithms which do
not require multiple passes of a causal discovery algorithm.
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