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A  EXPERIMENT DETAILS AND RESULTS

A.1 THE ADP-FED ALGORITHM

The Adp-Fed (Adaptive Federated Optimization) is one of the baseline methods compared with Fed-LAMB in our paper.
The algorithm is given in Algorithm[I] The key difference between Adp-Fed and Fed-AMS [[Chen et al.,[2020] is that, in
Adp-Fed, each client runs local SGD (Line 8), and an Adam optimizer is maintained for the global adaptive optimization
(Line 15). In the Fed-AMS framework (as well as our Fed-LAMB), each clients runs local (adaptive) AMSGrad method,
and the global model is simply obtained by averaging the local models. [Li and Li, [2023]] proposed a variant of Adp-Fed
algorithm with communication compression.

Algorithm 1 Adp-Fed: Adaptive Federated Optimization [Reddi et al.,|2021]]

1: Input: parameter 0 < 31, 82 < 1, and learning rate «;, weight decaying parameter A € [0, 1].
2: Initialize: 90’1' €0 - Rd, mo = 0, Vo = €, Vi € HTLH, and 00 = %Z?:l 9077;.

3: forr=1,...,Rdo

4:  parallel for device i do:

5 Set (921 =0,_1.

6: fort=1,...,7 do
7
8

Compute stochastic gradient gﬁ’ ;atdl .

: eiz = 03;1 - 7719?1'
9: end for

10: Devices send A, ; = 0 ; — 67, to server.
11:  end for

12:  Server computes A, = L 3" A,
13: My = f1me_1 + (1 - Bl_)Ar

14: Uy = ﬂer—l + (1 - BQ)A?

150 0, =01+, \7/’%

16: end for

17: Output: Global model parameter 6.
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A.2 HYPER-PARAMETER TUNING

In our empirical study, we tune the learning rate of each algorithm carefully such that the best performance is achieved. The
search grids in all our experiments are provided in Table[T}

Table 1: Search grids of the learning rate.

Learning rate range

Fed-SGD [0.001,0.003,0.005, 0.01, 0.03,0.05,0.1,0.3, 0.5]
Fed-AMS [0.0001, 0.0003, 0.0005, 0.001, 0.003, 0.005, 0.01, 0.03, 0.05, 0.1]
Fed-LAMB [0.001,0.003,0.005, 0.01, 0.03,0.05,0.1,0.3, 0.5]

Local ;: [0.0001, 0.0003, 0.0005, 0.001, 0.003, 0.005,0.01,0.03, 0.05, 0.1, 0.3, 0.5]

Adp-Fed Global n,: [0.0001,0.0003,0.0005, 0.001,0.003, 0.005, 0.01, 0.03,0.05, 0.1]
Mime [0.0001, 0.0003, 0.0005, 0.001, 0.003, 0.005, 0.01, 0.03, 0.05, 0.1]
Mime-LAMB [0.001, 0.003, 0.005, 0.01, 0.03, 0.05, 0.1, 0.3, 0.5]

A.3 MORE WORKERS

In Figure[T] we provide additional figures with larger number of workers n = 200, on MNIST and FMNIST with non-IID
data. The conclusions stay the same: we see that the proposed Fed-LAMB and Mime-LAMB perform much better than the
baseline algorithms, with faster convergence and better accuracy at the end of 100 FL training rounds.
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Figure 1: Test accuracy on MNIST and FMNIST with n = 200 workers, full participation, local batch size 64. Data are
non-IID distributed among clients.



B THEORETICAL ANALYSIS

We first recall in Table [2] some important notations that will be used in our following analysis.

R, T := Number of communications rounds and local iterations (resp.)
n,D,i := Total number of clients, portion sampled uniformly and client index
h,¢ := Total number of layers in the DNN and its index
¢(-) = Scaling factor in Fed-LAMB update
6 := Global model (after periodic averaging)
ﬁ,i ratio computed at round 7, local iteration ¢ and for device 7. w ¥ denotes its component
at layer ¢

Table 2: Summary of notations used in the paper.

We now provide the proofs for the theoretical results of the main paper, including the intermediary Lemmas and the main
convergence result, Theorem 5.

B.1 INTERMEDIARY LEMMA

We now develop the proof of the convergence rate of Fed-LAMB. We need a supporting Lemmal I] for this.

Lemma 1. Consider {0, },~0, the sequence of parameters obtained running Algorithm 1. Then fori € [n]:

_ 1-p
18— 6.4]° < 02272, L0

where ¢y is defined in Assumption 4 and p is the total number of dimensions p = 22:1 Pe.

Proof. Assuming the simplest case when T = 1, i.e., one local iteration, then by construction of Algorithm 1, we have for
all £ € [h], i € [n] and r > 0:

T

94.:97 _ eifl j :9*7_4_ ul
anﬁH Doni/ 1| a; (116 ”)\fll%‘izll

leading to

h
J— 0 1—
18— 02 = 38— 02 < oﬂM?T?%% ,

(=1

which concludes the proof. O

B.2 PROOF OF THEOREM 5

Theorem. Suppose Assumption 1 - Assumption 4 holds. Consider {0}, the sequence of parameters obtained running
Algorithm 1 with a constant learning rate a. Let the number of local epochs be 7' > 1 and A = 0. Then, for any round

R > 0, we have
\/m A i 4a2LM2T2¢%4(1 - 52)17 ¢))
n haR Ve

+4a%+¢MJ 1_ﬁ :|+42|:¢M\/mj|v

Ve Rn M2p

> |5

[W v

where A = E[f(6,)] — 2%18 f(6).



Proof. Our proof will make use of an intermediary virtual sequence defined as

g—b,+ -9, —0

T 97“— ) 2
1= ﬂl( 1) @
where @, denotes the average of the local models at round r. Then for each layer ¢,
_ _ 1 B _
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where we have assumed a constant learning rate .

Using Assumption 1, we have

_ _ _ _ L _
f(ﬂr+1) S f('&r) + <vf(19r) ‘197”4-1 + Z ‘ Hﬁr-&-l 19£||2
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Taking expectations on both sides leads to
L
919 3 g 3 Ly 90112
_Evawr) ‘ﬁﬂrl - 19T>] < E[f(ﬁr) - f(ﬁrJrl)] + Z [||19r+1 - ﬁr“ ] . (4)
=1
We note for all § € O, the majorant G > 0 such that ¢(]|#||) < G. Then, following (@), we obtain

L
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Developing the LHS of (3)) using (3) leads to

(VIO:) |91 — Z z Vef (@, (071 = 007)
=1 j=1
aﬂl 1 & = o(lon) o([16r_1 1) :
nézz ; \/E”dj || r 1”1:[}7“ lz e

a h pe ” £
—— \Y m gl (©)
n§§ S0 me i

=A

Suppose T is the total number of local iterations and R is the number of rounds. We can write (6)) as

g7‘>
m?

Al = —04<Vf(1§7~),

1
where g, = % Z?Zl Gt,i» With g, ; = [ I(lnjf'i””) i i oo ¢\(|‘1|p > HH) gtLZ] representing the normalized gradient (concatenated by
t,i ’ t,i ’
layers) of the ¢-th device. It holds that

@100, Fy = I Ly e IO e
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To bound the last term on the RHS, we have
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By Lipschitz smoothness of the loss function, the first term admits
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Using the smoothness of f; we can transform B; into consensus error by
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where the last inequality stems from Lemmain the particular case where 6, ; are averaged every ct + 1 local iterations for
any integer ¢, since (t — 1) — ([t|, +1)+1<T —1.
We now bound Bs (under the simplification that 5; = 0):
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where we use Assumption 2, Assumption 3 and Assumption 4. Yet,

tl.j
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Then we have
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Thus, (8) becomes
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To bound the second term on the RHS in above, we notice that
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where the last line is due to (9) and Assumption 3. Therefore, we have obtained
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Substitute back into (6), assuming M < 1, we have the following by taking the telescope sum
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Organizing terms, we conclude the proof.
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