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We present the detailed proof of the result here. For some lemmas we follow the lines of |Bastani and Bayati|[2020]] which
prove an analogous bound for the Lasso estimator. For some calculation difference, we present them as well. We indicate it
in the corresponding lemmas.

Proof of Lemmall] Using E [X X1 (x¢r)] is semi-positive definite,
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The following Lemma states that the size of the set T; ; is O(log T').

Lemma A (Lemma EC.8 of Bastani and Bayati|[2020]). Whent > (Kq)?, Kq > 4,

1
iqlogt <|T; | < 2q¢logt.

Proof of LemmalA] We follow the lines of Lemma EC.8 of Bastani and Bayati| [2020]]. Let N; be the largest integer with
t > 2N+l g Thent < 2Vt T2 K¢ and

(Ne+2)g <|T; ¢ < (Ne +3)g.

For the lower bound, we have
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The second inequality follows from ¢ > (K ¢)?. For the upper bound, using N; + 1 <
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The last inequality follows from K¢ > 4. O

Proof of Lemma[, We follow the lines of Proposition 2 of Bastani and Bayati| [2020]. By the Theorem 2] we have
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Together with H when ¢ > 6 (M
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Proof of Lemma[7] We follow the lines of Lemma EC.14 of Bastani and Bayati| [2020]. We have
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Both intervals V7 ; and V5 ; are not containing the forced-sampling time steps and hence we do not update the forced-sample
estimator within the intervals. Therefore, we can write
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The lower bound of cardinality of two disjoint intervals is
ViU Vau| = (tA2YF2 - 1) Kq— 2V K g+ 2V K g — Kq - 2 Kq)
= (t—2N'Kq— Kq) A (3-2V'Kq—2Kq)

t 3
> <2 Kq) A <4t2Kq>
(bt (3t
2 80 4 40

39
= —1.
80
The first inequality follows from ¢ < 2V¢*+2 K q. The last inequality follows from ¢ > (K ¢)? and ¢ > 80. The upper bound
of the cardinality of two disjoint intervals is
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The last inequality is from 2 > (K¢)* and « € (0, 1). Hence, we have
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The Hoeffding’s inequality implies,
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We now provide the proof of the expected regret bound.

Proof of Theoremd}, Lemma EC.19 of Bastani and Bayati| [2020] states that the upper bound of expected regret can be
decomposed into
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for A > 0. From Lemma 7 with a = (2d + 1)¢, we have
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The cumulative regret is bounded by
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when 0 < § < 1.
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