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We present the detailed proof of the result here. For some lemmas we follow the lines of Bastani and Bayati [2020] which
prove an analogous bound for the Lasso estimator. For some calculation difference, we present them as well. We indicate it
in the corresponding lemmas.

Proof of Lemma 1. Using E
[
XXT1(X/∈U)

]
is semi-positive definite,

E[XXT |X ∈ U ] = E
[
XXT1(X∈U)

]
· 1

P(x ∈ U)

≼ E
[
XXT1(X∈U)

]
· 1
p

≼ E
[
XXT1(X∈U)

]
· 1
p
+ E

[
XXT1(X/∈U)

]
· 1
p

= E[XXT ] · 1
p
.

The following Lemma A states that the size of the set Ti,t is O(log T ).

Lemma A (Lemma EC.8 of Bastani and Bayati [2020]). When t ≥ (Kq)2, Kq ≥ 4,

1

2
q log t < |Ti,t| < 2q log t.

Proof of Lemma A. We follow the lines of Lemma EC.8 of Bastani and Bayati [2020]. Let Nt be the largest integer with
t > 2Nt+1Kq. Then t ≤ 2Nt+2Kq and

(Nt + 2)q ≤ |Ti,t| ≤ (Nt + 3)q.

For the lower bound, we have
log(t/Kq)

log 2
< Nt + 2.

Hence,

|Ti,t| ≥ q
log(t/Kq)

log 2
≥ q log(t/

√
t) =

1

2
q log t.
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The second inequality follows from t > (Kq)2. For the upper bound, using Nt + 1 ≤ log(t/Kq)
log 2 ,

|Ti,t| ≤
(
log(t/Kq)

log 2
+ 2

)
q

=

(
log(t/Kq) + log 4

log 2

)
q

=

(
log(4t/Kq)

log 2

)
q

≤ 2q log t.

The last inequality follows from Kq ≥ 4.

Proof of Lemma 4. We follow the lines of Proposition 2 of Bastani and Bayati [2020]. By the Theorem 2, we have

P
(
λmin

(
Σ̂(Ti,t)

)
≤ γp

2

)
≤ d exp

(
−|Ti,t|γp

8

)
.

The size of the set Ti,t is bounded by

|Ti,t| ≥
1

2
q log t ≥ 8

γp
log

(
t2d

α

)
,

provided that q ≥ 48
γt and t ≥ d

α . Hence, with probability at least 1− α
t2 ,

λmin

(
Σ̂(Ti,t)

)
≥ γp

2
. (1)

When q ≥ 192
γp d1/2 and t > 2d+1

α , |Ti,t| ≥ 32λ−1
min

(
Σ̂(Ti,t)

)
d1/2 log(t2(2d + 1)/α). Then, Theorem 1 can be directly

applicable with τ = τ0(|Ti,t|/ log(t2(2d+ 1)/α))1/(1+δ), τ0 ≥ νδ. Hence,

P

(
||β̂(Ti,t)− βi||2 ≤

(
log(t2(2d+ 1)/α)

|Ti,t|

)δ/(1+δ)

· 4λ−1
min

(
Σ̂(Ti,t)

)
τ0d

1/2

)
≥ 1− α

t2
.

Together with (1), when q ≥ 6
(

32τ0d
1/2

hγp

)(1+δ)/δ

and t ≥ 2d+1
α , with probability at least 1− 2α

t2 ,

||β̂(Ti,t)− βi||2 ≤ h

4
.

Proof of Lemma 7. We follow the lines of Lemma EC.14 of Bastani and Bayati [2020]. We have

1(r∈Ai,t) = 1(Ar−1) · 1(xr∈Ui) · 1(r/∈∪i∈[k]Ti,t).

For n = 0, 1, 2, ...,
r ∈ [(2n − 1)Kq + 1, 2nKq]

are forced-sampling time steps and
r ∈

[
2nKq + 1, (2n+1 − 1)Kq

]
are not. Let Nt be the largest integer such that t > 2Nt+1Kq as before. Define the intervals

V1,t =
[
2NtKq + 1, (2Nt+1 − 1)Kq

]
, V2,t =

[
2Nt+1Kq + 1, t ∧ (2Nt+2 − 1)Kq

]
,

and the sum of random variables

Mi,t : =
∑

r∈V1,t

1(r∈Ai,t) +
∑

r∈V2,t

1(r∈Ai,t)

<

t∑
r=1

1(r∈Ai,t)

= |Ai,t|.



Both intervals V1,t and V2,t are not containing the forced-sampling time steps and hence we do not update the forced-sample
estimator within the intervals. Therefore, we can write

Mi,t =
∑

r∈V1,t

1(A
2NtKq) · 1(xr∈Ui) +

∑
r∈V2,t

1(A
2Nt+1Kq) · 1(xr∈Ui)

≥ 1(A
2NtKq) · 1(A

2Nt+1Kq) ·
∑

r∈V1,t∪V2,t

1(xr∈Ui).

The lower bound of cardinality of two disjoint intervals is

|V1,t ∪ V2,t| =
(
t ∧ 2Nt+2 − 1

)
Kq − 2Nt+1Kq +

(
2N+t+1Kq −Kq − 2NtKq

)
=
(
t− 2NtKq −Kq

)
∧
(
3 · 2NtKq − 2Kq

)
>

(
t

2
−Kq

)
∧
(
3

4
t− 2Kq

)
>

(
t

2
− t

80

)
∧
(
3

4
t− t

40

)
=

39

80
t.

The first inequality follows from t ≤ 2Nt+2Kq. The last inequality follows from t > (Kq)2 and q > 80. The upper bound
of the cardinality of two disjoint intervals is

|V1,t ∪ V2,t| < t− 2NtKq −Kq

< t− t

4
−Kq

<
3

4
t.

The probability of two events is bounded by

P
(
A2NtKq and A2Nt+1Kq

)
≥ 1− 2Kα

(t/4)2
− 2Kα

(t/2)2

= 1− 32Kα

t2

> 1− 0.01.

The last inequality is from t2 > (Kq)4 and α ∈ (0, 1). Hence, we have

E[Mi,t] ≥ P
(
A2NtKq and A2Nt+1Kq

)
p|V1,t ∪ V2,t|

≥ 0.48tp.

The Hoeffding’s inequality implies,

P
(
E[Mi,t]−Mi,t ≥ η2

)
≤ exp

(
− 2η

|V1,t ∪ V2,t|

)
≤ exp

(
−8η2

3t

)
.

Let η = 0.23tp. Then

P(Mi,t < 0.48tp − 0.23tp) ≤ exp

(
−8

3
t(0.23p)2

)
≤ exp(−tp2/9).

Since Mi,t ≤ |Ai,t|,

P
(
|Ai,t| <

tp

4

)
≤ exp(−tp2/9) ≤ α

t2
,

provided that t ≥ 1
α and q ≥ 54

p .



We now provide the proof of the expected regret bound.

Proof of Theorem 4. Lemma EC.19 of Bastani and Bayati [2020] states that the upper bound of expected regret can be
decomposed into

T∑
t=1

E[rt] =
T∑
t

E[xTβa∗(t) − xTβa(t)]

≤ 2
∑
i∈D

P(||β̂(Sa∗(t),t−1)− βa∗(t)||2 > ∆) + 2
∑
i∈D

P(||β̂(Sa(t),t−1)− βa(t)||2 > ∆) + 4∆2KC0

for ∆ > 0. From Lemma 7 with α = (2d+ 1)t, we have

P

(
||β̂(Si,t)− βi||2 ≥

(
4

pt
log t

)δ/(1+δ)
32τ0d

1/2

γp

)
≤ 3(2d+ 2)

t

for i ∈ Kopt. Let ∆ =
(

4
pt log t

)δ/(1+δ)
32τ0d

1/2

γp then,

E[rt] ≤
12K(2d+ 1)

t
+ 4

(
32τ0
γp

)2

d

(
4

pt
log T

) 2δ
1+δ

KC0.

The cumulative regret is bounded by

T∑
t=1

E[rt] ≤ 12K(2d+ 1)(log T + 1) + 47d

(
τ0
γ

)2
1

p3
KC0((log T )

2 + log T )

when δ = 1 and
T∑

t=1

E[rt] ≤ 12K(2d+ 1)(log T + 1) + 64216
δ

1+δ d

(
τ0
γ

)2
1

p
2+4δ
1+δ

KC0

(
1 + δ

1− δ

)
T

1−δ
1+δ (log T )

2δ
1+δ

when 0 < δ < 1.
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